BECKHOFF New Automation Technology

Functional description | EN

TF5200 | TwinCAT 3 CNC

Online tool compensation

Notes on the documentation

This description is only intended for the use of trained specialists in control and automation engineering who are familiar with the applicable national standards.

It is essential that the documentation and the following notes and explanations are followed when installing and commissioning the components.

It is the duty of the technical personnel to use the documentation published at the respective time of each installation and commissioning.

The responsible staff must ensure that the application or use of the products described satisfy all the requirements for safety, including all the relevant laws, regulations, guidelines and standards.

Disclaimer

The documentation has been prepared with care. The products described are, however, constantly under development.

We reserve the right to revise and change the documentation at any time and without prior announcement. No claims for the modification of products that have already been supplied may be made on the basis of the data, diagrams and descriptions in this documentation.

Trademarks

Beckhoff®, TwinCAT®, TwinCAT/BSD®, TC/BSD®, EtherCAT®, EtherCAT G®, EtherCAT G10®, EtherCAT P®, Safety over EtherCAT®, TwinSAFE®, XFC®, XTS® and XPlanar® are registered trademarks of and licensed by Beckhoff Automation GmbH.

Other designations used in this publication may be trademarks whose use by third parties for their own purposes could violate the rights of the owners.

Patent Pending

The EtherCAT technology is patent protected, in particular by the following applications and patents: EP1590927, EP1789857, EP1456722, EP2137893, DE102015105702 with corresponding applications or registrations in various other countries.

EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany

Copyright

© Beckhoff Automation GmbH & Co. KG, Germany.

The reproduction, distribution and utilisation of this document as well as the communication of its contents to others without express authorisation are prohibited.

Version: 1.06

Offenders will be held liable for the payment of damages. All rights reserved in the event of the grant of a patent, utility model or design.

General and safety instructions

Icons used and their meanings

This documentation uses the following icons next to the safety instruction and the associated text. Please read the (safety) instructions carefully and comply with them at all times.

Icons in explanatory text

- 1. Indicates an action.
- ⇒ Indicates an action statement.

A DANGER

Acute danger to life!

If you fail to comply with the safety instruction next to this icon, there is immediate danger to human life and health.

A CAUTION

Personal injury and damage to machines!

If you fail to comply with the safety instruction next to this icon, it may result in personal injury or damage to machines.

NOTICE

Restriction or error

This icon describes restrictions or warns of errors.

Tips and other notes

This icon indicates information to assist in general understanding or to provide additional information.

General example

Example that clarifies the text.

NC programming example

Programming example (complete NC program or program sequence) of the described function or NC command.

Specific version information

Optional or restricted function. The availability of this function depends on the configuration and the scope of the version.

Table of contents

	Note	s on the	documentation	3
	Gene	eral and	safety instructions	4
1	Over	view		8
2	Desc	ription		9
	2.1	Progran	mming (#OTC ON/OFF)	9
	2.2	Wear co	ompensation of tool radius	11
	2.3	Wear co	ompensation of tool length	16
		2.3.1	Inclined grinding disc	18
	2.4	Wear co	ompensation in tool direction	19
	2.5	Wear co	ompensation in direction of surface normal	23
	2.6	Special	settings in tool data	26
	2.7	HLI para	ameters	27
		2.7.1	Channel-specific connection	27
		2.7.2	Axis-specific connection	28
		2.7.3	HLI parameters up to CNC Build V2.20xx	28
	2.8	Special	V.G. variables for OTC	30
	2.9	Connec	cting to external tool management	31
3	Para	meter		32
	3.1	Overvie	eW	32
	3.2		ition	
4	Supp	ort and	Service	34
	Indo			25

List of figures

Fig. 1	Grinding a contour	S
Fig. 2	Wear compensation of tool radius	11
Fig. 3	Contour of the NC program wr_quad_disc.nc	13
Fig. 4	Description of RADIUS function	15
Fig. 5	Wear compensation of tool length	16
Fig. 6	Description of LENGTH function	17
Fig. 7	Inclined grinding disc	18
Fig. 8	Wear compensation in tool direction	19
Fig. 9	Grinding disc setting B=0	21
Fig. 10	Grinding disc setting B=90	21
Fig. 11	Description of TOOL_DIR function	22
Fig. 12	Wear in surface normal direction	23
Fig. 13	Description of SURF_NORM_DIR function	25

1 Overview

Task

With certain processes such as grinding, the length or the radius of the tool must be continuously corrected to compensate for wear.

Wear compensation depends on the path travelled.

Properties

Wear compensation can only be enabled with tool type 2 (grinding tool). If a different tool type is used, error message P-ERR-21391 is output.

Wear compensation can be used for 4 processing types and 3 different modes.

Parametrisation

Wear compensation is activated and deactivated from the NC program. The wear constant can be parameterised both from the NC program and using preset parameters in the tool list P-TOOL-00030. Further parameters in this context are described in the section Parameter [**] 32].

Programming

The following NC command is provided to program online tool compensation in the NC program. Parametrisation can be programmed in advance or in combination with **#OTC ON** .

For further details on the above command, see the section Programming (#OTC ON/OFF) [> 9].

