
Manual | EN

TF6255
TwinCAT 3 | Modbus RTU

2024-05-21 | Version: 1.4.2

Table of contents

TF6255 3Version: 1.4.2

Table of contents
1 Foreword.. 5

1.1 Notes on the documentation ... 5
1.2 For your safety .. 5
1.3 Notes on information security.. 7

2 Overview .. 8

3 Installation ... 9
3.1 System Requirements... 9
3.2 Installation ... 9
3.3 Licensing ... 12

4 Configuration... 15
4.1 Terminal configuration... 15
4.2 Modbus address arrays... 15

5 PLC API .. 18
5.1 Function blocks ... 18

5.1.1 [obsolete].. 18
5.1.2 ModbusRtuMasterV2_PcCOM... 25
5.1.3 ModbusRtuMasterV2_KL6x22B... 28
5.1.4 ModbusRtuMasterV2_KL6x5B... 31
5.1.5 ModbusRtuMasterV2_Generic... 34
5.1.6 ModbusRtuSlave_PcCOM ... 37
5.1.7 ModbusRtuSlave_KL6x22B ... 38
5.1.8 ModbusRtuSlave_KL6x5B ... 40
5.1.9 ModbusRtuSlave_Generic ... 41

5.2 Datatypes .. 43
5.2.1 Modbus station address ... 43

5.3 Global Constants... 43
5.3.1 Global_Version... 43

6 Appendix.. 44
6.1 Modbus RTU Error Codes... 44

Table of contents

TF62554 Version: 1.4.2

Foreword

TF6255 5Version: 1.4.2

1 Foreword

1.1 Notes on the documentation
This description is intended exclusively for trained specialists in control and automation technology who are
familiar with the applicable national standards.
For installation and commissioning of the components, it is absolutely necessary to observe the
documentation and the following notes and explanations.
The qualified personnel is obliged to always use the currently valid documentation.

The responsible staff must ensure that the application or use of the products described satisfies all
requirements for safety, including all the relevant laws, regulations, guidelines, and standards.

Disclaimer

The documentation has been prepared with care. The products described are, however, constantly under
development.
We reserve the right to revise and change the documentation at any time and without notice.
No claims to modify products that have already been supplied may be made on the basis of the data,
diagrams, and descriptions in this documentation.

Trademarks

Beckhoff®, TwinCAT®, TwinCAT/BSD®, TC/BSD®, EtherCAT®, EtherCAT G®, EtherCAT G10®, EtherCAT P®,
Safety over EtherCAT®, TwinSAFE®, XFC®, XTS® and XPlanar® are registered and licensed trademarks of
Beckhoff Automation GmbH.
If third parties make use of designations or trademarks used in this publication for their own purposes, this
could infringe upon the rights of the owners of the said designations.

Patents

The EtherCAT Technology is covered, including but not limited to the following patent applications and
patents:
EP1590927, EP1789857, EP1456722, EP2137893, DE102015105702
and similar applications and registrations in several other countries.

EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH,
Germany

Copyright

© Beckhoff Automation GmbH & Co. KG, Germany.
The distribution and reproduction of this document as well as the use and communication of its contents
without express authorization are prohibited.
Offenders will be held liable for the payment of damages. All rights reserved in the event that a patent, utility
model, or design are registered.

1.2 For your safety
Safety regulations

Read the following explanations for your safety.
Always observe and follow product-specific safety instructions, which you may find at the appropriate places
in this document.

Foreword

TF62556 Version: 1.4.2

Exclusion of liability

All the components are supplied in particular hardware and software configurations which are appropriate for
the application. Modifications to hardware or software configurations other than those described in the
documentation are not permitted, and nullify the liability of Beckhoff Automation GmbH & Co. KG.

Personnel qualification

This description is only intended for trained specialists in control, automation, and drive technology who are
familiar with the applicable national standards.

Signal words

The signal words used in the documentation are classified below. In order to prevent injury and damage to
persons and property, read and follow the safety and warning notices.

Personal injury warnings

 DANGER
Hazard with high risk of death or serious injury.

 WARNING
Hazard with medium risk of death or serious injury.

 CAUTION
There is a low-risk hazard that could result in medium or minor injury.

Warning of damage to property or environment

NOTICE
The environment, equipment, or data may be damaged.

Information on handling the product

This information includes, for example:
recommendations for action, assistance or further information on the product.

Foreword

TF6255 7Version: 1.4.2

1.3 Notes on information security
The products of Beckhoff Automation GmbH & Co. KG (Beckhoff), insofar as they can be accessed online,
are equipped with security functions that support the secure operation of plants, systems, machines and
networks. Despite the security functions, the creation, implementation and constant updating of a holistic
security concept for the operation are necessary to protect the respective plant, system, machine and
networks against cyber threats. The products sold by Beckhoff are only part of the overall security concept.
The customer is responsible for preventing unauthorized access by third parties to its equipment, systems,
machines and networks. The latter should be connected to the corporate network or the Internet only if
appropriate protective measures have been set up.

In addition, the recommendations from Beckhoff regarding appropriate protective measures should be
observed. Further information regarding information security and industrial security can be found in our
https://www.beckhoff.com/secguide.

Beckhoff products and solutions undergo continuous further development. This also applies to security
functions. In light of this continuous further development, Beckhoff expressly recommends that the products
are kept up to date at all times and that updates are installed for the products once they have been made
available. Using outdated or unsupported product versions can increase the risk of cyber threats.

To stay informed about information security for Beckhoff products, subscribe to the RSS feed at https://
www.beckhoff.com/secinfo.

https://www.beckhoff.com/secguide
https://www.beckhoff.com/secinfo
https://www.beckhoff.com/secinfo

Overview

TF62558 Version: 1.4.2

2 Overview
TwinCAT 3 Modbus RTU offers function blocks for serial communication with Modbus terminal devices.

Modbus RTU devices are connected to a Beckhoff Controller via a serial interface. The TwinCAT PLC uses
slave function blocks of the Modbus RTU library for communication with my Modbus master (slave mode). In
addition, master function blocks are available for addressing several Modbus slaves (master mode)

Supported interfaces
• Serial COM port of a PC or CX
• Serial Bus Terminals KL60xx
• Serial EtherCAT Terminals EL60xx
• Virtual serial COM port (USB port) of a PC or CX

◦ With additional use (and licensing) of TF6340 TC3 Serial Communication

Further documentation

Technical details and specification about Modbus can be found under: http://www.modbus.org

Boundary conditions

The Modbus protocol defines accurate timing to ensure, for example, the complete transfer of all characters
of a telegram. Since the communication Modbus RTU is realized on a PLC controller, accurate timing cannot
be guaranteed due to the cyclic execution of the PLC program. Most end devices are very tolerant and
function without problems in the event of short time gaps between characters. In individual cases, the
behavior of the end device should be checked.

The second channel of an EL60x2 is not suitable for Modbus RTU communication, because it is processed
with low priority, which means the frames are sent with gaps, which in turn could be detected by the remote
terminal as frame errors.

With some serial interface terminals an internal buffer can be filled before sending (option
continuous sending). The ModbusRTU library can use this feature if it is set in the corresponding
serial terminal. For example, on the KL6031 continuous mode can be activated with the
KL6configuration configuration function block (register 34 bit 6). Up to 128 bytes are then placed in
the internal buffer of the Bus Terminal and transmitted continuously.

https://infosys.beckhoff.com/content/1033/tf6340_tc3_serial_communication/84957579.html?id=2313490069920808284
http://www.modbus.org

Installation

TF6255 9Version: 1.4.2

3 Installation

3.1 System Requirements
Technical data TF6255 TC3 Modbus-RTU
Target system Windows XP / 7 / 10

PC or CX (x86, x64, ARM)
Min. TwinCAT version 3.1.0
Min. TwinCAT level TC1200 TC3 PLC

3.2 Installation
The following section describes how to install the TwinCAT 3 Function for Windows-based operating
systems.

ü The TwinCAT 3 Function setup file was downloaded from the Beckhoff website.
1. Run the setup file as administrator. To do this, select the command Run as administrator in the context

menu of the file.
ð The installation dialog opens.

2. Accept the end user licensing agreement and click Next.

Installation

TF625510 Version: 1.4.2

3. Enter your user data.

4. If you want to install the full version of the TwinCAT 3 Function, select Complete as installation type. If
you want to install the TwinCAT 3 Function components separately, select Custom.

Installation

TF6255 11Version: 1.4.2

5. Select Next, then Install to start the installation.

ð A dialog box informs you that the TwinCAT system must be stopped to proceed with the installation.
6. Confirm the dialog with Yes.

Installation

TF625512 Version: 1.4.2

7. Select Finish to exit the setup.

ð The TwinCAT 3 Function has been successfully installed and can be licensed (see Licensing [} 12]).

3.3 Licensing
The TwinCAT 3 function can be activated as a full version or as a 7-day test version. Both license types can
be activated via the TwinCAT 3 development environment (XAE).

Licensing the full version of a TwinCAT 3 Function

A description of the procedure to license a full version can be found in the Beckhoff Information System in
the documentation "TwinCAT 3 Licensing".

Licensing the 7-day test version of a TwinCAT 3 Function

A 7-day test version cannot be enabled for a TwinCAT 3 license dongle.

