BECKHOFF

TF6255

TwinCAT 3 | Modbus RTU

Fle Edt View projeq Build Debug
AN

- Y * | Release
uild 4024.4 (Loaded)

HEe e

New Project

TwinCAT -
- Q- TWinSAFE plc -

B | ToinCaTpr

Solution Explorer
6 &

<h Solution Exp

©
b Recent

. . 4 Installed

%] Solution ‘TwinCAT Project’ (1 project) et

4 /| TWinCAT Project
4 (@] SvSTEM

¥ License

TwinCAT Controller
b TwinCAT Measurement
TwinCAT CAD Interface Beta Version
TwinCAT Projects
TwinCATPLC
TcXaeShell Solution

D Real-Time
B Tasks
5is Routes
23 Type System
&) TcCOM Objects
[moTIoN
@ rLc
SAFETY
Cer
& AnaLmCs .
HNE Not finding what you are looking for?
7 Open Visual Studio Installer

TwinCAT Project

Create new solution

Name:
Location:
Solution:

ame inCAT project
Solution name:

-21 | Version: 1.4.2

*| TWinCAT T (64)

Scope Tools Window Help
P Attach.. v
ect * <locab> -

y: | Default

gt TinCATXAE Project (XML formt)

Browse

e o fr oL

] ngdtoSouce Con!

BEGKHOFF Table of contents

Table of contents

1

L o] =3V o c S 5
1.1 Notes on the doCUMENTALION ... e e e e e 5
L o Yo TN T =Y |V USRS POPPPP 5
1.3 Notes on infOrmation SECUNITYcooi i 7
L0 Y= T PR 8
L 1= =11 1T o 9
3.1 SyYStEM REQUINEMENTSttt e e e e e e e e e s et eeeeeaaeeeeesennssbssaneeeaeaaens 9
R T | 1< =11 =1 o o SR 9
R TR T I (oY 13 o T PRSPPI 12
CONFIGUIAtION ...t ——————— 15
4.1 Terminal CONfIQUIAtIONoiiiiiiieie et e et e e e e e e e e e e e e e ensae e e e e enreeeeeeannees 15
N \Y (oo [o TUTSI= To o [TSI 1y = Y S PSPPSR 15
e IO PSR 18
Lo 20t B U o 1 o] o T o] o T3 (= SO 18
511 0] o1=T o] 1= (= USSP 18
51.2 ModbusRIUMASENV2 PCCOM........oiiiiiiieeiie et a e 25
51.3 ModbusRtuMasterV2 KLBX22B...........cocoiiiiiiieeiiiiiiee et eraeee e 28
514 ModbusRtUMasterV2 KLEXSB............coooiiiiieee e 31
51.5 ModbUuSRIUMASIEIV2 GENEIIC.......eeiiiiiie et e e e 34
51.6 ModbusRtuSIave PCCOM ... e e e e e 37
51.7 ModbusRtuSIave KLBX22Bcooiiiiiiiiiiiiiiieee e 38
51.8 ModbusRtUSIAVE KLBXSBooiiiiiiiiie et 40
51.9 ModbusRtUSIAVE _GENENIC e e e e e 41
LT B - | c- 1 4 o =TSRRI 43
5.21 Modbus Station AdAreSSccceeiiiiiiiieee e e e 43
LR B €11] o F- | I O] g 1] €= | £ SRRSO 43
5.3.1 (€] (o] oF= 1 A VZ=1 53 o] o VPR OPPRP 43
7 o 1= o T 1S 44
6.1 MOADUS RTU EITOr COUES... ...ttt ettt e et e e e e e e e st eeeeannneeeas 44

TF6255 Version: 1.4.2 3

Table of contents BECKHOFF

4 Version: 1.4.2 TF6255

BEGKHOFF Foreword

1 Foreword

1.1 Notes on the documentation

This description is intended exclusively for trained specialists in control and automation technology who are
familiar with the applicable national standards.

For installation and commissioning of the components, it is absolutely necessary to observe the
documentation and the following notes and explanations.

The qualified personnel is obliged to always use the currently valid documentation.

The responsible staff must ensure that the application or use of the products described satisfies all
requirements for safety, including all the relevant laws, regulations, guidelines, and standards.

Disclaimer

The documentation has been prepared with care. The products described are, however, constantly under
development.

We reserve the right to revise and change the documentation at any time and without notice.

No claims to modify products that have already been supplied may be made on the basis of the data,
diagrams, and descriptions in this documentation.

Trademarks

Beckhoff®, TwinCAT®, TwinCAT/BSD®, TC/BSD®, EtherCAT®, EtherCAT G®, EtherCAT G10°, EtherCAT P®,
Safety over EtherCAT®, TwinSAFE®, XFC®, XTS® and XPlanar® are registered and licensed trademarks of
Beckhoff Automation GmbH.

If third parties make use of designations or trademarks used in this publication for their own purposes, this
could infringe upon the rights of the owners of the said designations.

Patents

The EtherCAT Technology is covered, including but not limited to the following patent applications and
patents:

EP1590927, EP1789857, EP1456722, EP2137893, DE102015105702

and similar applications and registrations in several other countries.

——
EtherCAT.

EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH,
Germany

Copyright

© Beckhoff Automation GmbH & Co. KG, Germany.

The distribution and reproduction of this document as well as the use and communication of its contents
without express authorization are prohibited.

Offenders will be held liable for the payment of damages. All rights reserved in the event that a patent, utility
model, or design are registered.

1.2 For your safety

Safety regulations

Read the following explanations for your safety.
Always observe and follow product-specific safety instructions, which you may find at the appropriate places
in this document.

TF6255 Version: 1.4.2 5

Foreword BECKHOFF

Exclusion of liability

All the components are supplied in particular hardware and software configurations which are appropriate for
the application. Modifications to hardware or software configurations other than those described in the
documentation are not permitted, and nullify the liability of Beckhoff Automation GmbH & Co. KG.

Personnel qualification

This description is only intended for trained specialists in control, automation, and drive technology who are
familiar with the applicable national standards.

Signal words

The signal words used in the documentation are classified below. In order to prevent injury and damage to
persons and property, read and follow the safety and warning notices.

Personal injury warnings

A DANGER

Hazard with high risk of death or serious injury.

Hazard with medium risk of death or serious injury.

A CAUTION

There is a low-risk hazard that could result in medium or minor injury.

Warning of damage to property or environment

The environment, equipment, or data may be damaged.

Information on handling the product

d This information includes, for example:

recommendations for action, assistance or further information on the product.

Version: 1.4.2 TF6255

(e}

BEGKHOFF Foreword

1.3 Notes on information security

The products of Beckhoff Automation GmbH & Co. KG (Beckhoff), insofar as they can be accessed online,
are equipped with security functions that support the secure operation of plants, systems, machines and
networks. Despite the security functions, the creation, implementation and constant updating of a holistic
security concept for the operation are necessary to protect the respective plant, system, machine and
networks against cyber threats. The products sold by Beckhoff are only part of the overall security concept.
The customer is responsible for preventing unauthorized access by third parties to its equipment, systems,
machines and networks. The latter should be connected to the corporate network or the Internet only if
appropriate protective measures have been set up.

In addition, the recommendations from Beckhoff regarding appropriate protective measures should be
observed. Further information regarding information security and industrial security can be found in our

https://www.beckhoff.com/secquide.

Beckhoff products and solutions undergo continuous further development. This also applies to security
functions. In light of this continuous further development, Beckhoff expressly recommends that the products
are kept up to date at all times and that updates are installed for the products once they have been made
available. Using outdated or unsupported product versions can increase the risk of cyber threats.

To stay informed about information security for Beckhoff products, subscribe to the RSS feed at https://
www.beckhoff.com/secinfo.

TF6255 Version: 1.4.2 7

https://www.beckhoff.com/secguide
https://www.beckhoff.com/secinfo
https://www.beckhoff.com/secinfo

Overview

BECKHOFF

2 Overview

TwinCAT 3 Modbus RTU offers function blocks for serial communication with Modbus terminal devices.

Slave Mode

m Serial line

Master Mode

Serial line
Modbus RTU

Madbus
Maszter

KL/ELBOxx KL/EL60xx
|_.'*mmlm Serial line

100 ﬂl&ﬁﬁﬁﬁ% Serial line to 100
up mig = up to 100m 14
GREBEERGEG GEGREERRED
ITHERHEEEES

ITHESEIEEES
Modbus Modbus
Master Slave

Modbus RTU devices are connected to a Beckhoff Controller via a serial interface. The TwinCAT PLC uses
slave function blocks of the Modbus RTU library for communication with my Modbus master (slave mode). In
addition, master function blocks are available for addressing several Modbus slaves (master mode)

Supported interfaces
» Serial COM port of a PC or CX
+ Serial Bus Terminals KL60xx
 Serial EtherCAT Terminals EL60xx
* Virtual serial COM port (USB port) of a PC or CX

o With additional use (and licensing) of TF6340 TC3 Serial Communication

Further documentation

Technical details and specification about Modbus can be found under: http://www.modbus.org

Boundary conditions

The Modbus protocol defines accurate timing to ensure, for example, the complete transfer of all characters
of a telegram. Since the communication Modbus RTU is realized on a PLC controller, accurate timing cannot
be guaranteed due to the cyclic execution of the PLC program. Most end devices are very tolerant and
function without problems in the event of short time gaps between characters. In individual cases, the
behavior of the end device should be checked.

The second channel of an EL60x2 is not suitable for Modbus RTU communication, because it is processed
with low priority, which means the frames are sent with gaps, which in turn could be detected by the remote
terminal as frame errors.

@ With some serial interface terminals an internal buffer can be filled before sending (option
continuous sending). The ModbusRTU library can use this feature if it is set in the corresponding
1 serial terminal. For example, on the KL6031 continuous mode can be activated with the
KL 6configuration configuration function block (register 34 bit 6). Up to 128 bytes are then placed in
the internal buffer of the Bus Terminal and transmitted continuously.

8 Version: 1.4.2 TF6255

https://infosys.beckhoff.com/content/1033/tf6340_tc3_serial_communication/84957579.html?id=2313490069920808284
http://www.modbus.org

BEGKHOFF Installation

3 Installation

3.1 System Requirements

Technical data TF6255 TC3 Modbus-RTU
Target system Windows XP /7 /10

PC or CX (x86, x64, ARM)
Min. TwinCAT version 3.1.0
Min. TwinCAT level TC1200 TC3 PLC

3.2 Installation

The following section describes how to install the TwinCAT 3 Function for Windows-based operating
systems.

v' The TwinCAT 3 Function setup file was downloaded from the Beckhoff website.