Mandatory note on references to other documents

For the sake of clarity, links to other documents and parameters are abbreviated, e.g. [PROG] for the Programming Manual or P-AXIS-00001 for an axis parameter.

For technical reasons, these links only function in the Online Help (HTML5, CHM) but not in pdf files since pdfs do not support cross-linking.

2 Description

Task

With certain processes such as grinding, the length or the radius of the tool must be continuously corrected to compensate for wear.

Wear compensation depends on the path covered. In addition, compensation can be influenced by the PLC.

Wear compensation is activated and deactivated from the NC program. The wear constant can be parameterised both from the NC program and using preset parameters in the tool list P-TOOL-00030.

Rapid traversing blocks have no wear.

It is assumed that the entire width of the lateral surface of the grinding disc is in contact.

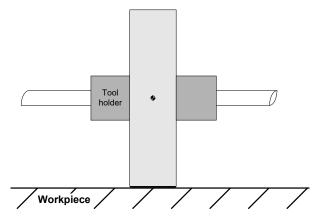


Fig. 1: Grinding a contour

Tool type

Wear compensation can only be enabled with tool type 2 (grinding tool). If a different tool type is used, error message P-ERR-21391 is output.

Processing types

Online wear compensation can be used for $\underline{4}$ processing types and $\underline{3}$ different modes.

- 1. Radius compensation (only in combination with active TRC) for processing contours in the plane (2.5 D)
- 2. Length compensation for processing surfaces (surface grinding, 2.5 D)
- 3. Compensation in tool direction for any orientation (5-axis)
- 4. Compensation in direction of surface normal (5-axis)

Modes

- 1. Continuous (dependent on motion path traversed)
- 2. Discrete (discrete wear compensation via PLC)
- 3. Automatic, combination of discrete and continuous

Discrete additive wear values which are assigned by the PLC are adjusted over several cycles.

2.1 Programming (#OTC ON/OFF)

The following NC command is provided to program online tool compensation in the NC program. Parametrisation can be programmed in advance or in combination with #OTC ON:

#OTC ON | OFF [[RADIUS | LENGTH | TOOL_DIR | SURF_NORM_DIR DISC | CONT | AUTO

WEAR_CONST=.. | WEAR_CONST_TOOL ACC_WEIGHT=..]]

RADIUS	Radius compensation processing type	
LENGTH	Length compensation processing type (default)	
TOOL_DIR	Compensation in tool direction (5-axis) processing type	
SURF_NORM_DIR	Compensation in direction of surface normal (5-axis) processing type	
DISC	Discrete mode: input only via PLC, external presetting	
CONT	Continuous mode: Presetting values only by calculating the motion path traversed and the wear constant, internal calculation	
AUTO	Automatic mode: Adding the external presetting and internal calculation (default)	
WEAR_CONST=	User-specific definition of wear constant; it acts modally, this means that with #OTC ON the programmed wear constant is used and not the default wear constant defined in the current tool data. Defining the valid wear constant is optional.	
	Unit: 0.1 µm/m	
WEAR_CONST_TOO L	Switch to the default wear constant defined in the current tool data; it acts modally, this means that with #OTC ON the default wear constant (default) defined in the current tool data is used and not the user-specific definition of the wear constant.	
ACC_WEIGHT=	Acceleration weighting in percent [1;100], default: 100%	

When OTC is deselected with #OTC OFF, the amount of wear (discrete and/or continuous) is included in the calculation for the current tool.

2.2 Wear compensation of tool radius

Grinding a contour

Use tool radius wear compensation (radius compensation) by preference to grind a <u>contour</u> at the same time as tool radius compensation.

Grinding disc wear in the direction of the disc radius can be compensated continuously or discretely.

In the radius compensation processing type, wear is only considered for <u>active</u> tool radius compensation (TRC).

The figure below shows the tool radius wear:

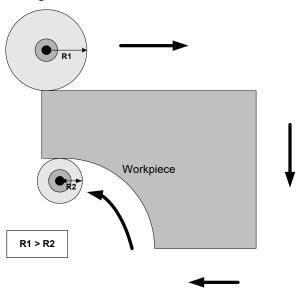


Fig. 2: Wear compensation of tool radius

The start-up movement in relation to the equidistant path after selecting TRC (G41/G42) is considered without wear.

Version: 1.06

Motion after deselecting TRC (G40) is also without wear.

General #OTC programming example

```
N10 F10000
N20 D1
                              (Data set selection for grinding wheel)
N30 G0 X0 Y0 Z0
N40 #OTC[RADIUS, AUTO] (define OTC processing type + mode)
N50 #OTC ON (select OTC)
N60 G41 G01 X50 (select TRC, wear-free movement)
N70 X1000
N80 G40 X50
                            (deselect TRC with path motion to reduce TRC)
N90 #OTC OFF
                            (deselect OTC)
N100 G00 X50
N199 M30
```


OTC with discrete compensation

```
%wr_quad_disc.nc
N20 G17G90
N22 D1 G25 (Linear transition block)
N40 G1 X0Y0Z0 F600

N50 #OTC ON[RADIUS DISC]
N55 G42
N60 G1 X2
N70 G1 X102
N80 G26 Y100 (Circular transition block)

N90 X2
N95 Y0

N100 G40 G1 X0
N110 #OTC OFF

N99999 M30
```