1. Start the TwinCAT 3 development environment (XAE).
2. Open an existing TwinCAT 3 project or create a new project.
3. If you want to activate the license for a remote device, set the desired target system. To do this, select

the target system from the Choose Target System drop-down list in the toolbar.
ð The licensing settings always refer to the selected target system. When the project is activated on

the target system, the corresponding TwinCAT 3 licenses are automatically copied to this system.

https://infosys.beckhoff.com/content/1033/tc3_licensing/117093592658046731.html?id=5546616718344501207
https://infosys.beckhoff.com/content/1033/tc3_licensing/3511048971.html

Installation

TF6255 13Version: 1.4.2

4. In the Solution Explorer, double-click License in the SYSTEM subtree.

ð The TwinCAT 3 license manager opens.
5. Open the Manage Licenses tab. In the Add License column, check the check box for the license you

want to add to your project (e.g. "TF4100 TC3 Controller Toolbox").

6. Open the Order Information (Runtime) tab.
ð In the tabular overview of licenses, the previously selected license is displayed with the status

“missing”.

Installation

TF625514 Version: 1.4.2

7. Click 7-Day Trial License... to activate the 7-day trial license.

ð A dialog box opens, prompting you to enter the security code displayed in the dialog.

8. Enter the code exactly as it is displayed and confirm the entry.
9. Confirm the subsequent dialog, which indicates the successful activation.

ð In the tabular overview of licenses, the license status now indicates the expiry date of the license.
10. Restart the TwinCAT system.
ð The 7-day trial version is enabled.

Configuration

TF6255 15Version: 1.4.2

4 Configuration

4.1 Terminal configuration
The KL6001, KL6011, KL6021, KL6031, and KL6041 Bus Terminals can be parameterized with the KS2000
configuration software.

Alternatively, the system can be configured via the PLC function blocks included in the Tc2_SerialCom serial
communication library. This means that the KL6configuration function block can be used without a license to
configure the bus terminals.

Please note that the other Tc2_SerialCom library blocks that enable communication (and not
configuration) require the license for TF6340 TwinCAT 3 Serial Communication.

4.2 Modbus address arrays
Modbus defines access functions for different data areas. These data areas are declared as variables in a
TwinCAT PLC program, e.g. as word arrays, and transferred to the Modbus slave function block as input
parameters. Each area has a different Modbus start address, so that the areas can be distinguished
unambiguously. This offset has to be taken account of for addressing.

Inputs

The Inputs data area usually describes the physical input data with read-only access. They can be digital
inputs (bit) or analog inputs (word). The PLC programmer can decide whether or not to grant the
communication partner direct access to the physical inputs. It is also possible to define an input area for
Modbus communication that is not identical with the physical inputs:

Definition of the Modbus input data as direct image of the physical inputs. Start and size of the data area can
be specified freely. They are limited by the actual size of the input process image of the controller used.
VAR
Inputs AT%IW0 : ARRAY[0..255] OF WORD;
END_VAR

Definition of the Modbus input data as a separate Modbus data area independent of the physical inputs
VAR
Inputs : ARRAY[0..255] OF WORD;
END_VAR

The maximum size of the Input data area is 2048 words (ARRAY[0..2047] OF WORD).

Access to the Input area via a Modbus master is possible with the following Modbus functions:
2 : Read Input Status
4 : Read Input Registers

Addressing

The Input area is addressed with a 0 offset, i.e. address 0 as transferred in the telegram addresses the first
element in the Input data area.

Examples:

PLC variable Access type Address in the
Modbus telegram

Address in the end de-
vice
(device-dependent)

Inputs[0] Word 16#0 30001
Inputs[1] Word 16#1 30002
Inputs[0], Bit 0 Bit 16#0 10001
Inputs[1], Bit 14 Bit 16#1E 1001F

https://infosys.beckhoff.com/content/1031/tf6340_tc3_serial_communication/84957579.html?id=2313490069920808284

Configuration

TF625516 Version: 1.4.2

Outputs

The Outputs data area usually describes the physical output data with read and write access. Outputs can
be digital outputs (coils) or analog outputs (output registers). Like for the Inputs, the area can be declared as
a physical output variable or as a simple variable.

Definition of the Modbus output data as direct image of the physical outputs. Start and size of the data area
can be specified freely. They are limited by the actual size of the output process image of the controller used.
VAR
Outputs AT%QW0 : ARRAY[0..255] OF WORD;
END_VAR

Definition of the Modbus output data as a separate Modbus data area independent of the physical outputs
VAR
Outputs : ARRAY[0..255] OF WORD;
END_VAR

The maximum size of the Output data area is 14336 words (ARRAY[0..14335] OF WORD).

Access to the Output area via a Modbus master is possible with the following Modbus functions:
1 : Read Coil Status
3 : Read Holding Registers
5 : Force Single Coil
6 : Preset Single Register
15 : Force Multiple Coils
16 : Preset Multiple Registers

Addressing

The Output area is addressed with a 16#800 offset, i.e. address 16#800 as transferred in the telegram
addresses the first element in the Output data area.

Examples:

PLC variable Access type Address in the
Modbus telegram

Address in the end de-
vice
(device-dependent)

Outputs[0] Word 16#800 40801
Outputs[1] Word 16#801 40802
Outputs[0], Bit 0 Bit 16#800 00801
Outputs[1], Bit 14 Bit 16#81E 0081F

Memory

The Memory data area describes a PLC variable area without physical I/O assignment.

Definition of the Modbus memory data as PLC flags. Start and size of the data area can be specified freely.
VAR
Memory AT%MW0 : ARRAY[0..255] OF WORD;
END_VAR

Definition of the Modbus memory data as variable without flag address
VAR
Memory : ARRAY[0..255] OF WORD;
END_VAR

The maximum size of the Memory data area is 16384 words (ARRAY[0..16383] OF WORD).

Access to the Memory area via a Modbus master is possible with the following Modbus functions:
3 : Read Holding Registers
6 : Preset Single Register
16 : Preset Multiple Registers

Addressing

The Memory area is addressed with a 16#4000 offset, i.e. address 16#4000 as transferred in the telegram
addresses the first word in the Memory data area.

Configuration

TF6255 17Version: 1.4.2

Examples:

PLC variable Access type Address in the
Modbus telegram

Address in the end de-
vice
(device-dependent)

Memory[0] Word 16#4000 44001
Memory[1] Word 16#4001 44002

PLC API

TF625518 Version: 1.4.2

5 PLC API

5.1 Function blocks

5.1.1 [obsolete]

5.1.1.1 ModbusRtuMaster_PcCOM

The function block ModbusRtuMaster_PcCOM implements a Modbus master that communicates via a serial
PC interface (COM port). The function block ModbusRtuMaster_KL6x5B [} 20] is available for
communication via a serial Bus Terminal KL6001, KL6011 or KL6021.

Hardware connection
The data structures required for the link with the communication port are included in the function
block. They are displayed in the TwinCAT System Manager once the PLC program has been
integrated and can be connected with a COM port. The procedure is analogous to the description in
the chapter Serial PC Interface of the TF6340 TC3 Serial Communication documentation.

The function block is not called in its basic form, but individual actions of that block are used within a PLC
program. Each Modbus function is implemented as an action.

Supported Modbus functions (actions)
• ModbusMaster.ReadCoils

Modbus function 1 = Read Coils
Reads binary outputs (coils) from a connected slave. The data is stored in compressed form (8 bits per
byte) from the specified address pMemoryAddr.

• ModbusMaster.ReadInputStatus
Modbus function 2 = Read Input Status
Reads binary inputs from a connected slave. The data is stored in compressed form (8 bits per byte)
from the specified address pMemoryAddr.

• ModbusMaster.ReadRegs
Modbus function 3 = Read Holding Registers
Reads data from a connected slave.

• ModbusMaster.ReadInputRegs
Modbus function 4 = Read Input Registers
Reads input registers from a connected slave.

• ModbusMaster.WriteSingleCoil
Modbus function 5 = Write Single Coil
Sends a binary output (coil) to a connected slave. The data must be ready to send in compressed form
(8 bits per byte) from the specified address pMemoryAddr.

• ModbusMaster.WriteSingleRegister
Modbus function 6 = Write Single Register
Sends a single data word to a connected slave

https://infosys.beckhoff.com/content/1033/tf6340_tc3_serial_communication/85875723.html

PLC API

TF6255 19Version: 1.4.2

• ModbusMaster.WriteMultipleCoils
Modbus function 15 = Write Multiple Coils
Sends binary outputs (coils) to a connected slave. The data must be ready to send in compressed form
(8 bits per byte) from the specified address pMemoryAddr.

• ModbusMaster.WriteRegs
Modbus function 16 = Preset Multiple Registers
Sends data to a connected slave

• ModbusMaster.Diagnostics
Modbus function 8 = Diagnostics
Sends a diagnostic request to the slave with a user-specified function code (subfunction code). Since
this function does not address a memory, the function code is transferred in the data word MBAddr.
Any data required for the function is included in pMemoryAddr.

 Inputs
VAR_INPUT
 UnitID : UINT;
 Quantity : WORD;
 MBAddr : WORD;
 cbLength : UINT;
 pMemoryAddr : POINTER TO BYTE;
 Execute : BOOL;
 Timeout : TIME;
END_VAR

Name Type Description
UnitID UINT Modbus station address [} 43] (1..247). The Modbus

slave will only answer if it receives telegrams containing its
own station address. Optionally, collective addresses can
be used for replying to any requests. Address 0 is reserved
for broadcast telegrams and is therefore not a valid station
address (see UnitID [} 43])

Quantity WORD Number of data words to be read or written for word-
oriented Modbus functions. For bit-oriented Modbus
functions, Quantity specifies the number of bits (inputs or
coils).