1. Run the setup file as administrator. To do this, select the command Run as administrator in the context
menu of the file.

= The installation dialog opens.
2. Accept the end user licensing agreement and click Next.

License Agreement

Please read the following license agreement carefully.

Software Usage Agreement for Beckhoff Software Products F

& 1 Subject Matter of this Agreement B
(1) Licen=or grantz Licensee a non-transferable, non-exclusive right to use the data

processing applications specified in Appendix 1 hereto (hereinafter called "Software™) under

the conditions specified hereinafter.

(2} The Software =zhall be delivered to Licensee on machine-readable recording media as
specified in Appendi< 1, on which it iz recorded as an cbject program in an executable status.
One copy of the user documentation shall be part of the application and it shall be delivered to
Licensee in printed form, or alzo on @ machine-readable recording medium or onling. The form

the user documentation iz delivered in is specified in Appendix 1. The Software and the
documentation are hereinafter called "Licenze Materialz™. 57

@ I accept the terms in the license agreement

(71 I do not accept the terms in the license agreement

InstallShield

< Back “ Mext =] [Cancel

TF6255 Version: 1.4.2 9

Installation

BECKHOFF

3. Enter your user data.

Customer Information

Flease enter your information.

User Mame:

IMax Mustermann

Qrganization:

I ustermann Inc.

InstallShield

<Back || MNext» ||

Cancel

4. If you want to install the full version of the TwinCAT 3 Function, select Complete as installation type. If

you want to install the TwinCAT 3 Function components separately, select Custom.

Setup Type

Choose the setup type that best suits your needs,

Please select a setup type.

@ Complete

advanced users,

InstallShield

All program features will be installed to all installed TwinCAT 3
versions on your system. (Requires the most disk space.)

Choose which program features you want installed and to which
TwinCAT 3 version they will be installed. Recommended for

<Back || Next> ||

Cancel

10

Version: 1.4.2

TF6255

BECKHOFF

Installation

5. Select Next, then Install to start the installation.

Ready to Install the Program
The wizard is ready to beqin installation.

Click Install to begin the installation.

exit the wizard,

InstallShield

If you want to review or change any of your installation settings, didk Back. Click Cancel to

< Back][

Install

] [Cancel

= A dialog box informs you that the TwinCAT system must be stopped to proceed with the installation.

6. Confirm the dialog with Yes.

TwinCAT Server Installation

Should TwinCAT be stopped?

TwinCAT systern has to be stopped before proceeding with installation.

Yes * Mo |

"

ER

TF6255 Version: 1.4.2

11

Installation

BECKHOFF

7. Select Finish to exit the setup.

Beckhoff Setup Completed

| The Beckhoff Setup has successfully installed TF 33
Click Finish to exit the wizard.

[T] Show the Windows Installer log

= The TwinCAT 3 Function has been successfully installed and can be licensed (see Licensing [»_12]).

3.3 Licensing

The TwinCAT 3 function can be activated as a full version or as a 7-day test version. Both license types can

be activated via the TwinCAT 3 development environment (XAE).

Licensing the full version of a TwinCAT 3 Function

A description of the procedure to license a full version can be found in the Beckhoff Information System in

the documentation "TwinCAT 3 Licensing".

Licensing the 7-day test version of a TwinCAT 3 Function

{]
1 A 7-day test version cannot be enabled for a TwinCAT 3 license dongle.

1. Start the TwinCAT 3 development environment (XAE).
2. Open an existing TwinCAT 3 project or create a new project.

3. If you want to activate the license for a remote device, set the desired target system. To do this, select

the target system from the Choose Target System drop-down list in the toolbar.

= The licensing settings always refer to the selected target system. When the project is activated on
the target system, the corresponding TwinCAT 3 licenses are automatically copied to this system.

12 Version: 1.4.2

TF6255

https://infosys.beckhoff.com/content/1033/tc3_licensing/117093592658046731.html?id=5546616718344501207
https://infosys.beckhoff.com/content/1033/tc3_licensing/3511048971.html

BEGKHOFF Installation

4. In the Solution Explorer, double-click License in the SYSTEM subtree.

Solution Explorer * 0 X

@ o-a|s =
Search Solution Explorer (Ctrl+0) P

m Solution TwinCAT SampleProject’ (1 project)
4 Iii TwinCAT SampleProject
4 || SYSTEM
¥ License
b @) Real-Time
b B Tasks
si= Routes
215 Type System
TcCOM Objects

= The TwinCAT 3 license manager opens.

5. Open the Manage Licenses tab. In the Add License column, check the check box for the license you
want to add to your project (e.g. "TF4100 TC3 Controller Toolbox").

Order Information (Rurtime) Manage Licenses Project Licenses Online Licenses

[] Dizable automatic detection of required licenses for project

Order Mo License |Add License
TF3e01 TC3 Condition Menitoring Level 2 I_ cpu license
TF3630 TC3 Power Manitoring I_ cpu license
TF3630 TC3 Filter I_ cpu license
TF3200 TC3 Machine Learning Inference Engine I_ cpu license
TF3210 TC3 Meural Metwork Inference Engine I_ cpu license
TF3900 TC3 Solar-Position-Algorithm I_ cpu license
TF4100 TC3 Controller Toolbox
TR4110 TC3 Temperature-Controller I_ cpu license
TF4300 TC3 Speech I_ cpu license

6. Open the Order Information (Runtime) tab.

= In the tabular overview of licenses, the previously selected license is displayed with the status
“missing”.

TF6255 Version: 1.4.2 13

Installation

BECKHOFF

7. Click 7-Day Trial License... to activate the 7-day trial license.

Order Information (Runtime) ~ Manage Licenses Project Licenses Orline Licenses

License Device Target (Hardware 1d) v Add...
System Id: Platform:
2DB25408-B4CD-31DF-5488-6A30D9B453EF15 | other (31)

License Request

Provider: Beckhoff Automation w Generate File. ..
License |d: | Customer Id:
Comment: |
License Activation
7 Days Tral License... I License Response File...

= A dialog box opens, prompting you to enter the security code displayed in the dialog.

Enter Security Code *

Fleaze type the following 5 characters: k.

| Ke8T4 |

8. Enter the code exactly as it is displayed and confirm the entry.

9. Confirm the subsequent dialog, which indicates the successful activation.

= In the tabular overview of licenses, the license status now indicates the expiry date of the license.

10. Restart the TwinCAT system.
= The 7-day trial version is enabled.

14 Version: 1.4.2

TF6255

BECKHOFF Configuration

4 Configuration

4.1 Terminal configuration

The KL6001, KL6011, KL6021, KL6031, and KL6041 Bus Terminals can be parameterized with the KS2000
configuration software.

Alternatively, the system can be configured via the PLC function blocks included in the Tc2 SerialCom serial
communication library. This means that the KL6configuration function block can be used without a license to
configure the bus terminals.

d Please note that the other Tc2_SerialCom library blocks that enable communication (and not
1 configuration) require the license for TF6340 TwinCAT 3 Serial Communication.

4.2 Modbus address arrays

Modbus defines access functions for different data areas. These data areas are declared as variables in a
TwinCAT PLC program, e.g. as word arrays, and transferred to the Modbus slave function block as input
parameters. Each area has a different Modbus start address, so that the areas can be distinguished
unambiguously. This offset has to be taken account of for addressing.

Inputs

The Inputs data area usually describes the physical input data with read-only access. They can be digital
inputs (bit) or analog inputs (word). The PLC programmer can decide whether or not to grant the
communication partner direct access to the physical inputs. It is also possible to define an input area for
Modbus communication that is not identical with the physical inputs:

Definition of the Modbus input data as direct image of the physical inputs. Start and size of the data area can
be specified freely. They are limited by the actual size of the input process image of the controller used.

VAR

Inputs AT%IWO : ARRAY[0..255] OF WORD;

END VAR

Definition of the Modbus input data as a separate Modbus data area independent of the physical inputs

VAR
Inputs : ARRAY[0..255] OF WORD;
END_ VAR

The maximum size of the Input data area is 2048 words (ARRAY[0..2047] OF WORD).

Access to the Input area via a Modbus master is possible with the following Modbus functions:

2 : Read Input Status
4 : Read Input Registers

Addressing

The Input area is addressed with a 0 offset, i.e. address 0 as transferred in the telegram addresses the first
element in the Input data area.

Examples:
PLC variable Access type Address in the Address in the end de-
Modbus telegram vice
(device-dependent)

Inputs[0] Word 16#0 30001

Inputs[1] Word 16#1 30002

Inputs[0], Bit 0 Bit 16#0 10001

Inputs[1], Bit 14 Bit 16#1E 1001F

TF6255 Version: 1.4.2 15

https://infosys.beckhoff.com/content/1031/tf6340_tc3_serial_communication/84957579.html?id=2313490069920808284

Configuration BEGKHOFF

Outputs

The Outputs data area usually describes the physical output data with read and write access. Outputs can
be digital outputs (coils) or analog outputs (output registers). Like for the Inputs, the area can be declared as
a physical output variable or as a simple variable.

Definition of the Modbus output data as direct image of the physical outputs. Start and size of the data area
can be specified freely. They are limited by the actual size of the output process image of the controller used.
VAR

Outputs AT$QWO : ARRAY[0..255] OF WORD;
END VAR

Definition of the Modbus output data as a separate Modbus data area independent of the physical outputs

VAR
Outputs : ARRAY[0..255] OF WORD;
END VAR

The maximum size of the Output data area is 14336 words (ARRAY[0..14335] OF WORD).

Access to the Output area via a Modbus master is possible with the following Modbus functions:

1 : Read Coil Status

3 : Read Holding Registers

5 : Force Single Coil

6 : Preset Single Register

15 : Force Multiple Coils

16 : Preset Multiple Registers

Addressing

The Output area is addressed with a 16#800 offset, i.e. address 16#800 as transferred in the telegram
addresses the first element in the Output data area.

Examples:

PLC variable Access type Address in the Address in the end de-
Modbus telegram vice

(device-dependent)

Outputs[0] Word 16#800 40801

Outputs[1] Word 16#801 40802

Outputs[0], Bit 0 Bit 16#800 00801

Outputs[1], Bit 14 Bit 16#81E 0081F

Memory

The Memory data area describes a PLC variable area without physical I/O assignment.

Definition of the Modbus memory data as PLC flags. Start and size of the data area can be specified freely.

VAR

Memory AT$MWO : ARRAY[0..255] OF WORD;

END VAR

Definition of the Modbus memory data as variable without flag address

VAR
Memory : ARRAY[0..255] OF WORD;
END_ VAR

The maximum size of the Memory data area is 16384 words (ARRAY[0..16383] OF WORD).