Legend:

Green: Path contour with active TRC without OTC offset

Black: Path contour with negative value for OTC radius offset

Red: Path contour with positive value for OTC radius offset

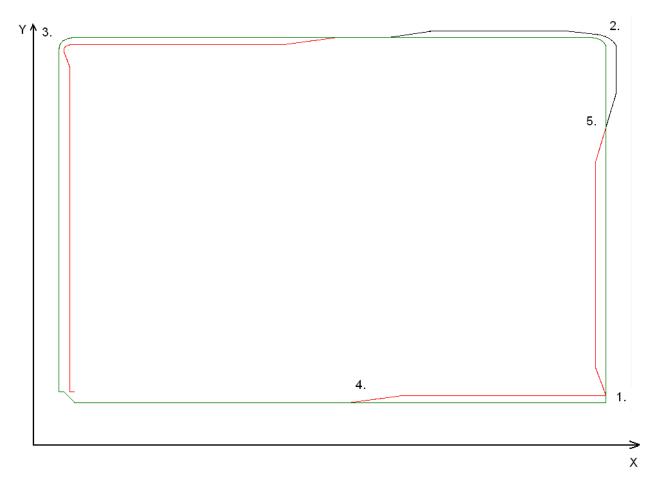


Fig. 3: Contour of the NC program wr_quad_disc.nc

Explanation to the figure above (the discrete OTC offset applied is 2 mm)

- 1. In this corner of the contour, G25 is active. The contour is not continuous. The predefined OTC offset is applied to another axis over several cycles.
- 2. The TRC inserts a circular transition because of G26. But the OTC offset is so large that the increase in offset is unable to keep up with the continuous change in the contour.
- 3. The OTC offset lags behind considerably.
- 4. Increase the OTC offset
- 5. Decrease the positive OTC offset and increase the negative OTC offset

The tool radius is influenced by the PLC.

Condition: After the OTCRadiusOffset control unit is active, the OTC radius offset can then be programmed accordingly for the build currently in use. This value is then added to each cycle perpendicular to the programmed contour.

PLC example code

```
(* Enable the OTC control unit for first channel *)
gpCh[0]^.bahn_mc_control.otc_radius_offset.enable_w := TRUE;

(* write radius offset in the first channel *)
gpCh[0]^.bahn_mc_control.otc_radius_offset.command_w := OTC_Offset;
```

PLC example code for CNC Build as of V2.11.20cxx:

where channel_idx = [1.. HLI_SYS_CHNMAX]

```
(* Enable the OTC control unit for first channel *)
pMC[1]^.addr^.MCControlBahn_Data.MCControlSGN32Unit_OTCRadiusOffset.X_Enable := TRUE;

(* write radius offset in the first channel *)
pMC[1]^.addr^.MCControlBahn_Data.MCControlSGN32Unit_OTCRadiusOffset.D_Command := OTC_Offset;
```


A continuous contour path is recommended because changing the orientation of the predefined offset is not applied to the axis all at once but is distributed over several cycles.

On selection, the commands G41/G42 and #OTC ON can be swapped. On deselection, the sequence G40 before #OTC OFF must be maintained. The TRC modes G138/G139 make a path motion between the two commands **absolutely** necessary.

If error 90050 is output, the path motion does not exist when deselected with G138/G139.

The functionality of the RADIUS type is shown by the example of the G17 plane:

#OTC [RADIUS CONT/ DISC/AUTO]

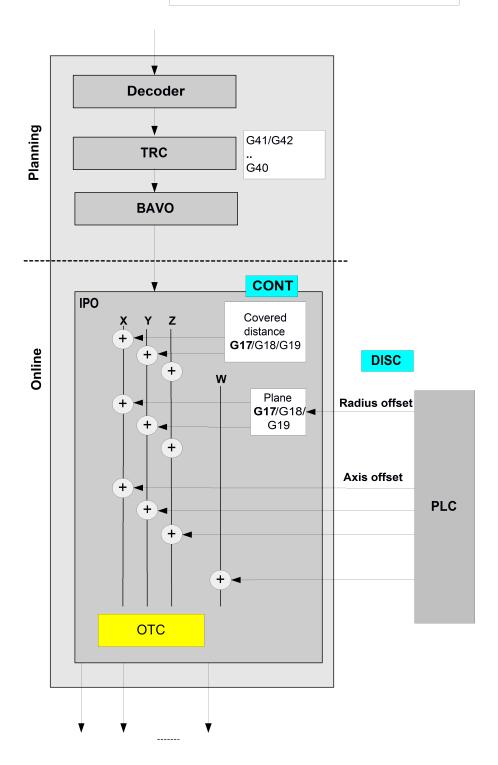


Fig. 4: Description of RADIUS function

2.3 Wear compensation of tool length

Grinding a surface

When the tool length is compensated (length compensation), wear is compensated in the direction of the 3rd main axis. This can take place both continuously and discretely. This procedure is used in particular for processing surfaces (surface grinding).