MBAddr WORD Modbus data address, from which the data are read from
the end device (slave). This address is transferred
unchanged to the slave and is interpreted there as data
address.
With the Diagnostics function (8) the function code
(subfunction code) is transferred here.

cbLength UINT Size of the data variable used for send or read actions in
bytes. cbLength must be greater than or equal to the
amount of data transferred as determined by Quantity. For
word accesses, for example: [cbLength >= Quantity * 2].
cbLength can be calculated with SIZEOF(Modbus data).

pMemoryAddr BYTE Memory address in the PLC, calculated with ADR (Modbus
data). For read actions, the read data are stored in the
addressed variable. For send actions, the data are
transferred from the addressed variable to the end device.

Execute BOOL Start signal. The action is triggered by a rising edge at the
Execute input.

Timeout TIME Timeout value for waiting for a response from the
addressed slave.

 Outputs
VAR_OUTPUT
 BUSY : BOOL;
 Error : BOOL;

PLC API

TF625520 Version: 1.4.2

 ErrorId : MODBUS_ERRORS;
 cbRead : UINT;
END_VAR

Name Type Description
Busy BOOL Indicates that the function block is active. Busy becomes

TRUE with a rising edge at Execute and becomes FALSE
again once the started action is completed. At any one
time, only one action can be active.

Error BOOL Indicates that an error occurred during execution of an
action.

ErrorId MODBUS_ERRORS Indicates an error number [} 44] in the event of disturbed
or faulty communication.

cbRead UINT Provides the number of read data bytes for a read action.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.0 PC or CX (x86, x64, ARM) Tc2_ModbusRTU

5.1.1.2 ModbusRtuMaster_KL6x5B

The function block ModbusRtuMaster_KL6x5B realizes a Modbus master, which communicates via a
serial Bus Terminal KL6001, KL6011 or KL6021.

Hardware connection
The data structures required for the link with the communication port are included in the function
block. On a PC, the assignment in the TwinCAT System Manager is analogous to the description in
the chapter Serial bus terminal of the TF6340 TC3 Serial Communication documentation.

The function block is not called in its basic form, but individual actions of that block are used within a PLC
program. Each Modbus function is implemented as an action.

Supported Modbus functions (actions)
• ModbusMaster.ReadCoils

Modbus function 1 = Read Coils
Reads binary outputs (coils) from a connected slave. The data is stored in compressed form (8 bits per
byte) from the specified address pMemoryAddr.

• ModbusMaster.ReadInputStatus
Modbus function 2 = Read Input Status
Reads binary inputs from a connected slave. The data is stored in compressed form (8 bits per byte)
from the specified address pMemoryAddr.

• ModbusMaster.ReadRegs
Modbus function 3 = Read Holding Registers
Reads data from a connected slave.

• ModbusMaster.ReadInputRegs
Modbus function 4 = Read Input Registers

https://infosys.beckhoff.com/content/1033/tf6340_tc3_serial_communication/85878795.html?id=5156484543668299105

PLC API

TF6255 21Version: 1.4.2

Reads input registers from a connected slave.
• ModbusMaster.WriteSingleCoil

Modbus function 5 = Write Single Coil
Sends a binary output (coil) to a connected slave. The data must be ready to send in compressed form
(8 bits per byte) from the specified address pMemoryAddr.

• ModbusMaster.WriteSingleRegister
Modbus function 6 = Write Single Register
Sends a single data word to a connected slave

• ModbusMaster.WriteMultipleCoils
Modbus function 15 = Write Multiple Coils
Sends binary outputs (coils) to a connected slave. The data must be ready to send in compressed form
(8 bits per byte) from the specified address pMemoryAddr.

• ModbusMaster.WriteRegs
Modbus function 16 = Preset Multiple Registers
Sends data to a connected slave

• ModbusMaster.Diagnostics
Modbus function 8 = Diagnostics
Sends a diagnostic request to the slave with a user-specified function code (subfunction code). Since
this function does not address a memory, the function code is transferred in the data word MBAddr.
Any data required for the function is included in pMemoryAddr.

 Inputs
VAR_INPUT
 UnitID : UINT;
 Quantity : WORD;
 MBAddr : WORD;
 cbLength : UINT;
 pMemoryAddr : POINTER TO BYTE;
 Execute : BOOL;
 Timeout : TIME;
END_VAR

PLC API

TF625522 Version: 1.4.2

Name Type Description
UnitID UINT Modbus station address [} 43] (1..247). The Modbus

slave will only answer if it receives telegrams containing its
own station address. Optionally, collective addresses can
be used for replying to any requests. Address 0 is reserved
for broadcast telegrams and is therefore not a valid station
address (see UnitID [} 43])

Quantity WORD Number of data words to be read or written for word-
oriented Modbus functions. For bit-oriented Modbus
functions, Quantity specifies the number of bits (inputs or
coils).

MBAddr WORD Modbus data address, from which the data are read from
the end device (slave). This address is transferred
unchanged to the slave and is interpreted there as data
address.
With the Diagnostics function (8) the function code
(subfunction code) is transferred here.

cbLength UINT Size of the data variable used for send or read actions in
bytes. cbLength must be greater than or equal to the
amount of data transferred as determined by Quantity. For
word accesses, for example: [cbLength >= Quantity * 2].
cbLength can be calculated with SIZEOF(Modbus data).

pMemoryAddr BYTE Memory address in the PLC, calculated with ADR (Modbus
data). For read actions, the read data are stored in the
addressed variable. For send actions, the data are
transferred from the addressed variable to the end device.

Execute BOOL Start signal. The action is triggered by a rising edge at the
Execute input.

Timeout TIME Timeout value for waiting for a response from the
addressed slave.

 Outputs
VAR_OUTPUT
 BUSY : BOOL;
 Error : BOOL;
 ErrorId : MODBUS_ERRORS;
 cbRead : UINT;
END_VAR

Name Type Description
Busy BOOL Indicates that the function block is active. Busy becomes

TRUE with a rising edge at Execute and becomes FALSE
again once the started action is completed. At any one
time, only one action can be active.

Error BOOL Indicates that an error occurred during execution of an
action.

ErrorId MODBUS_ERRORS Indicates an error number [} 44] in the event of disturbed
or faulty communication.

cbRead UINT Provides the number of read data bytes for a read action.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.0 PC or CX (x86, x64, ARM) Tc2_ModbusRTU

PLC API

TF6255 23Version: 1.4.2

5.1.1.3 ModbusRtuMaster_KL6x22B

The function block ModbusRtuMaster_KL6x22B realizes a Modbus master, which communicates via a
serial Bus Terminal KL6031 or KL6041. The function block ModbusRtuMaster_PcCOM [} 18] is available for
communication via a serial PC interface (COM port).

Hardware connection
The data structures required for the link with the communication port are included in the function
block. On a PC, the assignment in the TwinCAT System Manager is analogous to the description in
the chapter Serial bus terminal of the TF6340 TC3 Serial Communication documentation.

The function block is not called in its basic form, but individual actions of that block are used within a PLC
program. Each Modbus function is implemented as an action.

Supported Modbus functions (actions)
• ModbusMaster.ReadCoils

Modbus function 1 = Read Coils
Reads binary outputs (coils) from a connected slave. The data is stored in compressed form (8 bits per
byte) from the specified address pMemoryAddr.

• ModbusMaster.ReadInputStatus
Modbus function 2 = Read Input Status
Reads binary inputs from a connected slave. The data is stored in compressed form (8 bits per byte)
from the specified address pMemoryAddr.

• ModbusMaster.ReadRegs
Modbus function 3 = Read Holding Registers
Reads data from a connected slave.

• ModbusMaster.ReadInputRegs
Modbus function 4 = Read Input Registers
Reads input registers from a connected slave.

• ModbusMaster.WriteSingleCoil
Modbus function 5 = Write Single Coil
Sends a binary output (coil) to a connected slave. The data must be ready to send in compressed form
(8 bits per byte) from the specified address pMemoryAddr.

• ModbusMaster.WriteSingleRegister
Modbus function 6 = Write Single Register
Sends a single data word to a connected slave

• ModbusMaster.WriteMultipleCoils
Modbus function 15 = Write Multiple Coils
Sends binary outputs (coils) to a connected slave. The data must be ready to send in compressed form
(8 bits per byte) from the specified address pMemoryAddr.

• ModbusMaster.WriteRegs
Modbus function 16 = Preset Multiple Registers
Sends data to a connected slave

https://infosys.beckhoff.com/content/1033/tf6340_tc3_serial_communication/85878795.html?id=5156484543668299105

PLC API

TF625524 Version: 1.4.2

• ModbusMaster.Diagnostics
Modbus function 8 = Diagnostics
Sends a diagnostic request to the slave with a user-specified function code (subfunction code). Since
this function does not address a memory, the function code is transferred in the data word MBAddr.
Any data required for the function is included in pMemoryAddr.