Access to the Memory area via a Modbus master is possible with the following Modbus functions:

3 : Read Holding Registers
6 : Preset Single Register
16 : Preset Multiple Registers

Addressing

The Memory area is addressed with a 16#4000 offset, i.e. address 16#4000 as transferred in the telegram
addresses the first word in the Memory data area.

16 Version: 1.4.2 TF6255

BECKHOFF

Configuration

Examples:

PLC variable Access type Address in the Address in the end de-

Modbus telegram vice
(device-dependent)

Memory[0] Word 16#4000 44001

Memory[1] Word 16#4001 44002

TF6255 Version: 1.4.2

17

PLC AP BECKHOFF

5

PLC API

5.1 Function blocks

511 [obsolete]

5111 ModbusRtuMaster_PcCOM
MODEBUSRTUMASTER _PCCOM

—{unitID BUSY—

—jquantity Errori—

—MEAddr ErraorIdi—

—{cbLength chreadl—

—{pMemaryaddr

—Execute

—Timeout

The function block ModbusRtuMaster PcCOM implements a Modbus master that communicates via a serial

PC interface (COM port). The function block ModbusRtuMaster KL6x5B [P 20] is available for
communication via a serial Bus Terminal KL6001, KL6011 or KL6021.

1

Hardware connection

The data structures required for the link with the communication port are included in the function
block. They are displayed in the TwinCAT System Manager once the PLC program has been
integrated and can be connected with a COM port. The procedure is analogous to the description in
the chapter Serial PC Interface of the TF6340 TC3 Serial Communication documentation.

The function block is not called in its basic form, but individual actions of that block are used within a PLC
program. Each Modbus function is implemented as an action.

Supported Modbus functions (actions)

ModbusMaster.ReadCoils
Modbus function 1 = Read Coils

Reads binary outputs (coils) from a connected slave. The data is stored in compressed form (8 bits per
byte) from the specified address pMemoryAddr.

ModbusMaster.ReadlnputStatus
Modbus function 2 = Read Input Status

Reads binary inputs from a connected slave. The data is stored in compressed form (8 bits per byte)
from the specified address pMemoryAddr.

ModbusMaster.ReadRegs
Modbus function 3 = Read Holding Registers

Reads data from a connected slave.

ModbusMaster.ReadlnputRegs
Modbus function 4 = Read Input Registers

Reads input registers from a connected slave.

ModbusMaster.WriteSingleCoil
Modbus function 5 = Write Single Coil

Sends a binary output (coil) to a connected slave. The data must be ready to send in compressed form
(8 bits per byte) from the specified address pMemoryAddr.

ModbusMaster.WriteSingleRegister
Modbus function 6 = Write Single Register

Sends a single data word to a connected slave

18

Version: 1.4.2 TF6255

https://infosys.beckhoff.com/content/1033/tf6340_tc3_serial_communication/85875723.html

BECKHOFF

PLC API

* ModbusMaster.WriteMultipleCoils
Modbus function 15 = Write Multiple Coils

Sends binary outputs (coils) to a connected slave. The data must be ready to send in compressed form

(8 bits per byte) from the specified address pMemoryaAddr.

ModbusMaster.WriteRegs
Modbus function 16 = Preset Multiple Registers

Sends data to a connected slave

ModbusMaster.Diagnostics
Modbus function 8 = Diagnostics

Sends a diagnostic request to the slave with a user-specified function code (subfunction code). Since
this function does not address a memory, the function code is transferred in the data word MBAddr.
Any data required for the function is included in pMemoryAddr.

#* Inputs
VAR INPUT
UnitID : UINT;
Quantity : WORD;
MBAddr : WORD;
cbLength : UINT;
pMemoryAddr : POINTER TO BYTE;
Execute : BOOL;
Timeout : TIME;

END VAR

Name Type Description

UnitlD UINT Modbus station address [P 43] (1..247). The Modbus
slave will only answer if it receives telegrams containing its
own station address. Optionally, collective addresses can
be used for replying to any requests. Address 0 is reserved
for broadcast telegrams and is therefore not a valid station
address (see UnitID [P 43])

Quantity WORD Number of data words to be read or written for word-
oriented Modbus functions. For bit-oriented Modbus
functions, Quantity specifies the number of bits (inputs or
coils).

MBAddr WORD Modbus data address, from which the data are read from
the end device (slave). This address is transferred
unchanged to the slave and is interpreted there as data
address.

With the Diagnostics function (8) the function code
(subfunction code) is transferred here.

cbLength UINT Size of the data variable used for send or read actions in
bytes. cbLength must be greater than or equal to the
amount of data transferred as determined by Quantity. For
word accesses, for example: [cbLength >= Quantity * 2].
cbLength can be calculated with SIZEOF(Modbus data).

pMemoryAddr BYTE Memory address in the PLC, calculated with ADR (Modbus
data). For read actions, the read data are stored in the
addressed variable. For send actions, the data are
transferred from the addressed variable to the end device.

Execute BOOL Start signal. The action is triggered by a rising edge at the
Execute input.

Timeout TIME Timeout value for waiting for a response from the
addressed slave.

E- Qutputs

VAR OUTPUT

BUSY : BOOL;
Error : BOOL;

TF6255

Version: 1.4.2 19

PLC AP BECKHOFF

ErrorId : MODBUS ERRORS;

cbRead : UINT;
END_VAR
Name Type Description
Busy BOOL Indicates that the function block is active. Busy becomes
TRUE with a rising edge at Execute and becomes FALSE
again once the started action is completed. At any one
time, only one action can be active.
Error BOOL Indicates that an error occurred during execution of an
action.
Errorld MODBUS_ERRORS Indicates an error number [P 44] in the event of disturbed
or faulty communication.
cbRead UINT Provides the number of read data bytes for a read action.
Requirements
Development environment Target platform PLC libraries to include
TwinCAT v3.1.0 PC or CX (x86, x64, ARM) Tc2_ModbusRTU
5.1.1.2 ModbusRtuMaster_KL6x5B
MODEUSRTUMASTER _KLEXEE
—unitIo BUSY|—
—Quantity Errort—
—MEAddr ErrarIdi—
—chLength chreadl—
—pMemoryadde
—E=ECULE
—Timeout

The function block ModbusRtuMaster KL6x5B realizes a Modbus master, which communicates via a
serial Bus Terminal KL6001, KL6011 or KL6021.

® Hardware connection

The data structures required for the link with the communication port are included in the function
block. On a PC, the assignment in the TwinCAT System Manager is analogous to the description in

the chapter Serial bus terminal of the TF6340 TC3 Serial Communication documentation.

The function block is not called in its basic form, but individual actions of that block are used within a PLC
program. Each Modbus function is implemented as an action.

Supported Modbus functions (actions)

* ModbusMaster.ReadCoils
Modbus function 1 = Read Coils

Reads binary outputs (coils) from a connected slave. The data is stored in compressed form (8 bits per
byte) from the specified address pMemoryAddr.

* ModbusMaster.ReadInputStatus
Modbus function 2 = Read Input Status

Reads binary inputs from a connected slave. The data is stored in compressed form (8 bits per byte)
from the specified address pMemoryAddr.

* ModbusMaster.ReadRegs
Modbus function 3 = Read Holding Registers

Reads data from a connected slave.

* ModbusMaster.ReadlnputRegs
Modbus function 4 = Read Input Registers

20 Version: 1.4.2 TF6255

https://infosys.beckhoff.com/content/1033/tf6340_tc3_serial_communication/85878795.html?id=5156484543668299105

BECKHOFF PLC AP

Reads input registers from a connected slave.

* ModbusMaster.WriteSingleCoil
Modbus function 5 = Write Single Coil

Sends a binary output (coil) to a connected slave. The data must be ready to send in compressed form
(8 bits per byte) from the specified address pMemoryAddr.

* ModbusMaster.WriteSingleRegister
Modbus function 6 = Write Single Register

Sends a single data word to a connected slave

* ModbusMaster.WriteMultipleCoils
Modbus function 15 = Write Multiple Coils

Sends binary outputs (coils) to a connected slave. The data must be ready to send in compressed form
(8 bits per byte) from the specified address pMemoryAddr.

* ModbusMaster.WriteRegs
Modbus function 16 = Preset Multiple Registers

Sends data to a connected slave

* ModbusMaster.Diagnostics
Modbus function 8 = Diagnostics

Sends a diagnostic request to the slave with a user-specified function code (subfunction code). Since
this function does not address a memory, the function code is transferred in the data word MBAddr.
Any data required for the function is included in pMemoryAddr.

! Inputs
VAR INPUT
UnitID : UINT;
Quantity : WORD;
MBAddr : WORD;
cbLength : UINT;
pMemoryAddr : POINTER TO BYTE;
Execute : BOOL;
Timeout : TIME;
END_ VAR

TF6255 Version: 1.4.2 21

PLC API BECKHOFF

Name Type Description

UnitID UINT Modbus station address [P 43] (1..247). The Modbus
slave will only answer if it receives telegrams containing its
own station address. Optionally, collective addresses can
be used for replying to any requests. Address 0 is reserved
for broadcast telegrams and is therefore not a valid station
address (see UnitID [P 43])

Quantity WORD Number of data words to be read or written for word-
oriented Modbus functions. For bit-oriented Modbus
functions, Quantity specifies the number of bits (inputs or
coils).

MBAddr WORD Modbus data address, from which the data are read from
the end device (slave). This address is transferred
unchanged to the slave and is interpreted there as data
address.

With the Diagnostics function (8) the function code
(subfunction code) is transferred here.

cbLength UINT Size of the data variable used for send or read actions in
bytes. cbLength must be greater than or equal to the
amount of data transferred as determined by Quantity. For
word accesses, for example: [chLength >= Quantity * 2].
cbLength can be calculated with SIZEOF(Modbus data).

pMemoryAddr BYTE Memory address in the PLC, calculated with ADR (Modbus
data). For read actions, the read data are stored in the
addressed variable. For send actions, the data are
transferred from the addressed variable to the end device.

Execute BOOL Start signal. The action is triggered by a rising edge at the
Execute input.

Timeout TIME Timeout value for waiting for a response from the
addressed slave.

E- Qutputs

VAR OUTPUT

BUSY : BOOL;
Error : BOOL;
ErrorId : MODBUS ERRORS;
cbRead : UINT;

END_ VAR

Name Type Description

Busy BOOL Indicates that the function block is active. Busy becomes
TRUE with a rising edge at Execute and becomes FALSE
again once the started action is completed. At any one
time, only one action can be active.

Error BOOL Indicates that an error occurred during execution of an
action.