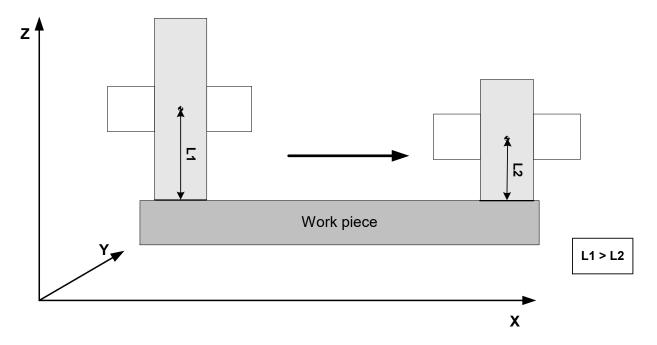


Fig. 5: Wear compensation of tool length

Tool length wear

```
N30 D1
                      (Select record for grinding disc)
N40 G00 X0 Y0 Z0
N50 #OTC ON [LENGTH]
                       (Select OTC)
N60 G1 X1000 F10000
N70 #OTC OFF
                       (Deselect OTC)
```


Distributing continuous wear on 2 main axes depends on the inclination of the grinding disc as described in section Inclined grinding disc [\(\bullet \) 18].

The LENGTH operation mode is shown in the figure below:

#OTC [LENGTH CONT/ DISC/AUTO]

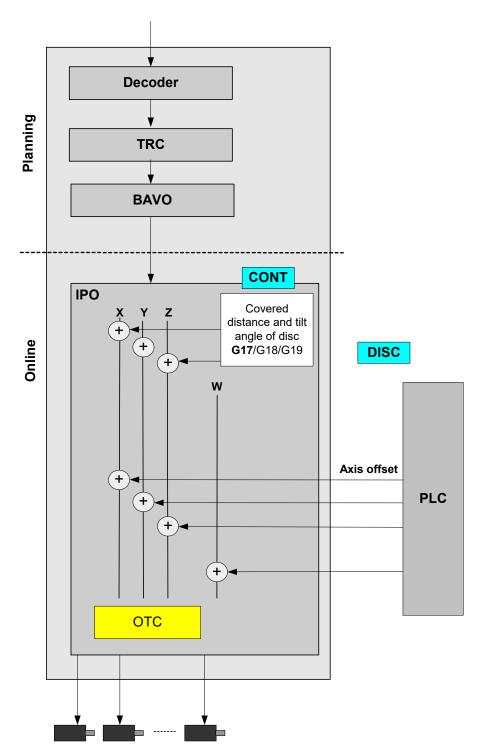


Fig. 6: Description of LENGTH function

2.3.1 Inclined grinding disc

Inclined grinding

The incline of the grinding disc is only entered in the tool list (P-TOOL-00138) to grind inclined surfaces. Here the complete lateral surface of the grinding disc is also in contact.

The figure below shows the orientation of the tilt angle using the example of the G17 plane:

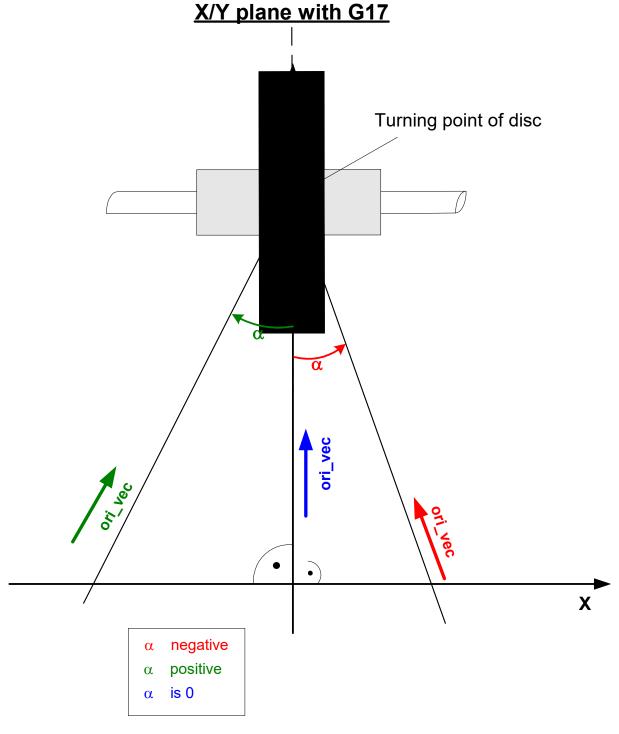


Fig. 7: Inclined grinding disc

Tool orientation is determined by the disc tilt angle. This tool orientation can then be used to apply the resulting wear proportionately to the main axes.

In the figure above, wear is included in the calculation of the X and Z axes.

2.4 Wear compensation in tool direction

Grinding a surface

This compensation type is used to compensate for wear in the tool direction. This can take place both continuously and discretely.