 Inputs
VAR_INPUT
 UnitID : UINT;
 Quantity : WORD;
 MBAddr : WORD;
 cbLength : UINT;
 pMemoryAddr : POINTER TO BYTE;
 Execute : BOOL;
 Timeout : TIME;
END_VAR

Name Type Description
UnitID UINT Modbus station address [} 43] (1..247). The Modbus

slave will only answer if it receives telegrams containing its
own station address. Optionally, collective addresses can
be used for replying to any requests. Address 0 is reserved
for broadcast telegrams and is therefore not a valid station
address (see UnitID [} 43])

Quantity WORD Number of data words to be read or written for word-
oriented Modbus functions. For bit-oriented Modbus
functions, Quantity specifies the number of bits (inputs or
coils).

MBAddr WORD Modbus data address, from which the data are read from
the end device (slave). This address is transferred
unchanged to the slave and is interpreted there as data
address.
With the Diagnostics function (8) the function code
(subfunction code) is transferred here.

cbLength UINT Size of the data variable used for send or read actions in
bytes. cbLength must be greater than or equal to the
amount of data transferred as determined by Quantity. For
word accesses, for example: [cbLength >= Quantity * 2].
cbLength can be calculated with SIZEOF(Modbus data).

pMemoryAddr BYTE Memory address in the PLC, calculated with ADR (Modbus
data). For read actions, the read data are stored in the
addressed variable. For send actions, the data are
transferred from the addressed variable to the end device.

Execute BOOL Start signal. The action is triggered by a rising edge at the
Execute input.

Timeout TIME Timeout value for waiting for a response from the
addressed slave.

 Outputs
VAR_OUTPUT
 BUSY : BOOL;
 Error : BOOL;
 ErrorId : MODBUS_ERRORS;
 cbRead : UINT;
END_VAR

PLC API

TF6255 25Version: 1.4.2

Name Type Description
Busy BOOL Indicates that the function block is active. Busy becomes

TRUE with a rising edge at Execute and becomes FALSE
again once the started action is completed. At any one
time, only one action can be active.

Error BOOL Indicates that an error occurred during execution of an
action.

ErrorId MODBUS_ERRORS Indicates an error number [} 44] in the event of disturbed
or faulty communication.

cbRead UINT Provides the number of read data bytes for a read action.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.0 PC or CX (x86, x64, ARM) Tc2_ModbusRTU

5.1.2 ModbusRtuMasterV2_PcCOM

The function block ModbusRtuMasterV2_PcCOM implements a Modbus master that communicates via a
serial PC interface (COM port). Additional function blocks are available for communication via a serial bus
terminal.

Hardware connection
The data structures required for the link with the communication port are included in the function
block. They are displayed in the TwinCAT System Manager once the PLC program has been
integrated and can be connected with a COM port. The procedure is analogous to the description in
the chapter Serial PC Interface of the TF6340 TC3 Serial Communication documentation.

The function block is not called in its basic form, but individual actions of that block are used within a PLC
program. Each Modbus function is implemented as an action.

Supported Modbus functions (actions)
• ModbusMaster.ReadCoils

Modbus function 1 = Read Coils
Reads binary outputs (coils) from a connected slave. The data is stored in compressed form (8 bits per
byte) from the specified address pMemoryAddr.

• ModbusMaster.ReadInputStatus
Modbus function 2 = Read Input Status
Reads binary inputs from a connected slave. The data is stored in compressed form (8 bits per byte)
from the specified address pMemoryAddr.

• ModbusMaster.ReadRegs
Modbus function 3 = Read Holding Registers
Reads data from a connected slave.

https://infosys.beckhoff.com/content/1033/tf6340_tc3_serial_communication/85875723.html

PLC API

TF625526 Version: 1.4.2

• ModbusMaster.ReadInputRegs
Modbus function 4 = Read Input Registers
Reads input registers from a connected slave.

• ModbusMaster.WriteSingleCoil
Modbus function 5 = Write Single Coil
Sends a binary output (coil) to a connected slave. The data must be ready to send in compressed form
(8 bits per byte) from the specified address pMemoryAddr.

• ModbusMaster.WriteSingleRegister
Modbus function 6 = Write Single Register
Sends a single data word to a connected slave

• ModbusMaster.WriteMultipleCoils
Modbus function 15 = Write Multiple Coils
Sends binary outputs (coils) to a connected slave. The data must be ready to send in compressed form
(8 bits per byte) from the specified address pMemoryAddr.

• ModbusMaster.WriteRegs
Modbus function 16 = Preset Multiple Registers
Sends data to a connected slave

• ModbusMaster.Diagnostics
Modbus function 8 = Diagnostics
Sends a diagnostic request to the slave with a user-specified function code (subfunction code). Since
this function does not address a memory, the function code is transferred in the data word MBAddr.
Any data required for the function is included in pMemoryAddr.

Supported Modbus functions (actions) of the MasterV2 function blocks
• ModbusMaster.ReadWriteRegs

Modbus function 23 = Read/Write Multiple Registers
Sends the data specified via the Aux parameters to a connected slave and receives data from the
slave at the same time. The received data is stored at the address specified by pMemoryAddr.

• ModbusMaster.UserReadWrite
Universal user telegram
The Modbus function code is specified by the user in the first byte of specified data (pMemoryAddr).
With this function the user is able to send a Modbus telegram with any function code. Any data
received from the slave is stored at the address specified by pAuxMemoryAddr.

 Inputs
VAR_INPUT
 UnitID : BYTE;
 Quantity : WORD;
 MBAddr : WORD;
 cbLength : UINT;
 pMemoryAddr : POINTER TO BYTE;

 AuxQuantity : WORD;
 AuxMBAddr : WORD;
 AuxcbLength : UINT;
 pAuxMemoryAddr : POINTER TO BYTE;

 Execute : BOOL;
 Timeout : TIME;
END_VAR

PLC API

TF6255 27Version: 1.4.2

Name Type Description
UnitID UINT Modbus station address [} 43] (1..247). The Modbus

slave will only answer if it receives telegrams containing its
own station address. Optionally, collective addresses can
be used for replying to any requests. Address 0 is reserved
for broadcast telegrams and is therefore not a valid station
address (see UnitID [} 43])

Quantity WORD Number of data words to be read or written for word-
oriented Modbus functions. For bit-oriented Modbus
functions, Quantity specifies the number of bits (inputs or
coils).

MBAddr WORD Modbus data address, from which the data are read from
the end device (slave). This address is transferred
unchanged to the slave and is interpreted there as data
address.
With the Diagnostics function (8) the function code
(subfunction code) is transferred here.

cbLength UINT Size of the data variable used for send or read actions in
bytes. cbLength must be greater than or equal to the
amount of data transferred as determined by Quantity. For
word accesses, for example: [cbLength >= Quantity * 2].
cbLength can be calculated with SIZEOF(Modbus data).

pMemoryAddr BYTE Memory address in the PLC, calculated with ADR (Modbus
data). For read actions, the read data are stored in the
addressed variable. For send actions, the data are
transferred from the addressed variable to the end device.

AuxQuantity WORD Additional parameter which is only used for read/write
functions, see ReadWriteRegs/UserReadWrite [} 26]

AuxMBAddr WORD Additional parameter which is only used for read/write
functions, see ReadWriteRegs/UserReadWrite [} 26].

AuxcbLength UINT Additional parameter which is only used for read/write
functions, see ReadWriteRegs/UserReadWrite [} 26]

pAuxMemoryAddr BYTE Additional parameter which is only used for read/write
functions, see ReadWriteRegs/UserReadWrite [} 26]

Execute BOOL Start signal. The action is triggered by a rising edge at the
Execute input.

Timeout TIME Timeout value for waiting for a response from the
addressed slave.

 Outputs
VAR_OUTPUT
 BUSY : BOOL;
 Error : BOOL;
 ErrorId : MODBUS_ERRORS;
 cbRead : UINT;
END_VAR

Name Type Description
Busy BOOL Indicates that the function block is active. Busy becomes

TRUE with a rising edge at Execute and becomes FALSE
again once the started action is completed. At any one
time, only one action can be active.

Error BOOL Indicates that an error occurred during execution of an
action.

ErrorId MODBUS_ERRORS Indicates an error number [} 44] in the event of disturbed
or faulty communication.

cbRead UINT Provides the number of read data bytes for a read action.

PLC API

TF625528 Version: 1.4.2

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.0 PC or CX (x86, x64, ARM) Tc2_ModbusRTU

5.1.3 ModbusRtuMasterV2_KL6x22B

The function block ModbusRtuMasterV2_KL6x22B realizes a Modbus master, which communicates via a
serial Bus Terminal KL6031 or KL6041. Serial EtherCAT Terminals with 22 bytes of data process image are
also supported. The function block ModbusRtuMasterV2_PcCOM [} 25] is available for communication via a
serial PC interface (COM port).

Hardware connection
The data structures required for the link with the communication port are included in the function
block. On a PC, the assignment in the TwinCAT System Manager is analogous to the description in
the chapter Serial bus terminal of the TF6340 TC3 Serial Communication documentation.

The function block is not called in its basic form, but individual actions of that block are used within a PLC
program. Each Modbus function is implemented as an action.

Supported Modbus functions (actions)
• ModbusMaster.ReadCoils

Modbus function 1 = Read Coils
Reads binary outputs (coils) from a connected slave. The data is stored in compressed form (8 bits per
byte) from the specified address pMemoryAddr.

• ModbusMaster.ReadInputStatus
Modbus function 2 = Read Input Status
Reads binary inputs from a connected slave. The data is stored in compressed form (8 bits per byte)
from the specified address pMemoryAddr.