Errorld MODBUS_ERRORS Indicates an error number [» 44] in the event of disturbed
or faulty communication.

cbRead UINT Provides the number of read data bytes for a read action.

Requirements

Development environment Target platform PLC libraries to include

TwinCAT v3.1.0 PC or CX (x86, x64, ARM) Tc2_ModbusRTU

22

Version: 1.4.2 TF6255

BECKHOFF PLC API

51.1.3 ModbusRtuMaster_KL6x22B
ModbusRtuMaster KLEx22B

—UnitlD BUSY—

—Quantity Error—

—MBAddr Errorld—

—chlength chRead—

—phemoryAddr

—Execute

—Timeout

The function block ModbusRtuMaster KL6x22B realizes a Modbus master, which communicates via a

serial Bus Terminal KL6031 or KL6041. The function block ModbusRtuMaster PcCOM [» 18] is available for
communication via a serial PC interface (COM port).

® Hardware connection

The data structures required for the link with the communication port are included in the function
block. On a PC, the assignment in the TwinCAT System Manager is analogous to the description in

the chapter Serial bus terminal of the TF6340 TC3 Serial Communication documentation.

The function block is not called in its basic form, but individual actions of that block are used within a PLC
program. Each Modbus function is implemented as an action.

Supported Modbus functions (actions)

* ModbusMaster.ReadCoils
Modbus function 1 = Read Coils

Reads binary outputs (coils) from a connected slave. The data is stored in compressed form (8 bits per
byte) from the specified address pMemoryAddr.

* ModbusMaster.ReadIlnputStatus
Modbus function 2 = Read Input Status

Reads binary inputs from a connected slave. The data is stored in compressed form (8 bits per byte)
from the specified address pMemoryAddr.

* ModbusMaster.ReadRegs
Modbus function 3 = Read Holding Registers

Reads data from a connected slave.

* ModbusMaster.ReadlnputRegs
Modbus function 4 = Read Input Registers

Reads input registers from a connected slave.

* ModbusMaster.WriteSingleCoil
Modbus function 5 = Write Single Coil

Sends a binary output (coil) to a connected slave. The data must be ready to send in compressed form
(8 bits per byte) from the specified address pMemoryaAddr.

* ModbusMaster.WriteSingleRegister
Modbus function 6 = Write Single Register

Sends a single data word to a connected slave

* ModbusMaster.WriteMultipleCoils
Modbus function 15 = Write Multiple Coils

Sends binary outputs (coils) to a connected slave. The data must be ready to send in compressed form
(8 bits per byte) from the specified address pMemoryaAddr.

* ModbusMaster.WriteRegs
Modbus function 16 = Preset Multiple Registers

Sends data to a connected slave

TF6255 Version: 1.4.2 23

https://infosys.beckhoff.com/content/1033/tf6340_tc3_serial_communication/85878795.html?id=5156484543668299105

PLC AP BECKHOFF

* ModbusMaster.Diagnostics
Modbus function 8 = Diagnostics

Sends a diagnostic request to the slave with a user-specified function code (subfunction code). Since
this function does not address a memory, the function code is transferred in the data word MBAddr.
Any data required for the function is included in pMemoryAddr.

Inputs
VAR _INPUT
UnitID : UINT;
Quantity : WORD;
MBAddr : WORD;
cbLength : UINT;
pMemoryAddr : POINTER TO BYTE;
Execute : BOOL;
Timeout : TIME;
END VAR
Name Type Description
UnitID UINT Modbus station address [P 43] (1..247). The Modbus

slave will only answer if it receives telegrams containing its
own station address. Optionally, collective addresses can

be used for replying to any requests. Address 0 is reserved
for broadcast telegrams and is therefore not a valid station

address (see UnitID [P 43])

Quantity WORD Number of data words to be read or written for word-
oriented Modbus functions. For bit-oriented Modbus
functions, Quantity specifies the number of bits (inputs or
coils).

MBAddr WORD Modbus data address, from which the data are read from
the end device (slave). This address is transferred
unchanged to the slave and is interpreted there as data
address.

With the Diagnostics function (8) the function code
(subfunction code) is transferred here.

cbLength UINT Size of the data variable used for send or read actions in
bytes. cbLength must be greater than or equal to the
amount of data transferred as determined by Quantity. For
word accesses, for example: [chLength >= Quantity * 2].
cbLength can be calculated with SIZEOF(Modbus data).

pMemoryAddr BYTE Memory address in the PLC, calculated with ADR (Modbus
data). For read actions, the read data are stored in the
addressed variable. For send actions, the data are
transferred from the addressed variable to the end device.

Execute BOOL Start signal. The action is triggered by a rising edge at the
Execute input.
Timeout TIME Timeout value for waiting for a response from the

addressed slave.

E- Qutputs
VAR OUTPUT
BUSY : BOOL;
Error : BOOL;
ErrorId : MODBUS ERRORS;
cbRead : UINT;
END VAR

24 Version: 1.4.2 TF6255

BECKHOFF PLC API

Name Type Description

Busy BOOL Indicates that the function block is active. Busy becomes
TRUE with a rising edge at Execute and becomes FALSE
again once the started action is completed. At any one
time, only one action can be active.

Error BOOL Indicates that an error occurred during execution of an
action.

Errorld MODBUS_ERRORS Indicates an error number [P 44] in the event of disturbed
or faulty communication.

cbRead UINT Provides the number of read data bytes for a read action.

Requirements

Development environment

Target platform PLC libraries to include

TwinCAT v3.1.0

PC or CX (x86, x64, ARM) Tc2_ModbusRTU

5.1.2 ModbusRtuMasterV2_PcCOM

—UnitID

— Quantity
—MBAddr
—chLength
—pMemaoryAddr
—AuxQuantity
—AuxMBAddr
—&uxchLength
—pAuxMemorysddr
—Execute
—Timeout

ModbusRtuMastervVZ_PcCOM

BUSYF—
Errorp—
Errorldf—
chRead—

The function block ModbusRtuMasterV2 PcCOM implements a Modbus master that communicates via a
serial PC interface (COM port). Additional function blocks are available for communication via a serial bus

terminal.

® Hardware connection

1 The data structures required for the link with the communication port are included in the function
block. They are displayed in the TwinCAT System Manager once the PLC program has been
integrated and can be connected with a COM port. The procedure is analogous to the description in

the chapter Serial PC Interface of the TF6340 TC3 Serial Communication documentation.

The function block is not called in its basic form, but individual actions of that block are used within a PLC
program. Each Modbus function is implemented as an action.

Supported Modbus functions (actions)

« ModbusMaster.ReadCoils

Modbus function 1 = Read Coils

Reads binary outputs (coils) from a connected slave. The data is stored in compressed form (8 bits per
byte) from the specified address pMemoryAddr.

* ModbusMaster.ReadlnputStatus
Modbus function 2 = Read Input Status

Reads binary inputs from a connected slave. The data is stored in compressed form (8 bits per byte)
from the specified address pMemoryAddr.

* ModbusMaster.ReadRegs

Modbus function 3 = Read Holding Registers

Reads data from a connected slave.

TF6255

Version: 1.4.2 25

https://infosys.beckhoff.com/content/1033/tf6340_tc3_serial_communication/85875723.html

PLC AP BECKHOFF

* ModbusMaster.ReadlnputRegs
Modbus function 4 = Read Input Registers

Reads input registers from a connected slave.

* ModbusMaster.WriteSingleCoil
Modbus function 5 = Write Single Coil

Sends a binary output (coil) to a connected slave. The data must be ready to send in compressed form
(8 bits per byte) from the specified address pMemoryaAddr.
* ModbusMaster.WriteSingleRegister
Modbus function 6 = Write Single Register
Sends a single data word to a connected slave

* ModbusMaster.WriteMultipleCoils
Modbus function 15 = Write Multiple Coils

Sends binary outputs (coils) to a connected slave. The data must be ready to send in compressed form
(8 bits per byte) from the specified address pMemoryaAddr.
* ModbusMaster.WriteRegs
Modbus function 16 = Preset Multiple Registers
Sends data to a connected slave

+ ModbusMaster.Diagnostics
Modbus function 8 = Diagnostics

Sends a diagnostic request to the slave with a user-specified function code (subfunction code). Since
this function does not address a memory, the function code is transferred in the data word MBAddr.
Any data required for the function is included in pMemoryAddr.

Supported Modbus functions (actions) of the MasterV2 function blocks

* ModbusMaster.ReadWriteRegs
Modbus function 23 = Read/Write Multiple Registers

Sends the data specified via the Aux parameters to a connected slave and receives data from the
slave at the same time. The received data is stored at the address specified by pMemoryAddr.

* ModbusMaster.UserReadWrite
Universal user telegram

The Modbus function code is specified by the user in the first byte of specified data (pMemoryAddr).
With this function the user is able to send a Modbus telegram with any function code. Any data
received from the slave is stored at the address specified by pAuxMemoryAddr.

Inputs

VAR INPUT
UnitID : BYTE;
Quantity : WORD;
MBAddr : WORD;
cbLength : UINT;

pMemoryAddr : POINTER TO BYTE;

AuxQuantity : WORD;
AuxMBAddr : WORD;
AuxcbLength : UINT;

pAuxMemoryAddr : POINTER TO BYTE;

Execute : BOOL;
Timeout : TIME;
END VAR

26 Version: 1.4.2 TF6255

BECKHOFF PLC API

Name Type Description

UnitID UINT Modbus station address [P 43] (1..247). The Modbus
slave will only answer if it receives telegrams containing its
own station address. Optionally, collective addresses can
be used for replying to any requests. Address 0 is reserved
for broadcast telegrams and is therefore not a valid station
address (see UnitID [P 43])

Quantity WORD Number of data words to be read or written for word-
oriented Modbus functions. For bit-oriented Modbus
functions, Quantity specifies the number of bits (inputs or
coils).

MBAddr WORD Modbus data address, from which the data are read from
the end device (slave). This address is transferred
unchanged to the slave and is interpreted there as data
address.

With the Diagnostics function (8) the function code
(subfunction code) is transferred here.

cbLength UINT Size of the data variable used for send or read actions in
bytes. cbLength must be greater than or equal to the
amount of data transferred as determined by Quantity. For
word accesses, for example: [chLength >= Quantity * 2].
cbLength can be calculated with SIZEOF(Modbus data).

pMemoryAddr BYTE Memory address in the PLC, calculated with ADR (Modbus
data). For read actions, the read data are stored in the
addressed variable. For send actions, the data are
transferred from the addressed variable to the end device.