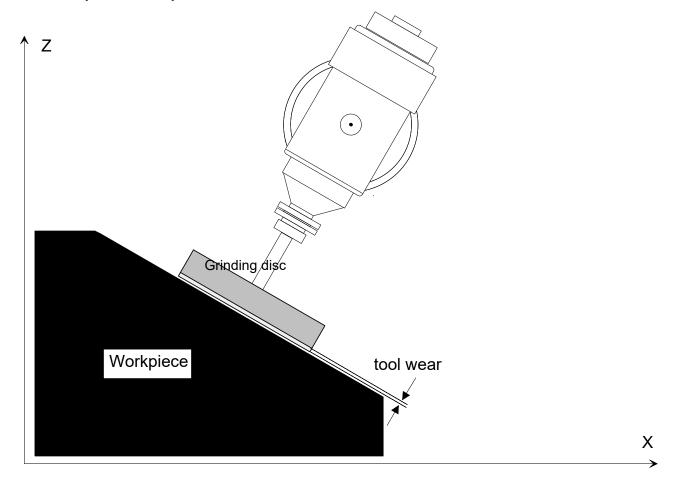


Fig. 8: Wear compensation in tool direction

OTC grinding with kinematic type 4

```
...
N30 D1
                         (Select record for grinding disc)
N40 G00 X0 Y0 Z300 B0
N50 #KIN ID[4]
N50 #TRAFO ON
N60 G00 B45
N70 G01 X100 Z50 F1000
                                         (Select OTC)
N80 #OTC ON [TOOL DIR, DISC]
N90 $FOR P1=0, 20, 1
N100 G91 G01 X10 Z-10 F2000
              X-10 Z10
N110
N120 $ENDFOR
N120 #OTC OFF
                                                   (deselect OTC)
N130 #TRAFO OFF
```


Programming kinematic parameters

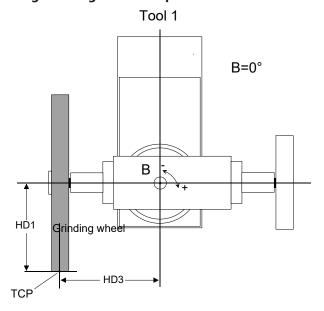


Fig. 9: Grinding disc setting B=0

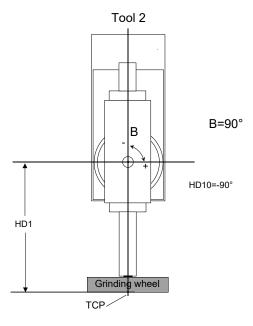


Fig. 10: Grinding disc setting B=90

The figure below shows the function of TOOL_DIR:

#OTC [TOOL_DIR CONT/DISC/AUTO]

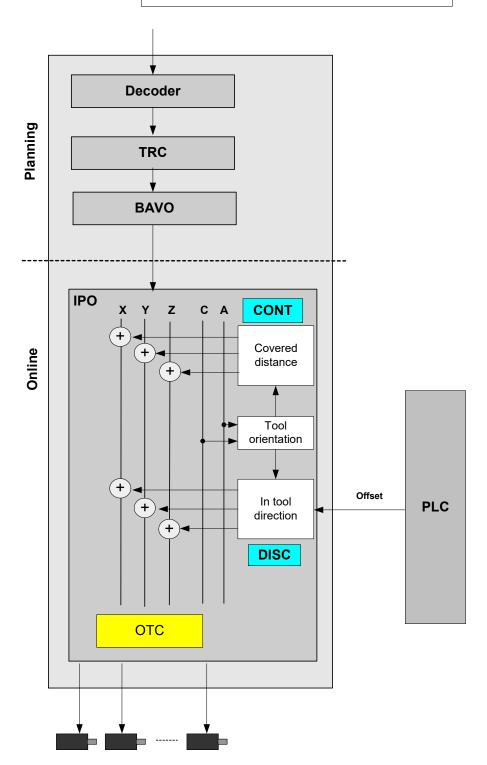


Fig. 11: Description of TOOL_DIR function

2.5 Wear compensation in direction of surface normal

Grinding a surface

This compensation type compensates for wear in surface normal direction. The surface normal direction is calculated in the CNC based on the tool direction vector and the path tangent vector.

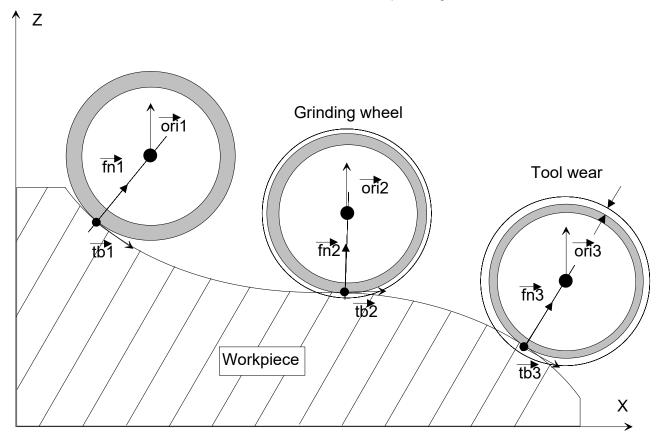


Fig. 12: Wear in surface normal direction

OTC grinding with kinematic type 4

```
N30 D1 (Select record for grinding disc)
N40 G00 X0 Y0 Z300 B0
N50 #KIN ID[4]
N50 #TRAFO ON
N60 G00 B0
N70 G01 X100 Z50 F1000
N80 #OTC ON [SURF_NORM_DIR, DISC] (Select OTC)
N85 #HSC ON[BSPLINE PATH_DEV 5 MERGE = 0]
N90 $FOR P1=0, 5, 1
N100 G91 G01 X3 Z-3 F2000
N110 X2 Z-2
N120 X5 Z-2
N130 X5 Z-1
N140 X5
N150 X5 Z-1
N160 X5 Z-2
N170 X2 Z-2
N180 X3 Z-3
N190 X-3 Z3 F2000
N200 X-2 Z2
N210 X-5 Z2
N220 X-5 Z1
N230 X-5
N240 X-5 Z1
N250 X-5 Z2
N260 X-2 Z2
N270 X-3 Z3
N280 $ENDFOR
N290 #HSC OFF
N300 #OTC OFF (Deselect OTC)
N310 #TRAFO OFF
M30
```