• ModbusMaster.ReadRegs
Modbus function 3 = Read Holding Registers
Reads data from a connected slave.

• ModbusMaster.ReadInputRegs
Modbus function 4 = Read Input Registers
Reads input registers from a connected slave.

• ModbusMaster.WriteSingleCoil
Modbus function 5 = Write Single Coil
Sends a binary output (coil) to a connected slave. The data must be ready to send in compressed form
(8 bits per byte) from the specified address pMemoryAddr.

• ModbusMaster.WriteSingleRegister
Modbus function 6 = Write Single Register
Sends a single data word to a connected slave

https://infosys.beckhoff.com/content/1033/tf6340_tc3_serial_communication/85878795.html?id=5156484543668299105

PLC API

TF6255 29Version: 1.4.2

• ModbusMaster.WriteMultipleCoils
Modbus function 15 = Write Multiple Coils
Sends binary outputs (coils) to a connected slave. The data must be ready to send in compressed form
(8 bits per byte) from the specified address pMemoryAddr.

• ModbusMaster.WriteRegs
Modbus function 16 = Preset Multiple Registers
Sends data to a connected slave

• ModbusMaster.Diagnostics
Modbus function 8 = Diagnostics
Sends a diagnostic request to the slave with a user-specified function code (subfunction code). Since
this function does not address a memory, the function code is transferred in the data word MBAddr.
Any data required for the function is included in pMemoryAddr.

Supported Modbus functions (actions) of the MasterV2 function blocks
• ModbusMaster.ReadWriteRegs

Modbus function 23 = Read/Write Multiple Registers
Sends the data specified via the Aux parameters to a connected slave and receives data from the
slave at the same time. The received data is stored at the address specified by pMemoryAddr.

• ModbusMaster.UserReadWrite
Universal user telegram
The Modbus function code is specified by the user in the first byte of specified data (pMemoryAddr).
With this function the user is able to send a Modbus telegram with any function code. Any data
received from the slave is stored at the address specified by pAuxMemoryAddr.

 Inputs
VAR_INPUT
 UnitID : BYTE;
 Quantity : WORD;
 MBAddr : WORD;
 cbLength : UINT;
 pMemoryAddr : POINTER TO BYTE;

 AuxQuantity : WORD;
 AuxMBAddr : WORD;
 AuxcbLength : UINT;
 pAuxMemoryAddr : POINTER TO BYTE;

 Execute : BOOL;
 Timeout : TIME;
END_VAR

PLC API

TF625530 Version: 1.4.2

Name Type Description
UnitID UINT Modbus station address [} 43] (1..247). The Modbus

slave will only answer if it receives telegrams containing its
own station address. Optionally, collective addresses can
be used for replying to any requests. Address 0 is reserved
for broadcast telegrams and is therefore not a valid station
address (see UnitID [} 43])

Quantity WORD Number of data words to be read or written for word-
oriented Modbus functions. For bit-oriented Modbus
functions, Quantity specifies the number of bits (inputs or
coils).

MBAddr WORD Modbus data address, from which the data are read from
the end device (slave). This address is transferred
unchanged to the slave and is interpreted there as data
address.
With the Diagnostics function (8) the function code
(subfunction code) is transferred here.

cbLength UINT Size of the data variable used for send or read actions in
bytes. cbLength must be greater than or equal to the
amount of data transferred as determined by Quantity. For
word accesses, for example: [cbLength >= Quantity * 2].
cbLength can be calculated with SIZEOF(Modbus data).

pMemoryAddr BYTE Memory address in the PLC, calculated with ADR (Modbus
data). For read actions, the read data are stored in the
addressed variable. For send actions, the data are
transferred from the addressed variable to the end device.

AuxQuantity WORD Additional parameter which is only used for read/write
functions, see ReadWriteRegs/UserReadWrite [} 29]

AuxMBAddr WORD Additional parameter which is only used for read/write
functions, see ReadWriteRegs/UserReadWrite [} 29].

AuxcbLength UINT Additional parameter which is only used for read/write
functions, see ReadWriteRegs/UserReadWrite [} 29]

pAuxMemoryAddr BYTE Additional parameter which is only used for read/write
functions, see ReadWriteRegs/UserReadWrite [} 29]

Execute BOOL Start signal. The action is triggered by a rising edge at the
Execute input.

Timeout TIME Timeout value for waiting for a response from the
addressed slave.

 Outputs
VAR_OUTPUT
 BUSY : BOOL;
 Error : BOOL;
 ErrorId : MODBUS_ERRORS;
 cbRead : UINT;
END_VAR

Name Type Description
Busy BOOL Indicates that the function block is active. Busy becomes

TRUE with a rising edge at Execute and becomes FALSE
again once the started action is completed. At any one
time, only one action can be active.

Error BOOL Indicates that an error occurred during execution of an
action.

ErrorId MODBUS_ERRORS Indicates an error number [} 44] in the event of disturbed
or faulty communication.

cbRead UINT Provides the number of read data bytes for a read action.

PLC API

TF6255 31Version: 1.4.2

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.0 PC or CX (x86, x64, ARM) Tc2_ModbusRTU

5.1.4 ModbusRtuMasterV2_KL6x5B

The function block ModbusRtuMasterV2_KL6x5B realizes a Modbus master, which communicates via a
serial Bus Terminal KL6001, KL6011 or KL6021. The function block ModbusRtuMasterV2_PcCOM [} 25] is
available for communication via a serial PC interface (COM port).

Hardware connection
The data structures required for the link with the communication port are included in the function
block. On a PC, the assignment in the TwinCAT System Manager is analogous to the description in
the chapter Serial bus terminal of the TF6340 TC3 Serial Communication documentation.

The function block is not called in its basic form, but individual actions of that block are used within a PLC
program. Each Modbus function is implemented as an action.

Supported Modbus functions (actions)
• ModbusMaster.ReadCoils

Modbus function 1 = Read Coils
Reads binary outputs (coils) from a connected slave. The data is stored in compressed form (8 bits per
byte) from the specified address pMemoryAddr.

• ModbusMaster.ReadInputStatus
Modbus function 2 = Read Input Status
Reads binary inputs from a connected slave. The data is stored in compressed form (8 bits per byte)
from the specified address pMemoryAddr.

• ModbusMaster.ReadRegs
Modbus function 3 = Read Holding Registers
Reads data from a connected slave.

• ModbusMaster.ReadInputRegs
Modbus function 4 = Read Input Registers
Reads input registers from a connected slave.

• ModbusMaster.WriteSingleCoil
Modbus function 5 = Write Single Coil
Sends a binary output (coil) to a connected slave. The data must be ready to send in compressed form
(8 bits per byte) from the specified address pMemoryAddr.

• ModbusMaster.WriteSingleRegister
Modbus function 6 = Write Single Register
Sends a single data word to a connected slave

https://infosys.beckhoff.com/content/1033/tf6340_tc3_serial_communication/85878795.html?id=5156484543668299105

PLC API

TF625532 Version: 1.4.2

• ModbusMaster.WriteMultipleCoils
Modbus function 15 = Write Multiple Coils
Sends binary outputs (coils) to a connected slave. The data must be ready to send in compressed form
(8 bits per byte) from the specified address pMemoryAddr.

• ModbusMaster.WriteRegs
Modbus function 16 = Preset Multiple Registers
Sends data to a connected slave

• ModbusMaster.Diagnostics
Modbus function 8 = Diagnostics
Sends a diagnostic request to the slave with a user-specified function code (subfunction code). Since
this function does not address a memory, the function code is transferred in the data word MBAddr.
Any data required for the function is included in pMemoryAddr.

Supported Modbus functions (actions) of the MasterV2 function blocks
• ModbusMaster.ReadWriteRegs

Modbus function 23 = Read/Write Multiple Registers
Sends the data specified via the Aux parameters to a connected slave and receives data from the
slave at the same time. The received data is stored at the address specified by pMemoryAddr.

• ModbusMaster.UserReadWrite
Universal user telegram
The Modbus function code is specified by the user in the first byte of specified data (pMemoryAddr).
With this function the user is able to send a Modbus telegram with any function code. Any data
received from the slave is stored at the address specified by pAuxMemoryAddr.

 Inputs
VAR_INPUT
 UnitID : BYTE;
 Quantity : WORD;
 MBAddr : WORD;
 cbLength : UINT;
 pMemoryAddr : POINTER TO BYTE;

 AuxQuantity : WORD;
 AuxMBAddr : WORD;
 AuxcbLength : UINT;
 pAuxMemoryAddr : POINTER TO BYTE;

 Execute : BOOL;
 Timeout : TIME;
END_VAR

PLC API

TF6255 33Version: 1.4.2

Name Type Description
UnitID UINT Modbus station address [} 43] (1..247). The Modbus

slave will only answer if it receives telegrams containing its
own station address. Optionally, collective addresses can
be used for replying to any requests. Address 0 is reserved
for broadcast telegrams and is therefore not a valid station
address (see UnitID [} 43])

Quantity WORD Number of data words to be read or written for word-
oriented Modbus functions. For bit-oriented Modbus
functions, Quantity specifies the number of bits (inputs or
coils).