AuxQuantity WORD Additional parameter which is only used for read/write
functions, see ReadWriteRegs/UserReadWrite [P 26]

AuxMBAddr WORD Additional parameter which is only used for read/write
functions, see ReadWriteRegs/UserReadWrite [» 26].

AuxcbLength UINT Additional parameter which is only used for read/write
functions, see ReadWriteRegs/UserReadWrite [P 26]

pAuxMemoryAddr |BYTE Additional parameter which is only used for read/write
functions, see ReadWriteRegs/UserReadWrite [P 26]

Execute BOOL Start signal. The action is triggered by a rising edge at the
Execute input.

Timeout TIME Timeout value for waiting for a response from the
addressed slave.

& QOutputs

VAR OUTPUT

BUSY : BOOL;
Error : BOOL;
ErrorId : MODBUS ERRORS;
cbRead : UINT;

END VAR

Name Type Description

Busy BOOL Indicates that the function block is active. Busy becomes
TRUE with a rising edge at Execute and becomes FALSE
again once the started action is completed. At any one
time, only one action can be active.

Error BOOL Indicates that an error occurred during execution of an
action.

Errorld MODBUS_ERRORS Indicates an error number [» 44] in the event of disturbed
or faulty communication.

cbRead UINT Provides the number of read data bytes for a read action.

TF6255

Version: 1.4.2 27

PLC AP BECKHOFF

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.0 PC or CX (x86, x64, ARM) Tc2_ModbusRTU

513 ModbusRtuMasterV2_KL6x22B

ModbusRtuMasterV2_KL6x22B
—UnitID BUSYF—
— Quantity Errorf—
—MBAddr Errorldf—
—cbLength chRead—
—pMemaorysddr
—AuxQuantity
—AuxMBAddr
—&uxchLength
—pAuxMemoryAddr
—Execute
—Timeout

The function block ModbusRtuMasterV2 KL6x22B realizes a Modbus master, which communicates via a
serial Bus Terminal KL6031 or KL6041. Serial EtherCAT Terminals with 22 bytes of data process image are
also supported. The function block ModbusRtuMasterV2 PcCOM [P_25] is available for communication via a
serial PC interface (COM port).

@ Hardware connection

1 The data structures required for the link with the communication port are included in the function
block. On a PC, the assignment in the TwinCAT System Manager is analogous to the description in

the chapter Serial bus terminal of the TF6340 TC3 Serial Communication documentation.

The function block is not called in its basic form, but individual actions of that block are used within a PLC
program. Each Modbus function is implemented as an action.

Supported Modbus functions (actions)

* ModbusMaster.ReadCoils
Modbus function 1 = Read Coils

Reads binary outputs (coils) from a connected slave. The data is stored in compressed form (8 bits per
byte) from the specified address pMemoryAddr.

* ModbusMaster.ReadIlnputStatus
Modbus function 2 = Read Input Status

Reads binary inputs from a connected slave. The data is stored in compressed form (8 bits per byte)
from the specified address pMemoryAddr.

* ModbusMaster.ReadRegs
Modbus function 3 = Read Holding Registers

Reads data from a connected slave.

* ModbusMaster.ReadlnputRegs
Modbus function 4 = Read Input Registers

Reads input registers from a connected slave.

* ModbusMaster.WriteSingleCoil
Modbus function 5 = Write Single Coil

Sends a binary output (coil) to a connected slave. The data must be ready to send in compressed form
(8 bits per byte) from the specified address pMemoryAddr.

* ModbusMaster.WriteSingleRegister
Modbus function 6 = Write Single Register

Sends a single data word to a connected slave

28 Version: 1.4.2 TF6255

https://infosys.beckhoff.com/content/1033/tf6340_tc3_serial_communication/85878795.html?id=5156484543668299105

BECKHOFF PLC API

* ModbusMaster.WriteMultipleCoils
Modbus function 15 = Write Multiple Coils

Sends binary outputs (coils) to a connected slave. The data must be ready to send in compressed form
(8 bits per byte) from the specified address pMemoryaAddr.

* ModbusMaster.WriteRegs
Modbus function 16 = Preset Multiple Registers

Sends data to a connected slave

* ModbusMaster.Diagnostics
Modbus function 8 = Diagnostics

Sends a diagnostic request to the slave with a user-specified function code (subfunction code). Since
this function does not address a memory, the function code is transferred in the data word MBAddr.
Any data required for the function is included in pMemoryAddr.

Supported Modbus functions (actions) of the MasterV2 function blocks

* ModbusMaster.ReadWriteRegs
Modbus function 23 = Read/Write Multiple Registers

Sends the data specified via the Aux parameters to a connected slave and receives data from the
slave at the same time. The received data is stored at the address specified by pMemoryAddr.

* ModbusMaster.UserReadWrite
Universal user telegram

The Modbus function code is specified by the user in the first byte of specified data (pMemoryAddr).
With this function the user is able to send a Modbus telegram with any function code. Any data
received from the slave is stored at the address specified by pAuxMemoryAddr.

Inputs

VAR INPUT
UnitID NS
Quantity : WORD;
MBAddr : WORD;
cbLength : UINT;

pMemoryAddr : POINTER TO BYTE;

AuxQuantity : WORD;
AuxMBAddr : WORD;
AuxcbLength : UINT;

pAuxMemoryAddr : POINTER TO BYTE;

Execute : BOOL;
Timeout : TIME;
END VAR

TF6255 Version: 1.4.2 29

PLC API BECKHOFF

Name Type Description

UnitID UINT Modbus station address [P 43] (1..247). The Modbus
slave will only answer if it receives telegrams containing its
own station address. Optionally, collective addresses can
be used for replying to any requests. Address 0 is reserved
for broadcast telegrams and is therefore not a valid station
address (see UnitID [P 43])

Quantity WORD Number of data words to be read or written for word-
oriented Modbus functions. For bit-oriented Modbus
functions, Quantity specifies the number of bits (inputs or
coils).

MBAddr WORD Modbus data address, from which the data are read from
the end device (slave). This address is transferred
unchanged to the slave and is interpreted there as data
address.

With the Diagnostics function (8) the function code
(subfunction code) is transferred here.

cbLength UINT Size of the data variable used for send or read actions in
bytes. cbLength must be greater than or equal to the
amount of data transferred as determined by Quantity. For
word accesses, for example: [chLength >= Quantity * 2].
cbLength can be calculated with SIZEOF(Modbus data).

pMemoryAddr BYTE Memory address in the PLC, calculated with ADR (Modbus
data). For read actions, the read data are stored in the
addressed variable. For send actions, the data are
transferred from the addressed variable to the end device.

AuxQuantity WORD Additional parameter which is only used for read/write
functions, see ReadWriteRegs/UserReadWrite [29]

AuxMBAddr WORD Additional parameter which is only used for read/write
functions, see ReadWriteRegs/UserReadWrite [» 29].

AuxcbLength UINT Additional parameter which is only used for read/write
functions, see ReadWriteRegs/UserReadWrite [P 29]

pAuxMemoryAddr |BYTE Additional parameter which is only used for read/write
functions, see ReadWriteRegs/UserReadWrite [P 29]

Execute BOOL Start signal. The action is triggered by a rising edge at the
Execute input.

Timeout TIME Timeout value for waiting for a response from the
addressed slave.

& QOutputs

VAR OUTPUT

BUSY : BOOL;
Error : BOOL;
ErrorId : MODBUS ERRORS;
cbRead : UINT;

END VAR

Name Type Description

Busy BOOL Indicates that the function block is active. Busy becomes
TRUE with a rising edge at Execute and becomes FALSE
again once the started action is completed. At any one
time, only one action can be active.

Error BOOL Indicates that an error occurred during execution of an
action.

Errorld MODBUS_ERRORS Indicates an error number [» 44] in the event of disturbed
or faulty communication.

cbRead UINT Provides the number of read data bytes for a read action.

30

Version: 1.4.2 TF6255

BECKHOFF PLC API

Requirements

Development environment Target platform PLC libraries to include

TwinCAT v3.1.0 PC or CX (x86, x64, ARM) Tc2_ModbusRTU

514 ModbusRtuMasterV2_KL6x5B

ModbusRtuMasterV2_KL6x5B
—UnitID BLSYR—
— Quantity Errorf—
—MBAddr Errorld—
—cbLength chRead—
—{pMemoryAddr
—AuxQuantity
—AuxMBAddr

— AuxcbLength
—{pAuxMemoryiddr
—{Execute
—{Timeout

The function block ModbusRtuMasterV2 KL6x5B realizes a Modbus master, which communicates via a

serial Bus Terminal KL6001, KL6011 or KL6021. The function block ModbusRtuMasterV2 PcCOM [P 25] is
available for communication via a serial PC interface (COM port).

® Hardware connection

The data structures required for the link with the communication port are included in the function
block. On a PC, the assignment in the TwinCAT System Manager is analogous to the description in

the chapter Serial bus terminal of the TF6340 TC3 Serial Communication documentation.

The function block is not called in its basic form, but individual actions of that block are used within a PLC
program. Each Modbus function is implemented as an action.

Supported Modbus functions (actions)

* ModbusMaster.ReadCoils
Modbus function 1 = Read Coils

Reads binary outputs (coils) from a connected slave. The data is stored in compressed form (8 bits per
byte) from the specified address pMemoryAddr.

* ModbusMaster.ReadIlnputStatus
Modbus function 2 = Read Input Status

Reads binary inputs from a connected slave. The data is stored in compressed form (8 bits per byte)
from the specified address pMemoryAddr.

* ModbusMaster.ReadRegs
Modbus function 3 = Read Holding Registers

Reads data from a connected slave.

* ModbusMaster.ReadlnputRegs
Modbus function 4 = Read Input Registers

Reads input registers from a connected slave.

* ModbusMaster.WriteSingleCoil
Modbus function 5 = Write Single Coil

Sends a binary output (coil) to a connected slave. The data must be ready to send in compressed form
(8 bits per byte) from the specified address pMemoryaAddr.

* ModbusMaster.WriteSingleRegister
Modbus function 6 = Write Single Register

Sends a single data word to a connected slave

TF6255 Version: 1.4.2 31

https://infosys.beckhoff.com/content/1033/tf6340_tc3_serial_communication/85878795.html?id=5156484543668299105

PLC AP BECKHOFF

* ModbusMaster.WriteMultipleCoils

Modbus function 15 = Write Multiple Coils

Sends binary outputs (coils) to a connected slave. The data must be ready to send in compressed form
(8 bits per byte) from the specified address pMemoryaAddr.

ModbusMaster.WriteRegs
Modbus function 16 = Preset Multiple Registers

Sends data to a connected slave

ModbusMaster.Diagnostics
Modbus function 8 = Diagnostics

Sends a diagnostic request to the slave with a user-specified function code (subfunction code). Since
this function does not address a memory, the function code is transferred in the data word MBAddr.
Any data required for the function is included in pMemoryAddr.