#OTC [SURF_NORM_DIR CONT/DISC/AUTO]

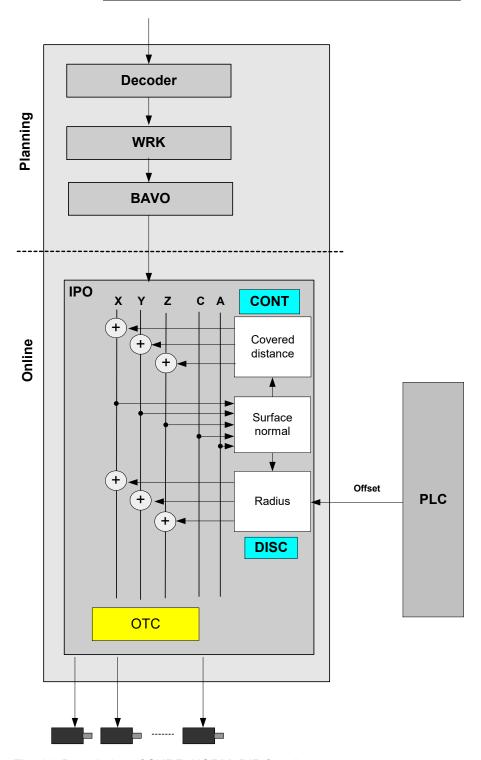


Fig. 13: Description of SURF_NORM_DIR function

2.6 Special settings in tool data

Definition of tool type and wear parameters:

```
wz[1].gueltig
wz[1].typ
                                    2
                                         grinding tool
wz[1].mass_einheit
wz[1].laenge
                                    500000
                                    300000
wz[1].radius
wz[1].ax versatz[0]
wz[1].ax versatz[1]
wz[1].ax_versatz[2]
# Wear constant : Unit 0.1 μm/m
wz[1].grinding wear const
                                   100000
# Maximum applied discrete input via PLC, unit: 0.1µm
                                   200000
wz[1].grinding_max_infeed
# Disc tilt angle, unit: 0.0001 degree
wz[1].grinding_disc_tilt_angle
```

The disc tilt angle must be entered as a function of the mechanical construction.

-

Unassigned data are assigned the value 0 by default.

Consequence: If the tool type is not assigned Type 2, the error P-ERR-21391 is generated when #OTC ON is programmed.

If grinding_max_infeed is not set, no discrete offset can be applied.

The following also applies: if grinding_wear_const is not set, it is not possible to calculate the continuous offset depending on the path.

2.7 **HLI** parameters

2.7.1 **Channel-specific connection**

The following channel-specific control unit is used to default wear values by the PLC in the modes - 'Radius wear '(RADIUS) or 'Tool direction wear' (TOOL_DIR).

See Programming (#OTC ON/OFF) [▶ 9]

The mode must be either DISC or AUTO in both modes.

Online tool compensation (OTC)		
Description The tool radius is compensated by specifying a wear value. The wear value specified as an offset from the planned cutting edge.		
	It is only possible to used the control unit in the RADIUS or TOOL_DIR modes and in the DISC or AUTO mode.	
	See NC command <u>#OTC [▶ 9]</u> .	
	See also functional description [FCT-C20 [▶ 11]].	
Data type	MC_CONTROL_SGN32_UNIT, see description of Control Unit	
Special features	If the wear value changes, this change is distributed over several interpolation cycles to avoid sudden changes.	
Access	PLC reads request_r + state_r and writes command_w + enable_w	
ST Path	gpCh[channel_idx]^.bahn_mc_control.otc_radius_offset	
Commanded, reque	ested and return values	
ST Element	.command_w	
	.request_r	
	.state_r	
Data type	DINT	
Unit	0.1 μm	
Value range	[-P-TOOL-00031, P-TOOL-00031]	
Redirection		
ST Element	.enable_w	

Adding wear in tool direction

In the third axis (axis_idx = 2) an offset value can be written in the tool direction. The PLC input of the first two axes is ignored.

Version: 1.06

All the axes in the following sequence can be influenced as usual by the PLC.

2.7.2 Axis-specific connection

Adding wear in axis direction

It is possible to use the following control unit both when the RADIUS mode is used as well as the LENGTH mode.

The mode must be either DISC or AUTO.

See Programming (#OTC ON/OFF) [▶9]

Adding wear in surface normal direction

When the SURF_NORM_ORI mode is used, it is possible to use automatic continuous wear compensation and influencing via the following control unit.

The mode must be either DISC or AUTO.