MBAddr WORD Modbus data address, from which the data are read from
the end device (slave). This address is transferred
unchanged to the slave and is interpreted there as data
address.
With the Diagnostics function (8) the function code
(subfunction code) is transferred here.

cbLength UINT Size of the data variable used for send or read actions in
bytes. cbLength must be greater than or equal to the
amount of data transferred as determined by Quantity. For
word accesses, for example: [cbLength >= Quantity * 2].
cbLength can be calculated with SIZEOF(Modbus data).

pMemoryAddr BYTE Memory address in the PLC, calculated with ADR (Modbus
data). For read actions, the read data are stored in the
addressed variable. For send actions, the data are
transferred from the addressed variable to the end device.

AuxQuantity WORD Additional parameter which is only used for read/write
functions, see ReadWriteRegs/UserReadWrite [} 32]

AuxMBAddr WORD Additional parameter which is only used for read/write
functions, see ReadWriteRegs/UserReadWrite [} 32].

AuxcbLength UINT Additional parameter which is only used for read/write
functions, see ReadWriteRegs/UserReadWrite [} 32]

pAuxMemoryAddr BYTE Additional parameter which is only used for read/write
functions, see ReadWriteRegs/UserReadWrite [} 32]

Execute BOOL Start signal. The action is triggered by a rising edge at the
Execute input.

Timeout TIME Timeout value for waiting for a response from the
addressed slave.

 Outputs
VAR_OUTPUT
 BUSY : BOOL;
 Error : BOOL;
 ErrorId : MODBUS_ERRORS;
 cbRead : UINT;
END_VAR

Name Type Description
Busy BOOL Indicates that the function block is active. Busy becomes

TRUE with a rising edge at Execute and becomes FALSE
again once the started action is completed. At any one
time, only one action can be active.

Error BOOL Indicates that an error occurred during execution of an
action.

ErrorId MODBUS_ERRORS Indicates an error number [} 44] in the event of disturbed
or faulty communication.

cbRead UINT Provides the number of read data bytes for a read action.

PLC API

TF625534 Version: 1.4.2

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.0 PC or CX (x86, x64, ARM) Tc2_ModbusRTU

5.1.5 ModbusRtuMasterV2_Generic

The function block ModbusRtuMasterV2_Generic implements a Modbus master that communicates via
various serial interfaces (COM port, virtual COM port, EtherCAT Terminals, ...).

Due to the hardware-independent nature of ModbusRtuMasterV2_Generic, its use is somewhat more
complex than that of the hardware-dependent function blocks ModbusRtuMasterV2_PcCOM,
ModbusRtuMasterV2_KL6x22B, ModbusRtuMasterV2_ KL6x5B. All function blocks offer the same
ModbusRTU functionality. However, the ModbusRtuMasterV2_Generic alone allows the use of virtual
COM ports.

Connection to hardware via TF6340 TC3 Serial Communication (license required)
The data structures required to link to the communication port must be instantiated separately. The
data structures of type ComBuffer present at this function block are data buffers for decoupling the
hardware-dependent background communication. This background communication must be
implemented via corresponding function blocks (SerialLineControl, SerialLineControlADS) of the
Tc2_SerialCom PLC library, for which this PLC library must first be integrated in the program. The
license for TF6340 TC3 Serial Communication is also required.

The function block is not called in its basic form, but individual actions of that block are used within a PLC
program. Each Modbus function is implemented as an action.

Supported Modbus functions (actions)
• ModbusMaster.ReadCoils

Modbus function 1 = Read Coils
Reads binary outputs (coils) from a connected slave. The data is stored in compressed form (8 bits per
byte) from the specified address pMemoryAddr.

• ModbusMaster.ReadInputStatus
Modbus function 2 = Read Input Status
Reads binary inputs from a connected slave. The data is stored in compressed form (8 bits per byte)
from the specified address pMemoryAddr.

• ModbusMaster.ReadRegs
Modbus function 3 = Read Holding Registers
Reads data from a connected slave.

• ModbusMaster.ReadInputRegs
Modbus function 4 = Read Input Registers
Reads input registers from a connected slave.

https://infosys.beckhoff.com/content/1033/tf6340_tc3_serial_communication/85904267.html?id=6531096720245711567

PLC API

TF6255 35Version: 1.4.2

• ModbusMaster.WriteSingleCoil
Modbus function 5 = Write Single Coil
Sends a binary output (coil) to a connected slave. The data must be ready to send in compressed form
(8 bits per byte) from the specified address pMemoryAddr.

• ModbusMaster.WriteSingleRegister
Modbus function 6 = Write Single Register
Sends a single data word to a connected slave

• ModbusMaster.WriteMultipleCoils
Modbus function 15 = Write Multiple Coils
Sends binary outputs (coils) to a connected slave. The data must be ready to send in compressed form
(8 bits per byte) from the specified address pMemoryAddr.

• ModbusMaster.WriteRegs
Modbus function 16 = Preset Multiple Registers
Sends data to a connected slave

• ModbusMaster.Diagnostics
Modbus function 8 = Diagnostics
Sends a diagnostic request to the slave with a user-specified function code (subfunction code). Since
this function does not address a memory, the function code is transferred in the data word MBAddr.
Any data required for the function is included in pMemoryAddr.

Supported Modbus functions (actions) of the MasterV2 function blocks
• ModbusMaster.ReadWriteRegs

Modbus function 23 = Read/Write Multiple Registers
Sends the data specified via the Aux parameters to a connected slave and receives data from the
slave at the same time. The received data is stored at the address specified by pMemoryAddr.

• ModbusMaster.UserReadWrite
Universal user telegram
The Modbus function code is specified by the user in the first byte of specified data (pMemoryAddr).
With this function the user is able to send a Modbus telegram with any function code. Any data
received from the slave is stored at the address specified by pAuxMemoryAddr.

 Inputs
VAR_INPUT
 UnitID : BYTE;
 Quantity : WORD;
 MBAddr : WORD;
 cbLength : UINT;
 pMemoryAddr : POINTER TO BYTE;

 AuxQuantity : WORD;
 AuxMBAddr : WORD;
 AuxcbLength : UINT;
 pAuxMemoryAddr : POINTER TO BYTE;

 Execute : BOOL;
 Timeout : TIME;
END_VAR

PLC API

TF625536 Version: 1.4.2

Name Type Description
UnitID UINT Modbus station address [} 43] (1..247). The Modbus

slave will only answer if it receives telegrams containing its
own station address. Optionally, collective addresses can
be used for replying to any requests. Address 0 is reserved
for broadcast telegrams and is therefore not a valid station
address (see UnitID [} 43])

Quantity WORD Number of data words to be read or written for word-
oriented Modbus functions. For bit-oriented Modbus
functions, Quantity specifies the number of bits (inputs or
coils).

MBAddr WORD Modbus data address, from which the data are read from
the end device (slave). This address is transferred
unchanged to the slave and is interpreted there as data
address.
With the Diagnostics function (8) the function code
(subfunction code) is transferred here.

cbLength UINT Size of the data variable used for send or read actions in
bytes. cbLength must be greater than or equal to the
amount of data transferred as determined by Quantity. For
word accesses, for example: [cbLength >= Quantity * 2].
cbLength can be calculated with SIZEOF(Modbus data).

pMemoryAddr BYTE Memory address in the PLC, calculated with ADR (Modbus
data). For read actions, the read data are stored in the
addressed variable. For send actions, the data are
transferred from the addressed variable to the end device.

AuxQuantity WORD Additional parameter which is only used for read/write
functions, see ReadWriteRegs/UserReadWrite [} 35]

AuxMBAddr WORD Additional parameter which is only used for read/write
functions, see ReadWriteRegs/UserReadWrite [} 35].

AuxcbLength UINT Additional parameter which is only used for read/write
functions, see ReadWriteRegs/UserReadWrite [} 35]

pAuxMemoryAddr BYTE Additional parameter which is only used for read/write
functions, see ReadWriteRegs/UserReadWrite [} 35]

Execute BOOL Start signal. The action is triggered by a rising edge at the
Execute input.

Timeout TIME Timeout value for waiting for a response from the
addressed slave.

 Inputs/outputs
VAR_IN_OUT
 RxBuffer : ComBuffer;
 TxBuffer : ComBuffer;
END_VAR

Name Type Description
TxBuffer ComBuffer (Tc2_SerialCom

PLC library)
Buffer with send data for the serial hardware being used.
This data buffer is never directly written or read by the
user, but only serves as a buffer for the communication
blocks. The background communication must be realized
via corresponding function blocks of the Tc2_SerialCom
PLC library.

RxBuffer ComBuffer (Tc2_SerialCom
PLC library)

Buffer into which received data is placed. This data buffer
is never directly written or read by the user, but only serves
as a buffer for the communication blocks. The background
communication must be realized via corresponding
function blocks of the Tc2_SerialCom PLC library.

https://infosys.beckhoff.com/content/1033/tf6340_tc3_serial_communication/85920523.html?id=3015672977536879081
https://infosys.beckhoff.com/content/1033/tf6340_tc3_serial_communication/85920523.html?id=3015672977536879081
https://infosys.beckhoff.com/content/1033/tf6340_tc3_serial_communication/85920523.html?id=3015672977536879081
https://infosys.beckhoff.com/content/1033/tf6340_tc3_serial_communication/85920523.html?id=3015672977536879081

PLC API

TF6255 37Version: 1.4.2

 Outputs
VAR_OUTPUT
 BUSY : BOOL;
 Error : BOOL;
 ErrorId : MODBUS_ERRORS;
 cbRead : UINT;
END_VAR

Name Type Description
Busy BOOL Indicates that the function block is active. Busy becomes

TRUE with a rising edge at Execute and becomes FALSE
again once the started action is completed. At any one
time, only one action can be active.