Supported Modbus functions (actions) of the MasterV2 function blocks

* ModbusMaster.ReadWriteRegs

Modbus function 23 = Read/Write Multiple Registers

Sends the data specified via the Aux parameters to a connected slave and receives data from the
slave at the same time. The received data is stored at the address specified by pMemoryAddr.

ModbusMaster.UserReadWrite
Universal user telegram

The Modbus function code is specified by the user in the first byte of specified data (pMemoryAddr).
With this function the user is able to send a Modbus telegram with any function code. Any data
received from the slave is stored at the address specified by pAuxMemoryAddr.

Inputs

VAR INPUT
UnitID NS
Quantity : WORD;
MBAddr : WORD;
cbLength : UINT;

pMemoryAddr : POINTER TO BYTE;

AuxQuantity : WORD;
AuxMBAddr : WORD;
AuxcbLength : UINT;

pAuxMemoryAddr : POINTER TO BYTE;

Execute : BOOL;
Timeout : TIME;
END VAR

32

Version: 1.4.2 TF6255

BECKHOFF PLC API

Name Type Description

UnitID UINT Modbus station address [P 43] (1..247). The Modbus
slave will only answer if it receives telegrams containing its
own station address. Optionally, collective addresses can
be used for replying to any requests. Address 0 is reserved
for broadcast telegrams and is therefore not a valid station
address (see UnitID [P 43])

Quantity WORD Number of data words to be read or written for word-
oriented Modbus functions. For bit-oriented Modbus
functions, Quantity specifies the number of bits (inputs or
coils).

MBAddr WORD Modbus data address, from which the data are read from
the end device (slave). This address is transferred
unchanged to the slave and is interpreted there as data
address.

With the Diagnostics function (8) the function code
(subfunction code) is transferred here.

cbLength UINT Size of the data variable used for send or read actions in
bytes. cbLength must be greater than or equal to the
amount of data transferred as determined by Quantity. For
word accesses, for example: [chLength >= Quantity * 2].
cbLength can be calculated with SIZEOF(Modbus data).

pMemoryAddr BYTE Memory address in the PLC, calculated with ADR (Modbus
data). For read actions, the read data are stored in the
addressed variable. For send actions, the data are
transferred from the addressed variable to the end device.

AuxQuantity WORD Additional parameter which is only used for read/write
functions, see ReadWriteRegs/UserReadWrite [32]

AuxMBAddr WORD Additional parameter which is only used for read/write
functions, see ReadWriteRegs/UserReadWrite [» 32].

AuxcbLength UINT Additional parameter which is only used for read/write
functions, see ReadWriteRegs/UserReadWrite [P 32]

pAuxMemoryAddr |BYTE Additional parameter which is only used for read/write
functions, see ReadWriteRegs/UserReadWrite [P 32]

Execute BOOL Start signal. The action is triggered by a rising edge at the
Execute input.

Timeout TIME Timeout value for waiting for a response from the
addressed slave.

& QOutputs

VAR OUTPUT

BUSY : BOOL;
Error : BOOL;
ErrorId : MODBUS ERRORS;
cbRead : UINT;

END VAR

Name Type Description

Busy BOOL Indicates that the function block is active. Busy becomes
TRUE with a rising edge at Execute and becomes FALSE
again once the started action is completed. At any one
time, only one action can be active.

Error BOOL Indicates that an error occurred during execution of an
action.

Errorld MODBUS_ERRORS Indicates an error number [» 44] in the event of disturbed
or faulty communication.

cbRead UINT Provides the number of read data bytes for a read action.

TF6255

Version: 1.4.2 33

PLC AP BECKHOFF

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.0 PC or CX (x86, x64, ARM) Tc2_ModbusRTU

5.1.5 ModbusRtuMasterV2_Generic

ModbusRtuMasterV2_Generic
—UnitID BLISYF—
— Quantity Errorf—
—MBAddr Errorldf—
—cbLength chRead—
—pMemoryAddr
—AuxQuantity
—AuxMBAddr
—&uxchLength
—pAuxMemoryAddr
—Execute
—Timeout
—RxBuffer
—{TxBuffer

The function block ModbusRtuMasterV2 Generic implements a Modbus master that communicates via
various serial interfaces (COM port, virtual COM port, EtherCAT Terminals, ...).

Due to the hardware-independent nature of ModbusRtuMasterV2 Generic, its use is somewhat more
complex than that of the hardware-dependent function blocks ModbusRtuMasterV2 PcCOM,
ModbusRtuMasterV2 KL6x22B, ModbusRtuMasterV2 KL6x5B. All function blocks offer the same
ModbusRTU functionality. However, the ModbusRtuMasterV2 Generic alone allows the use of virtual
COM nports.

® Connection to hardware via TF6340 TC3 Serial Communication (license required)

1 The data structures required to link to the communication port must be instantiated separately. The
data structures of type ComBuffer present at this function block are data buffers for decoupling the
hardware-dependent background communication. This background communication must be
implemented via corresponding function blocks (SerialLineControl, SerialLineControlADS) of the
Tc2 SerialCom PLC library, for which this PLC library must first be integrated in the program. The
license for TF6340 TC3 Serial Communication is also required.

The function block is not called in its basic form, but individual actions of that block are used within a PLC
program. Each Modbus function is implemented as an action.

Supported Modbus functions (actions)

* ModbusMaster.ReadCoils
Modbus function 1 = Read Coils

Reads binary outputs (coils) from a connected slave. The data is stored in compressed form (8 bits per
byte) from the specified address pMemoryAddr.

+ ModbusMaster.ReadIlnputStatus
Modbus function 2 = Read Input Status

Reads binary inputs from a connected slave. The data is stored in compressed form (8 bits per byte)
from the specified address pMemoryAddr.

* ModbusMaster.ReadRegs
Modbus function 3 = Read Holding Registers

Reads data from a connected slave.

* ModbusMaster.ReadlnputRegs
Modbus function 4 = Read Input Registers

Reads input registers from a connected slave.

34 Version: 1.4.2 TF6255

https://infosys.beckhoff.com/content/1033/tf6340_tc3_serial_communication/85904267.html?id=6531096720245711567

BECKHOFF PLC API

* ModbusMaster.WriteSingleCoil
Modbus function 5 = Write Single Coil

Sends a binary output (coil) to a connected slave. The data must be ready to send in compressed form
(8 bits per byte) from the specified address pMemoryaAddr.

* ModbusMaster.WriteSingleRegister
Modbus function 6 = Write Single Register

Sends a single data word to a connected slave

* ModbusMaster.WriteMultipleCoils
Modbus function 15 = Write Multiple Coils

Sends binary outputs (coils) to a connected slave. The data must be ready to send in compressed form
(8 bits per byte) from the specified address pMemoryAddr.

* ModbusMaster.WriteRegs
Modbus function 16 = Preset Multiple Registers

Sends data to a connected slave

* ModbusMaster.Diagnostics
Modbus function 8 = Diagnostics

Sends a diagnostic request to the slave with a user-specified function code (subfunction code). Since
this function does not address a memory, the function code is transferred in the data word MBAddr.
Any data required for the function is included in pMemoryAddr.

Supported Modbus functions (actions) of the MasterV2 function blocks

* ModbusMaster.ReadWriteRegs
Modbus function 23 = Read/Write Multiple Registers

Sends the data specified via the Aux parameters to a connected slave and receives data from the
slave at the same time. The received data is stored at the address specified by pMemoryAddr.

* ModbusMaster.UserReadWrite
Universal user telegram

The Modbus function code is specified by the user in the first byte of specified data (pMemoryAddr).
With this function the user is able to send a Modbus telegram with any function code. Any data
received from the slave is stored at the address specified by pAuxMemoryAddr.

% Inputs

VAR INPUT
UnitID : BYTE;
Quantity : WORD;
MBAddr : WORD;
cbLength : UINT;

pMemoryAddr : POINTER TO BYTE;

AuxQuantity : WORD;
AuxMBAddr : WORD;
AuxcbLength : UINT;

pAuxMemoryAddr : POINTER TO BYTE;

Execute : BOOL;
Timeout : TIME;
END VAR

TF6255 Version: 1.4.2 35

PLC API

BECKHOFF

Name

Type

Description

UnitID

UINT

Modbus station address [P 43] (1..247). The Modbus

slave will only answer if it receives telegrams containing its
own station address. Optionally, collective addresses can
be used for replying to any requests. Address 0 is reserved
for broadcast telegrams and is therefore not a valid station

address (see UnitID [P 43])

Quantity

WORD

Number of data words to be read or written for word-
oriented Modbus functions. For bit-oriented Modbus
functions, Quantity specifies the number of bits (inputs or
coils).

MBAddr

WORD

Modbus data address, from which the data are read from
the end device (slave). This address is transferred
unchanged to the slave and is interpreted there as data
address.

With the Diagnostics function (8) the function code
(subfunction code) is transferred here.

cbLength

UINT

Size of the data variable used for send or read actions in
bytes. cbLength must be greater than or equal to the
amount of data transferred as determined by Quantity. For
word accesses, for example: [chLength >= Quantity * 2].
cbLength can be calculated with SIZEOF(Modbus data).

pMemoryAddr

BYTE

Memory address in the PLC, calculated with ADR (Modbus
data). For read actions, the read data are stored in the
addressed variable. For send actions, the data are
transferred from the addressed variable to the end device.

AuxQuantity

WORD

Additional parameter which is only used for read/write
functions, see ReadWriteRegs/UserReadWrite [P 35]

AuxMBAddr

WORD

Additional parameter which is only used for read/write
functions, see ReadWriteRegs/UserReadWrite [» 35].

AuxcbLength

UINT

Additional parameter which is only used for read/write
functions, see ReadWriteRegs/UserReadWrite [P 35]

pAuxMemoryAddr

BYTE

Additional parameter which is only used for read/write
functions, see ReadWriteRegs/UserReadWrite [P _35]

Execute

BOOL

Start signal. The action is triggered by a rising edge at the
Execute input.

Timeout

TIME

Timeout value for waiting for a response from the
addressed slave.

#/E- Inputs/outputs

VAR IN OUT
RxBuffer : ComBuffer;
TxBuffer : ComBuffer;
END_ VAR
Name Type Description
TxBuffer ComBuffer (Tc2 SerialCom|Buffer with send data for the serial hardware being used.
PLC library) This data buffer is never directly written or read b_y the
user, but only serves as a buffer for the communication
blocks. The background communication must be realized
via corresponding function blocks of the Tc2_SerialCom
PLC library.
RxBuffer ComBuffer (Tc2 SerialCom |Buffer into which received data is placed. This data buffer

PLC library)

is never directly written or read by the user, but only serves
as a buffer for the communication blocks. The background
communication must be realized via corresponding
function blocks of the Tc2_SerialCom PLC library.