See Programming (#OTC ON/OFF) [▶ 9]

The surface normal is approximated based on the current tool orientation and path tangent (cf. RADIUS type). For a continuous change in direction of the surface normal vector, the contour and orientation should be steady at all times.

The PLC input of the first three axes is ignored All the axes in the following sequence can be influenced as usual by the PLC.

OTC offset		
Description	When this wear offset is set, wear in the direction of this axis can be compensated.	
	When the SURF_NORM_ORI mode is used (wear in the direction of the surface normal), the offset value must be assigned in the third axis.	
Data type	MC_CONTROL_SGN32_UNIT, see description of Control Unit	
Special features	The wear offset is distributed by the CNC over several cycles.	
Access	PLC reads request_r + state_r and writes command_w + enable_w	
ST Path	gpAx[axis_idx]^.ipo_mc_control.otc_offset	
Commanded, reque	ested and return values	
ST Element	.command_w	
	.request_r	
	.state_r	
Data type	DINT	
Unit	0.1 μm	
Value range	[-P-TOOL-00031, P-TOOL-00031]	
Redirection		
ST Element	.enable_w	

2.7.3 HLI parameters up to CNC Build V2.20xx

Channel-specific connection

Online tool compensation (OTC)

Description	The tool radius can be adapted by setting the wear offset depending on wear. [0,1µm]	
	See also Wear compensation of tool radius [▶ 11].	
	It is only possible to used the control unit in the RADIUS or TOOL_DIR modes and in the DISC or AUTO mode.	
	See NC command <u>#OTC [▶ 9]</u> .	
	See also functional description [FCT-C20 [▶8]].	
Data type	MCControlSGN32Unit, see description of Control Unit	
Peculiarities	The wear offset is not output in a cycle in the CNC. Instead it is output over several cycles.	
Access	PLC reads Request + State and writes Command + Enable	
ST Path	pMC[channel_idx]^.addr^.MCControlBahn_Data. MCControlSGN32Unit_OTCRad iusOffset	
Commanded, req	uested and return values	
ST Element	.D_Command	
	.D_Request	
	.D_State	
Data type	DINT	
Value range	[-P-TOOL-00031, P-TOOL-00031]	
Redirection		
ST Element	.X_Enable	

Axis-specific connection

OTC offset	
Description	When this wear offset is set, wear in the direction of this axis can be compensated.
	When the SURF_NORM_ORI mode is used (Wear in the direction of the surface normal), the offset value must be assigned in the third axis.
	Unit: 0.1µm
Data type	MCControlSGN32Unit, see description of Control Unit
Peculiarities	The wear offset is distributed by the CNC over several cycles.
Access	PLC reads Request + State and writes Command + Enable
ST Path	pAC[axis_idx]^.addr^.McControllpo_Data.MCControlSGN32Unit_OTCOffset
Commanded, requ	ested and return values
ST Element	.D_Command
	.D_Request
	.D_State
Data type	DINT
Value range	[-P-TOOL-00031, P-TOOL-00031]
Redirection	
ST Element	.X_Enable
Move back manua	al mode offset
Description	If manual mode is active in the channel and if the commanded axis fails to move, the axis is moved by this command so that afterwards manual mode offset is 0.
Data type	MCControlBoolUnit, see description of Control Unit
Peculiarities	A rising edge (FALSE \rightarrow TRUE) at X_Command starts the process. The signal is ignored if a manual mode motion is still active or manual mode offset is already 0.
Access	PLC reads Request + State and writes Command + Enable
ST Path	pAC[axis_idx]^.addr^.McControllpo_Data.MCControlBoolUnit_ManualMvBackToStart

Commanded, requ	Commanded, requested and return values	
ST Element	.X_Command	
	.X_Request	
	.X_State	
Data type	BOOL	
Value range	rising edge (FALSE → TRUE) triggers backward motion	
Redirection		
ST Element	.X_Enable	

2.8 Special V.G. variables for OTC

Reading wear values

Current tool wear can be read after processing with the following variables.

With radius compensation processing type in [mm] or [inch]:

- Total radius wear, discrete + continuous wear

V.G.WZ_AKT.WEAR_RADIUS

- Continuous radius wear

V.G.WZ_AKT.WEAR_RADIUS_CONT

With length compensation processing type in [mm] or [inch]:

- Wear in axis with index <idx>

V.G.WZ AKT.WEAR[<idx>]

or

- Wear in axis with name <axis_name>

V.G.WZ_AKT.WEAR.<axis_name>

The current wear value is supplied after deselecting OTC. The wear value refers to the wear which occurred between selecting and deselecting OTC.

If OTC is selected and deselected repeated in the same NC program, the above variables refer to the accumulated wear.

Writing/reading wear constant

The wear constant is defined as default in the tool data. It can also be read or written in the NC program by the variable V.G.WZ_AKT.WEAR_CONST in [0.1 µm/m]:

Status query: OTC active

The OTC state can be determined in the NC program. To do this, the NC program

V.G.OTC_ACTIVE

of the Boolean type must be readable in the NC program.

NOTICE

Version: 1.06

While OTC is active, V.G.WZ_AKT wear values are not up-to-date. They are only updated after OTC (#OTC OFF) is deselected.