Error BOOL Indicates that an error occurred during execution of an
action.

ErrorId MODBUS_ERRORS Indicates an error number [} 44] in the event of disturbed
or faulty communication.

cbRead UINT Provides the number of read data bytes for a read action.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4024.0 PC or CX (x86, x64, ARM) Tc2_ModbusRTU (>= v3.5.6.0)

5.1.6 ModbusRtuSlave_PcCOM

The function block ModbusRtuSlave_PcCOM implements a Modbus slave that communicates via a serial
PC interface (COM port). The function block ModbusRtuSlave_KL6x5B [} 40] is available for communication
via a serial Bus Terminal KL6001, KL6011 or KL6021.

The function block is passive until it receives telegrams from a connected Modbus master. A sample
program explains the operating principle.

Hardware connection
The data structures required for the link with the communication port are included in the function
block. They are displayed in the TwinCAT System Manager once the PLC program has been
integrated and can be connected with a COM port. The procedure is analogous to the description in
the chapter Serial PC Interface of the TF6340 TC3 Serial Communication documentation.

 Inputs
VAR_INPUT
 UnitID : UINT;
 AdrInputs : POINTER TO BYTE; (* Pointer to the Modbus input area *)
 SizeInputBytes : UINT;
 AdrOutputs : POINTER TO BYTE; (* Pointer to the Modbus output area *)
 SizeOutputBytes : UINT;
 AdrMemory : POINTER TO BYTE; (* Pointer to the Modbus memory area *)
 SizeMemoryBytes : UINT;
END_VAR

https://infosys.beckhoff.com/content/1033/tf6340_tc3_serial_communication/85875723.html

PLC API

TF625538 Version: 1.4.2

Name Type Description
UnitID UINT Modbus station address [} 43] (1..247). The Modbus

slave will only answer if it receives telegrams containing its
own station address. Optionally, collective addresses can
be used for replying to any requests. Address 0 is reserved
for broadcast telegrams and is therefore not a valid station
address.

AdrInputs BYTE Start address of the Modbus input area [} 15]. The data
area is usually declared as a PLC array, and the address
can be calculated with ADR (input variable).

SizeInputBytes UINT Size of the Modbus input array in bytes. The size can be
calculated with SIZEOF (input variable).

AdrOutputs BYTE Start address of the Modbus output area [} 15]. The data
area is usually declared as a PLC array, and the address
can be calculated with ADR (output variable).

SizeOutputBytes UINT Size of the Modbus output array in bytes. The size can be
calculated with SIZEOF (output variable).

AdrMemory BYTE Start address of the Modbus memory area [} 15]. The data
area is usually declared as a PLC array, and the address
can be calculated with ADR (memory variable).

SizeMemoryBytes UINT Size of the Modbus memory array in bytes. The size can
be calculated with SIZEOF (memory variable).

 Outputs
VAR_OUTPUT
 ErrorId : MODBUS_ERRORS;
END_VAR

Name Type Description
ErrorId MODBUS_ERRORS Indicates an error number [} 44] in the event of disturbed

or faulty communication.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.0 PC or CX (x86, x64, ARM) Tc2_ModbusRTU

5.1.7 ModbusRtuSlave_KL6x22B

The function block ModbusRtuSlave_KL6x22B realizes a Modbus slave, which communicates via a serial
Bus Terminal KL6031 or KL6041. Serial EtherCAT Terminals with 22 bytes of data process image are also
supported. The function block ModbusRtuSlave_PcCOM [} 37] is available for communication via a serial PC
interface (COM port).

The function block is passive until it receives telegrams from a connected Modbus master.

PLC API

TF6255 39Version: 1.4.2

Hardware connection
The data structures required for the link with the communication port are included in the function
block. On a PC, the assignment in the TwinCAT System Manager is analogous to the description in
the chapter Serial bus terminal of the TF6340 TC3 Serial Communication documentation.

 Inputs
VAR_INPUT
 UnitID : UINT;
 AdrInputs : POINTER TO BYTE; (* Pointer to the Modbus input area *)
 SizeInputBytes : UINT;
 AdrOutputs : POINTER TO BYTE; (* Pointer to the Modbus output area *)
 SizeOutputBytes : UINT;
 AdrMemory : POINTER TO BYTE; (* Pointer to the Modbus memory area *)
 SizeMemoryBytes : UINT;
END_VAR

Name Type Description
UnitID UINT Modbus station address [} 43] (1..247). The Modbus

slave will only answer if it receives telegrams containing its
own station address. Optionally, collective addresses can
be used for replying to any requests. Address 0 is reserved
for broadcast telegrams and is therefore not a valid station
address.

AdrInputs BYTE Start address of the Modbus input area [} 15]. The data
area is usually declared as a PLC array, and the address
can be calculated with ADR (input variable).

SizeInputBytes UINT Size of the Modbus input array in bytes. The size can be
calculated with SIZEOF (input variable).

AdrOutputs BYTE Start address of the Modbus output area [} 15]. The data
area is usually declared as a PLC array, and the address
can be calculated with ADR (output variable).

SizeOutputBytes UINT Size of the Modbus output array in bytes. The size can be
calculated with SIZEOF (output variable).

AdrMemory BYTE Start address of the Modbus memory area [} 15]. The data
area is usually declared as a PLC array, and the address
can be calculated with ADR (memory variable).

SizeMemoryBytes UINT Size of the Modbus memory array in bytes. The size can
be calculated with SIZEOF (memory variable).

 Outputs
VAR_OUTPUT
 ErrorId : MODBUS_ERRORS;
END_VAR

Name Type Description
ErrorId MODBUS_ERRORS Indicates an error number [} 44] in the event of disturbed

or faulty communication.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.0 PC or CX (x86, x64, ARM) Tc2_ModbusRTU

https://infosys.beckhoff.com/content/1033/tf6340_tc3_serial_communication/85878795.html?id=5156484543668299105

PLC API

TF625540 Version: 1.4.2

5.1.8 ModbusRtuSlave_KL6x5B

The function block ModbusRTUslave_KL6x5B realizes a Modbus slave, which communicates via a serial
Bus Terminal KL6001, KL6011 or KL6021. The function block ModbusRtuSlave_PcCOM [} 37] is available for
communication via a serial PC interface (COM port).

The function block is passive until it receives telegrams from a connected Modbus master.

Hardware connection
The data structures required for the link with the communication port are included in the function
block. On a PC, the assignment in the TwinCAT System Manager is analogous to the description in
the chapter Serial bus terminal of the TF6340 TC3 Serial Communication documentation.

 Inputs
VAR_INPUT
 UnitID : UINT;
 AdrInputs : POINTER TO BYTE; (* Pointer to the Modbus input area *)
 SizeInputBytes : UINT;
 AdrOutputs : POINTER TO BYTE; (* Pointer to the Modbus output area *)
 SizeOutputBytes : UINT;
 AdrMemory : POINTER TO BYTE; (* Pointer to the Modbus memory area *)
 SizeMemoryBytes : UINT;
END_VAR

Name Type Description
UnitID UINT Modbus station address [} 43] (1..247). The Modbus

slave will only answer if it receives telegrams containing its
own station address. Optionally, collective addresses can
be used for replying to any requests. Address 0 is reserved
for broadcast telegrams and is therefore not a valid station
address.

AdrInputs BYTE Start address of the Modbus input area [} 15]. The data
area is usually declared as a PLC array, and the address
can be calculated with ADR (input variable).

SizeInputBytes UINT Size of the Modbus input array in bytes. The size can be
calculated with SIZEOF (input variable).

AdrOutputs BYTE Start address of the Modbus output area [} 15]. The data
area is usually declared as a PLC array, and the address
can be calculated with ADR (output variable).

SizeOutputBytes UINT Size of the Modbus output array in bytes. The size can be
calculated with SIZEOF (output variable).

AdrMemory BYTE Start address of the Modbus memory area [} 15]. The data
area is usually declared as a PLC array, and the address
can be calculated with ADR (memory variable).

SizeMemoryBytes UINT Size of the Modbus memory array in bytes. The size can
be calculated with SIZEOF (memory variable).

https://infosys.beckhoff.com/content/1033/tf6340_tc3_serial_communication/85878795.html?id=5156484543668299105

PLC API

TF6255 41Version: 1.4.2

 Outputs
VAR_OUTPUT
 ErrorId : MODBUS_ERRORS;
END_VAR

Name Type Description
ErrorId MODBUS_ERRORS Indicates an error number [} 44] in the event of disturbed

or faulty communication.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.0 PC or CX (x86, x64, ARM) Tc2_ModbusRTU

5.1.9 ModbusRtuSlave_Generic

The function block ModbusRtuSlave_Generic implements a Modbus slave that communicates via various
serial interfaces (COM port, virtual COM port, EtherCAT Terminals, ...).

Due to the hardware-independent nature of ModbusRtuSlave_Generic, its use is somewhat more
complex than that of the hardware-dependent function blocks ModbusRtuSlave_PcCOM,
ModbusRtuSlave_KL6x22B, ModbusRtuSlave_ KL6x5B. All function blocks offer the same
ModbusRTU functionality. However, the ModbusRtuSlave_Generic alone allows the use of virtual COM
ports.

The function block is passive until it receives telegrams from a connected Modbus master. A sample
program explains the operating principle.