36

Version: 1.4.2 TF6255

https://infosys.beckhoff.com/content/1033/tf6340_tc3_serial_communication/85920523.html?id=3015672977536879081
https://infosys.beckhoff.com/content/1033/tf6340_tc3_serial_communication/85920523.html?id=3015672977536879081
https://infosys.beckhoff.com/content/1033/tf6340_tc3_serial_communication/85920523.html?id=3015672977536879081
https://infosys.beckhoff.com/content/1033/tf6340_tc3_serial_communication/85920523.html?id=3015672977536879081

BECKHOFF

PLC API

& QOutputs
VAR OUTPUT
BUSY : BOOL;
Error : BOOL;
ErrorId : MODBUS ERRORS;
cbRead : UINT;
END VAR
Name Type Description
Busy BOOL Indicates that the function block is active. Busy becomes
TRUE with a rising edge at Execute and becomes FALSE
again once the started action is completed. At any one
time, only one action can be active.
Error BOOL Indicates that an error occurred during execution of an
action.
Errorld MODBUS_ERRORS Indicates an error number [» 44] in the event of disturbed
or faulty communication.
cbRead UINT Provides the number of read data bytes for a read action.

Requirements

Development environment

Target platform

PLC libraries to include

TwinCAT v3.1.4024.0

PC or CX (x86, x64, ARM)

Tc2_ModbusRTU (>= v3.5.6.0)

5.1.6 ModbusRtuSlave_PcCOM
ModbusRtuSlave _PcCOM
—UnitID Errorld—
—adrinputs
—SizelnputBytes
—AdrOutputs
—SizeOutputBytes
—adrMemory
—SizeMemaryBytes

The function block ModbusRtuSlave PcCOM implements a Modbus slave that communicates via a serial

PC interface (COM port). The function block ModbusRtuSlave KL6x5B [P 40] is available for communication
via a serial Bus Terminal KL6001, KL6011 or KL6021.

The function block is passive until it receives telegrams from a connected Modbus master. A sample
program explains the operating principle.

® Hardware connection

1 The data structures required for the link with the communication port are included in the function
block. They are displayed in the TwinCAT System Manager once the PLC program has been
integrated and can be connected with a COM port. The procedure is analogous to the description in

the chapter Serial PC Interface of the TF6340 TC3 Serial Communication documentation.

% Inputs

VAR INPUT
UnitID
AdrInputs

SizeInputBytes

AdrOutputs

SizeOutputBytes :

AdrMemory

SizeMemoryBytes

END VAR

: UINT;
: POINTER TO BYTE;
: UINT;
: POINTER TO BYTE;
UINT;
: POINTER TO BYTE;
: UINT;

(* Pointer to the Modbus input area ¥*)
(* Pointer to the Modbus output area *)

(* Pointer to the Modbus memory area ¥*)

TF6255

Version: 1.4.2 37

https://infosys.beckhoff.com/content/1033/tf6340_tc3_serial_communication/85875723.html

PLC API BECKHOFF

Name Type Description

UnitID UINT Modbus station address [P 43] (1..247). The Modbus
slave will only answer if it receives telegrams containing its
own station address. Optionally, collective addresses can
be used for replying to any requests. Address 0 is reserved
for broadcast telegrams and is therefore not a valid station
address.

Adrinputs BYTE Start address of the Modbus input area [» 15]. The data
area is usually declared as a PLC array, and the address
can be calculated with ADR (input variable).

SizelnputBytes UINT Size of the Modbus input array in bytes. The size can be
calculated with SIZEOF (input variable).

AdrOutputs BYTE Start address of the Modbus output area [P 15]. The data
area is usually declared as a PLC array, and the address
can be calculated with ADR (output variable).

SizeOutputBytes UINT Size of the Modbus output array in bytes. The size can be
calculated with SIZEOF (output variable).

AdrMemory BYTE Start address of the Modbus memory area [P 15]. The data
area is usually declared as a PLC array, and the address
can be calculated with ADR (memory variable).

SizeMemoryBytes |UINT Size of the Modbus memory array in bytes. The size can
be calculated with SIZEOF (memory variable).

& QOutputs

VAR OUTPUT

ErrorId : MODBUS ERRORS;

END_ VAR

Name Type Description

Errorld MODBUS_ERRORS

Indicates an error number [P 44] in the event of disturbed
or faulty communication.

Requirements

Development environment

Target platform PLC libraries to include

TwinCAT v3.1.0

PC or CX (x86, x64, ARM) Tc2_ModbusRTU

5.1.7 ModbusRtuSlave KL6x22B

—UnitID
—AdrInputs
—SizelnputBytes
—AdrOutputs

— SizeQutputBytes
—AdrMemory
—SizeMemaryBytes

ModbusRtuSlave _KL6x22B

Errorldf—

The function block ModbusRtuSlave KL6x22B realizes a Modbus slave, which communicates via a serial
Bus Terminal KL6031 or KL6041. Serial EtherCAT Terminals with 22 bytes of data process image are also

supported. The function block ModbusRtuSlave PcCOM [»_37] is available for communication via a serial PC
interface (COM port).

The function block is passive until it receives telegrams from a connected Modbus master.

38

Version: 1.4.2 TF6255

BECKHOFF PLC API

Hardware connection

o
1 The data structures required for the link with the communication port are included in the function
block. On a PC, the assignment in the TwinCAT System Manager is analogous to the description in

the chapter Serial bus terminal of the TF6340 TC3 Serial Communication documentation.

Inputs

VAR _INPUT
UnitID : UINT;
AdrInputs : POINTER TO BYTE; (* Pointer to the Modbus input area *)
SizeInputBytes : UINT;
AdrOutputs : POINTER TO BYTE; (* Pointer to the Modbus output area *)
SizeOutputBytes : UINT;
AdrMemory : POINTER TO BYTE; (* Pointer to the Modbus memory area *)
SizeMemoryBytes : UINT;

END VAR

Name Type Description

UnitID UINT Modbus station address [P 43] (1..247). The Modbus
slave will only answer if it receives telegrams containing its
own station address. Optionally, collective addresses can
be used for replying to any requests. Address 0 is reserved
for broadcast telegrams and is therefore not a valid station
address.

Adrinputs BYTE Start address of the Modbus input area [»_15]. The data
area is usually declared as a PLC array, and the address
can be calculated with ADR (input variable).

SizelnputBytes UINT Size of the Modbus input array in bytes. The size can be
calculated with SIZEOF (input variable).

AdrOutputs BYTE Start address of the Modbus output area [»_15]. The data
area is usually declared as a PLC array, and the address
can be calculated with ADR (output variable).

SizeOutputBytes UINT Size of the Modbus output array in bytes. The size can be
calculated with SIZEOF (output variable).

AdrMemory BYTE Start address of the Modbus memory area [P 15]. The data
area is usually declared as a PLC array, and the address
can be calculated with ADR (memory variable).

SizeMemoryBytes |UINT Size of the Modbus memory array in bytes. The size can
be calculated with SIZEOF (memory variable).

E QOutputs
VAR OUTPUT
ErrorId : MODBUS ERRORS;
END VAR
Name Type Description
Errorld MODBUS_ERRORS Indicates an error number [P 44] in the event of disturbed
or faulty communication.

Requirements

Development environment Target platform PLC libraries to include

TwinCAT v3.1.0 PC or CX (x86, x64, ARM) Tc2_ModbusRTU

TF6255 Version: 1.4.2 39

https://infosys.beckhoff.com/content/1033/tf6340_tc3_serial_communication/85878795.html?id=5156484543668299105

PLC API

BECKHOFF

5.1.8 ModbusRtuSlave_KL6x5B

—{UnitID
—Adrinputs
—SizelnputBytes
—AdrOutputs
—SizeQutputBytes
—AdrMemory
—SizeMemaryBytes

ModbusRtusSlave KL6x5B

Errorldf—

The function block ModbusRTUslave KL6x5B realizes a Modbus slave, which communicates via a serial

Bus Terminal KL6001, KL6011 or KL6021. The function block ModbusRtuSlave PcCOM [P_37] is available for
communication via a serial PC interface (COM port).

The function block is passive until it receives telegrams from a connected Modbus master.

@ Hardware connection

The data structures required for the link with the communication port are included in the function
block. On a PC, the assignment in the TwinCAT System Manager is analogous to the description in

the chapter Serial bus terminal of the TF6340 TC3 Serial Communication documentation.

Inputs

VAR INPUT
UnitID : UINT;
AdrInputs : POINTER TO BYTE; (* Pointer to the Modbus input area *)
SizeInputBytes : UINT;
AdrOutputs : POINTER TO BYTE; (* Pointer to the Modbus output area *)
SizeOutputBytes : UINT;
AdrMemory : POINTER TO BYTE; (* Pointer to the Modbus memory area *)
SizeMemoryBytes : UINT;

END_ VAR

Name Type Description

UnitlD UINT Modbus station address [» 43] (1..247). The Modbus
slave will only answer if it receives telegrams containing its
own station address. Optionally, collective addresses can
be used for replying to any requests. Address 0 is reserved
for broadcast telegrams and is therefore not a valid station
address.

Adrinputs BYTE Start address of the Modbus input area [»_15]. The data
area is usually declared as a PLC array, and the address
can be calculated with ADR (input variable).

SizelnputBytes UINT Size of the Modbus input array in bytes. The size can be
calculated with SIZEOF (input variable).

AdrOutputs BYTE Start address of the Modbus output area [»_15]. The data
area is usually declared as a PLC array, and the address
can be calculated with ADR (output variable).

SizeOutputBytes UINT Size of the Modbus output array in bytes. The size can be
calculated with SIZEOF (output variable).

AdrMemory BYTE Start address of the Modbus memory area [P 15]. The data
area is usually declared as a PLC array, and the address
can be calculated with ADR (memory variable).

SizeMemoryBytes |UINT Size of the Modbus memory array in bytes. The size can

be calculated with SIZEOF (memory variable).

40

Version: 1.4.2 TF6255

https://infosys.beckhoff.com/content/1033/tf6340_tc3_serial_communication/85878795.html?id=5156484543668299105

BECKHOFF

PLC API

& QOutputs
VAR_OUTPUT
ErrorId : MODBUSiERRORS;
END_VAR
Name Type Description
Errorld MODBUS_ERRORS Indicates an error number [» 44] in the event of disturbed

or faulty communication.