2.9 Connecting to external tool management

Tool data

The external tool management system must provide the following data to the CNC when a grinding tool is changed (see [FCT-C10//section Tool data]:

- · Type: Tool type 2 for grinding tool
- · wear const: Wear constant
- · disc tilt angle: Grinding disc tilt angle
- ext_discret_limit: Maximum discrete input by the PLC

When the grinding tool is replaced, the CNC informs the external tool management system of the wear:

The wear data sent includes the following:

- · wear_radius, total wear consisting of discrete and continuous wear
- · wear_radius_cont, continuous wear

This wear data is generated from the time when the tool is replaced. The values must be taken over by the external tool management and are used internally to recalculate the tool geometric data (radius, length).

Unassigned data are assigned the value 0 by default.

Consequence: If the tool type is not assigned Type 2, the error P-ERR-21391 is generated when #OTC ON is programmed.

If grinding max infeed is not set, no discrete offset can be applied.

The following also applies: if grinding_wear_const is not set, it is not possible to calculate the continuous offset depending on the path.

3 Parameter

3.1 Overview

ID	Parameter	Description
P-TOOL-00001	typ	Tool type
P-TOOL-00030	grinding_wear_const	Wear constant
P-TOOL-00031	grinding_max_infeed	Maximum discrete infeed
P-TOOL-00138	grinding_disc_tilt_angl e	Grinding disc tilt angle

3.2 Description

P-TOOL-00001	Differentiation between tool types
Description	This parameter is assigned to distinguish between tool types.
Parameter	wz[i].typ
Data type	UNS16
Data range	0: Milling tool
	1: Turning tool
	2: Grinding tool
	3: Wire (erosion)
Unit	
Default value	0
Remarks	Parameterisation example: Tool 5 is a milling tool
	wz[5]typ 0

P-TOOL-00030	Wear constant
Description	The wear constant is used to calculate continuous tool wear. Alternatively, it can also be defined in the NC program (#OTC [].
Parameter	wz[i].grinding_wear_const
Data type	REAL64
Data range	0 ≤ grinding_wear_const
Dimension	0.1µm/m
Default value	0
Remarks	The wear constant should contain relatively small values. There is no special dynamic consideration based on the actual wear values.

P-TOOL-00031	Maximum discrete infeed
Description	The maximum discrete infeed defines the greatest relative change which is assignable by the PLC.
Parameter	wz[i].grinding_max_infeed
Data type	REAL64
Data range	MIN(SGN32) ≤ grinding_max_infeed ≤ MAX(SGN32)
Dimension	0.1µm
Default value	0
Remarks	

P-TOOL-00138	Grinding disc tilt angle

Description	The parameter defines the angle between the centre line of the grinding disc and the
Danamatan	3rd main axis for tilted grinding discs.
Parameter	wz[i].grinding_disc_tilt_angle
Data type	REAL64
Data range	-45°≤ grinding_tilt_angle ≤ 45°
Dimension	0.0001°
Default value	0
Remarks	X/Y plane with G17 Turning point of disc a negative a positive a is 0
	Grinding disc tilt angle

4 Support and Service

Beckhoff and their partners around the world offer comprehensive support and service, making available fast and competent assistance with all questions related to Beckhoff products and system solutions.

Download finder

Our <u>download finder</u> contains all the files that we offer you for downloading. You will find application reports, technical documentation, technical drawings, configuration files and much more.

The downloads are available in various formats.

Beckhoff's branch offices and representatives

Please contact your Beckhoff branch office or representative for <u>local support and service</u> on Beckhoff products!

The addresses of Beckhoff's branch offices and representatives round the world can be found on our internet page: www.beckhoff.com

You will also find further documentation for Beckhoff components there.

Beckhoff Support

Support offers you comprehensive technical assistance, helping you not only with the application of individual Beckhoff products, but also with other, wide-ranging services:

- support
- · design, programming and commissioning of complex automation systems
- · and extensive training program for Beckhoff system components

Hotline: +49 5246 963-157 e-mail: support@beckhoff.com

Beckhoff Service

The Beckhoff Service Center supports you in all matters of after-sales service:

- · on-site service
- · repair service
- · spare parts service
- · hotline service

Hotline: +49 5246 963-460 e-mail: service@beckhoff.com

Beckhoff Headquarters

Beckhoff Automation GmbH & Co. KG

Huelshorstweg 20 33415 Verl Germany

Phone: +49 5246 963-0
e-mail: info@beckhoff.com
web: www.beckhoff.com

Index

7	

Handbetrieb Offset:zurück fahren	29
0	
Offset	
Handbetrieb:zurück fahren	29
OTC OTC	28, 29
Offset	28, 29
radius	27, 28
	,
P	
P-TOOL-00001	32
P-TOOL-00030	32
P-TOOL-00031	32
P-TOOL-00138	32
V	
Verschleiß	
Werkzeug:Radius	27, 28
W	
Werkzeug	
Korrektur:Online:Radius	27, 28

More Information: www.beckhoff.com/TF5200

Beckhoff Automation GmbH & Co. KG Hülshorstweg 20 33415 Verl Germany Phone: +49 5246 9630 info@beckhoff.com www.beckhoff.com