Connection to hardware via TF6340 TC3 Serial Communication (license required)
The data structures required to link to the communication port must be instantiated separately. The
data structures of type ComBuffer present at this function block are data buffers for decoupling the
hardware-dependent background communication. This background communication must be
implemented via corresponding function blocks (SerialLineControl, SerialLineControlADS) of the
Tc2_SerialCom PLC library, for which this PLC library must first be integrated in the program. The
license for TF6340 TC3 Serial Communication is also required.

 Inputs
VAR_INPUT
 UnitID : UINT;
 AdrInputs : POINTER TO BYTE; (* Pointer to the Modbus input area *)
 SizeInputBytes : UINT;
 AdrOutputs : POINTER TO BYTE; (* Pointer to the Modbus output area *)
 SizeOutputBytes : UINT;
 AdrMemory : POINTER TO BYTE; (* Pointer to the Modbus memory area *)
 SizeMemoryBytes : UINT;
END_VAR

https://infosys.beckhoff.com/content/1033/tf6340_tc3_serial_communication/85904267.html?id=6531096720245711567

PLC API

TF625542 Version: 1.4.2

Name Type Description
UnitID UINT Modbus station address [} 43] (1..247). The Modbus

slave will only answer if it receives telegrams containing its
own station address. Optionally, collective addresses can
be used for replying to any requests. Address 0 is reserved
for broadcast telegrams and is therefore not a valid station
address.

AdrInputs BYTE Start address of the Modbus input area [} 15]. The data
area is usually declared as a PLC array, and the address
can be calculated with ADR (input variable).

SizeInputBytes UINT Size of the Modbus input array in bytes. The size can be
calculated with SIZEOF (input variable).

AdrOutputs BYTE Start address of the Modbus output area [} 15]. The data
area is usually declared as a PLC array, and the address
can be calculated with ADR (output variable).

SizeOutputBytes UINT Size of the Modbus output array in bytes. The size can be
calculated with SIZEOF (output variable).

AdrMemory BYTE Start address of the Modbus memory area [} 15]. The data
area is usually declared as a PLC array, and the address
can be calculated with ADR (memory variable).

SizeMemoryBytes UINT Size of the Modbus memory array in bytes. The size can
be calculated with SIZEOF (memory variable).

 Inputs/outputs
VAR_IN_OUT
 RxBuffer : ComBuffer;
 TxBuffer : ComBuffer;
END_VAR

Name Type Description
TxBuffer ComBuffer (Tc2_SerialCom

PLC library)
Buffer with send data for the serial hardware being used.
This data buffer is never directly written or read by the
user, but only serves as a buffer for the communication
blocks. The background communication must be realized
via corresponding function blocks of the Tc2_SerialCom
PLC library.

RxBuffer ComBuffer (Tc2_SerialCom
PLC library)

Buffer into which received data is placed. This data buffer
is never directly written or read by the user, but only serves
as a buffer for the communication blocks. The background
communication must be realized via corresponding
function blocks of the Tc2_SerialCom PLC library.

 Outputs
VAR_OUTPUT
 ErrorId : MODBUS_ERRORS;
END_VAR

Name Type Description
ErrorId MODBUS_ERRORS Indicates an error number [} 44] in the event of disturbed

or faulty communication.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4024.0 PC or CX (x86, x64, ARM) Tc2_ModbusRTU (>= v3.5.6.0)

https://infosys.beckhoff.com/content/1033/tf6340_tc3_serial_communication/85920523.html?id=3015672977536879081
https://infosys.beckhoff.com/content/1033/tf6340_tc3_serial_communication/85920523.html?id=3015672977536879081
https://infosys.beckhoff.com/content/1033/tf6340_tc3_serial_communication/85920523.html?id=3015672977536879081
https://infosys.beckhoff.com/content/1033/tf6340_tc3_serial_communication/85920523.html?id=3015672977536879081

PLC API

TF6255 43Version: 1.4.2

5.2 Datatypes

5.2.1 Modbus station address
Modbus defines valid station addresses in the range 1 to 247. A Modbus slave only responds to telegrams
that contain its own address. Address 0 is not a valid station address. It is used for broadcast telegrams to all
stations. These are not answered. Addresses 248 to 255 are reserved.

The Tc2_ModbusRTU library defines further collective addresses. This enables a station to respond to
several addresses.
TYPE MODBUS_UNITID :
(
 MODBUS_UNITID_BROADCAST := 0,
 MODBUS_UNITID_ALLVALID := 256, (* response on address 1..247 *)
 MODBUS_UNITID_ALLBUTBROADCAST := 257, (* response on address 1..255 *)
 MODBUS_UNITID_ALL := 258 (* response on address 0..255 *)
);
END_TYPE

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.0 PC or CX (x86, x64, ARM) Tc2_ModbusRTU

5.3 Global Constants

5.3.1 Global_Version
All libraries have a certain version. The version is indicated in the PLC library repository, for example. A
global constant contains the information about the library version:
VAR_GLOBAL CONSTANT
stLibVersion_Tc2_Modbus_RTU : ST_LibVersion;
END_VAR

To check whether the version you have is the version you need, use the function F_CmpLibVersion (defined
in the Tc2_System PLC library).

All other options for comparing library versions, which you may know from TwinCAT 2, are
outdated!

Appendix

TF625544 Version: 1.4.2

6 Appendix

6.1 Modbus RTU Error Codes
TYPE MODBUS_ERRORS :
(
(* Modbus communication errors *)
MODBUSERROR_NO_ERROR, (* 0 *)
MODBUSERROR_ILLEGAL_FUNCTION, (* 1 *)
MODBUSERROR_ILLEGAL_DATA_ADDRESS, (* 2 *)
MODBUSERROR_ILLEGAL_DATA_VALUE, (* 3 *)
MODBUSERROR_SLAVE_DEVICE_FAILURE, (* 4 *)
MODBUSERROR_ACKNOWLEDGE, (* 5 *)
MODBUSERROR_SLAVE_DEVICE_BUSY, (* 6 *)
MODBUSERROR_NEGATIVE_ACKNOWLEDGE, (* 7 *)
MODBUSERROR_MEMORY_PARITY, (* 8 *)
MODBUSERROR_GATEWAY_PATH_UNAVAILABLE, (* A *)
MODBUSERROR_GATEWAY_TARGET_DEVICE_FAILED_TO_RESPOND, (* B *)

(* additional Modbus error definitions *)
MODBUSERROR_CHARREC_TIMEOUT := 16#20, (* 20 hex *)
MODBUSERROR_ILLEGAL_DATA_SIZE, (* 21 hex *)
MODBUSERROR_ILLEGAL_DEVICE_ADDRESS, (* 22 hex *)
MODBUSERROR_ILLEGAL_DESTINATION_ADDRESS, (* 23 hex *)
MODBUSERROR_ILLEGAL_DESTINATION_SIZE, (* 24 hex *)
MODBUSERROR_NO_RESPONSE, (* 25 hex *)

(* Low level communication errors *)
MODBUSERROR_TXBUFFOVERRUN := 102, (* 102 *)
MODBUSERROR_SENDTIMEOUT := 103, (* 103 *)
MODBUSERROR_DATASIZEOVERRUN := 107, (* 107 *)
MODBUSERROR_STRINGOVERRUN := 110, (* 110 *)
MODBUSERROR_INVALIDPOINTER := 120, (* 120 *)
MODBUSERROR_CRC := 150, (* 150 *)

(* High level PLC errors *)
MODBUSERROR_INVALIDMEMORYADDRESS := 232, (* 232 *)
MODBUSERROR_TRANSMITBUFFERTOOSMALL (* 233 *)
);
END_TYPE

Beckhoff Automation GmbH & Co. KG
Hülshorstweg 20
33415 Verl
Germany
Phone: +49 5246 9630
info@beckhoff.com
www.beckhoff.com

More Information:
www.beckhoff.com/tf6255

mailto:info@beckhoff.com?subject=TF6255
https://www.beckhoff.com
https://www.beckhoff.com/tf6255

	 Table of contents
	1 Foreword
	1.1 Notes on the documentation
	1.2 For your safety
	1.3 Notes on information security

	2 Overview
	3 Installation
	3.1 System Requirements
	3.2 Installation
	3.3 Licensing

	4 Configuration
	4.1 Terminal configuration
	4.2 Modbus address arrays

	5 PLC API
	5.1 Function blocks
	5.1.1 [obsolete]
	5.1.1.1 ModbusRtuMaster_PcCOM
	5.1.1.2 ModbusRtuMaster_KL6x5B
	5.1.1.3 ModbusRtuMaster_KL6x22B

	5.1.2 ModbusRtuMasterV2_PcCOM
	5.1.3 ModbusRtuMasterV2_KL6x22B
	5.1.4 ModbusRtuMasterV2_KL6x5B
	5.1.5 ModbusRtuMasterV2_Generic
	5.1.6 ModbusRtuSlave_PcCOM
	5.1.7 ModbusRtuSlave_KL6x22B
	5.1.8 ModbusRtuSlave_KL6x5B
	5.1.9 ModbusRtuSlave_Generic

	5.2 Datatypes
	5.2.1 Modbus station address

	5.3 Global Constants
	5.3.1 Global_Version

	6 Appendix
	6.1 Modbus RTU Error Codes

		documentation@beckhoff.com
	2024-05-21T09:13:55+0200
	Beckhoff Automation, Verl
	Documentation Publishing