Requirements

PLC libraries to include
Tc2_ModbusRTU

Development environment
TwinCAT v3.1.0

Target platform
PC or CX (x86, x64, ARM)

51.9 ModbusRtuSlave_Generic

ModbusRtuSlave Generic
—UnitID

—{AdrInputs

—SizelnputBytes

—AdrOutputs

—SizeQutputBytes

—AdrMemory

—SizeMemaoryBytes

— RxBuffer

—{TxBuffer

Errorldf—

The function block ModbusRtuSlave Generic implements a Modbus slave that communicates via various
serial interfaces (COM port, virtual COM port, EtherCAT Terminals, ...).

Due to the hardware-independent nature of ModbusRtuSlave Generic, its use is somewhat more
complex than that of the hardware-dependent function blocks ModbusRtuSlave PcCOM,
ModbusRtuSlave KL6x22B, ModbusRtuSlave KL6x5B. All function blocks offer the same
ModbusRTU functionality. However, the ModbusRtuSlave Generic alone allows the use of virtual COM
ports.

The function block is passive until it receives telegrams from a connected Modbus master. A sample
program explains the operating principle.

® Connection to hardware via TF6340 TC3 Serial Communication (license required)

1 The data structures required to link to the communication port must be instantiated separately. The
data structures of type ComBuffer present at this function block are data buffers for decoupling the
hardware-dependent background communication. This background communication must be
implemented via corresponding function blocks (SerialLineControl, SerialLineControlADS) of the
Tc2 SerialCom PLC library, for which this PLC library must first be integrated in the program. The
license for TF6340 TC3 Serial Communication is also required.

#! Inputs

VAR INPUT
UnitID : UINT;
AdrInputs : POINTER TO BYTE; (* Pointer to the Modbus input area ¥*)
SizeInputBytes : UINT;
AdrOutputs : POINTER TO BYTE; (* Pointer to the Modbus output area *)
SizeOutputBytes : UINT;
AdrMemory : POINTER TO BYTE; (* Pointer to the Modbus memory area ¥*)
SizeMemoryBytes : UINT;

END VAR

TF6255 Version: 1.4.2 41

https://infosys.beckhoff.com/content/1033/tf6340_tc3_serial_communication/85904267.html?id=6531096720245711567

PLC API

BECKHOFF

Name

Type

Description

UnitID

UINT

Modbus station address [P 43] (1..247). The Modbus

slave will only answer if it receives telegrams containing its
own station address. Optionally, collective addresses can
be used for replying to any requests. Address 0 is reserved
for broadcast telegrams and is therefore not a valid station
address.

Adrinputs

BYTE

Start address of the Modbus input area [P_15]. The data
area is usually declared as a PLC array, and the address
can be calculated with ADR (input variable).

SizelnputBytes

UINT

Size of the Modbus input array in bytes. The size can be
calculated with SIZEOF (input variable).

AdrOutputs

BYTE

Start address of the Modbus output area [P_15]. The data
area is usually declared as a PLC array, and the address
can be calculated with ADR (output variable).

SizeOutputBytes

UINT

Size of the Modbus output array in bytes. The size can be
calculated with SIZEOF (output variable).

AdrMemory

BYTE

Start address of the Modbus memory area [»_15]. The data
area is usually declared as a PLC array, and the address
can be calculated with ADR (memory variable).

SizeMemoryBytes

UINT

Size of the Modbus memory array in bytes. The size can
be calculated with SIZEOF (memory variable).

#//E- Inputs/outputs

VAR IN_ OUT
RxBuffer : ComBuffer;
TxBuffer : ComBuffer;
END VAR
Name Type Description
TxBuffer ComBuffer (Tc2 SerialCom|Buffer with send data for the serial hardware being used.
PLC library) This data buffer is never directly written or read b_y the
user, but only serves as a buffer for the communication
blocks. The background communication must be realized
via corresponding function blocks of the Tc2_SerialCom
PLC library.
RxBuffer ComBuffer (Tc2 SerialCom |Buffer into which received data is placed. This data buffer
PLC library) is never directly written or read by the user, but only serves
as a buffer for the communication blocks. The background
communication must be realized via corresponding
function blocks of the Tc2_SerialCom PLC library.
E- Qutputs
VAR OUTPUT
ErrorId : MODBUS ERRORS;
END_ VAR
Name Type Description
Errorld MODBUS_ERRORS Indicates an error number [P 44] in the event of disturbed

or faulty communication.

Requirements

Development environment

Target platform

PLC libraries to include

TwinCAT v3.1.4024.0

PC or CX (x86, x64, ARM)

Tc2_ModbusRTU (>=v3.5.6.0)

42

Version: 1.4.2

TF6255

https://infosys.beckhoff.com/content/1033/tf6340_tc3_serial_communication/85920523.html?id=3015672977536879081
https://infosys.beckhoff.com/content/1033/tf6340_tc3_serial_communication/85920523.html?id=3015672977536879081
https://infosys.beckhoff.com/content/1033/tf6340_tc3_serial_communication/85920523.html?id=3015672977536879081
https://infosys.beckhoff.com/content/1033/tf6340_tc3_serial_communication/85920523.html?id=3015672977536879081

BECKHOFF PLC API

5.2 Datatypes

5.2.1 Modbus station address

Modbus defines valid station addresses in the range 1 to 247. A Modbus slave only responds to telegrams
that contain its own address. Address 0 is not a valid station address. It is used for broadcast telegrams to all
stations. These are not answered. Addresses 248 to 255 are reserved.

The Tc2_ModbusRTU library defines further collective addresses. This enables a station to respond to
several addresses.

TYPE MODBUS_UNITID :

(

Ol

256, (* response on address 1..247 *)
257, (* response on address 1..255 *)
258 (* response on address 0..255 *)

MODBUS UNITID BROADCAST
MODBUS UNITID ALLVALID
MODBUS_UNITID ALLBUTBROADCAST
MODBUS_UNITID ALL

);
END TYPE

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.0 PC or CX (x86, x64, ARM) Tc2_ModbusRTU

5.3 Global Constants

5.31 Global_Version

All libraries have a certain version. The version is indicated in the PLC library repository, for example. A
global constant contains the information about the library version:
VAR GLOBAL CONSTANT

stLibVersion Tc2 Modbus RTU : ST LibVersion;
END VAR

To check whether the version you have is the version you need, use the function F_CmpLibVersion (defined
in the Tc2_System PLC library).

o
All other options for comparing library versions, which you may know from TwinCAT 2, are

outdated!

TF6255 Version: 1.4.2 43

Appendix BEGKHOFF

6 Appendix

6.1 Modbus RTU Error Codes

TYPE MODBUS ERRORS

(

(* Modbus communication errors *)
MODBUSERROR NO ERROR, (* 0 *)
MODBUSERROR ILLEGAL FUNCTION, (* 1 *)
MODBUSERROR ILLEGAL DATA ADDRESS, (* 2 =)
MODBUSERROR ILLEGAL DATA VALUE, (% 3 =)
MODBUSERROR SLAVE DEVICE FAILURE, (* 4 *)
MODBUSERROR ACKNOWLEDGE, (* 5 *)
MODBUSERROR SLAVE DEVICE BUSY, (* 6 *)
MODBUSERROR NEGATIVE ACKNOWLEDGE, (= 7 =)
MODBUSERROR MEMORY PARITY, (* 8 *)
MODBUSERROR GATEWAY PATH UNAVAILABLE, (* A *)
MODBUSERROR GATEWAY TARGET DEVICE FAILED TO RESPOND, (* B *)

(* additional Modbus error definitions *)

MODBUSERROR CHARREC TIMEOUT := 16#20, (* 20 hex *)
MODBUSERROR ILLEGAL DATA SIZE, (* 21 hex *)
MODBUSERROR ILLEGAL DEVICE ADDRESS, (* 22 hex *)
MODBUSERROR ILLEGAL DESTINATION ADDRESS, (* 23 hex ¥*)
MODBUSERROR ILLEGAL DESTINATION SIZE, (* 24 hex *)
MODBUSERROR NO RESPONSE, (* 25 hex *)

(* Low level communication errors *)

MODBUSERROR TXBUFFOVERRUN := 102, (* 102 *)
MODBUSERROR SENDTIMEOUT := 103, (* 103 *)
MODBUSERROR DATASIZEOVERRUN := 107, (* 107 *)
MODBUSERROR STRINGOVERRUN := 110, (* 110 *)
MODBUSERROR INVALIDPOINTER := 120, (* 120 *)
MODBUSERROR CRC := 150, (* 150 *)

(* High level PLC errors *)

MODBUSERROR INVALIDMEMORYADDRESS := 232, (* 232 *)
MODBUSERROR TRANSMITBUFFERTOOSMALL (* 233 *)

) ;

END TYPE

44 Version: 1.4.2 TF6255

More Information:
www.beckhoff.com/tf6255

Beckhoff Automation GmbH & Co. KG
Hilshorstweg 20

33415 Verl

Germany

Phone: +49 5246 9630

info@beckhoff.com
www.beckhoff.com

mailto:info@beckhoff.com?subject=TF6255
https://www.beckhoff.com
https://www.beckhoff.com/tf6255

	 Table of contents
	1 Foreword
	1.1 Notes on the documentation
	1.2 For your safety
	1.3 Notes on information security

	2 Overview
	3 Installation
	3.1 System Requirements
	3.2 Installation
	3.3 Licensing

	4 Configuration
	4.1 Terminal configuration
	4.2 Modbus address arrays

	5 PLC API
	5.1 Function blocks
	5.1.1 [obsolete]
	5.1.1.1 ModbusRtuMaster_PcCOM
	5.1.1.2 ModbusRtuMaster_KL6x5B
	5.1.1.3 ModbusRtuMaster_KL6x22B

	5.1.2 ModbusRtuMasterV2_PcCOM
	5.1.3 ModbusRtuMasterV2_KL6x22B
	5.1.4 ModbusRtuMasterV2_KL6x5B
	5.1.5 ModbusRtuMasterV2_Generic
	5.1.6 ModbusRtuSlave_PcCOM
	5.1.7 ModbusRtuSlave_KL6x22B
	5.1.8 ModbusRtuSlave_KL6x5B
	5.1.9 ModbusRtuSlave_Generic

	5.2 Datatypes
	5.2.1 Modbus station address

	5.3 Global Constants
	5.3.1 Global_Version

	6 Appendix
	6.1 Modbus RTU Error Codes

		documentation@beckhoff.com
	2024-05-21T09:13:55+0200
	Beckhoff Automation, Verl
	Documentation Publishing

