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BEGKHOFF Foreword

1 Foreword

1.1 Notes on the documentation

This description is intended exclusively for trained specialists in control and automation technology who are
familiar with the applicable national standards.

For installation and commissioning of the components, it is absolutely necessary to observe the
documentation and the following notes and explanations.

The qualified personnel is obliged to always use the currently valid documentation.

The responsible staff must ensure that the application or use of the products described satisfies all
requirements for safety, including all the relevant laws, regulations, guidelines, and standards.

Disclaimer

The documentation has been prepared with care. The products described are, however, constantly under
development.

We reserve the right to revise and change the documentation at any time and without notice.

No claims to modify products that have already been supplied may be made on the basis of the data,
diagrams, and descriptions in this documentation.

Trademarks

Beckhoff®, TwinCAT®, TwinCAT/BSD®, TC/BSD®, EtherCAT®, EtherCAT G®, EtherCAT G10°, EtherCAT P®,
Safety over EtherCAT®, TwinSAFE®, XFC®, XTS® and XPlanar® are registered and licensed trademarks of
Beckhoff Automation GmbH.

If third parties make use of designations or trademarks used in this publication for their own purposes, this
could infringe upon the rights of the owners of the said designations.

Patents

The EtherCAT Technology is covered, including but not limited to the following patent applications and
patents:

EP1590927, EP1789857, EP1456722, EP2137893, DE102015105702

and similar applications and registrations in several other countries.

——
EtherCAT.

EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH,
Germany

Copyright

© Beckhoff Automation GmbH & Co. KG, Germany.

The distribution and reproduction of this document as well as the use and communication of its contents
without express authorization are prohibited.

Offenders will be held liable for the payment of damages. All rights reserved in the event that a patent, utility
model, or design are registered.

1.2 For your safety

Safety regulations

Read the following explanations for your safety.
Always observe and follow product-specific safety instructions, which you may find at the appropriate places
in this document.

TF3800, TF3810 Version: 1.6.4 5



Foreword BECKHOFF

Exclusion of liability

All the components are supplied in particular hardware and software configurations which are appropriate for
the application. Modifications to hardware or software configurations other than those described in the
documentation are not permitted, and nullify the liability of Beckhoff Automation GmbH & Co. KG.

Personnel qualification

This description is only intended for trained specialists in control, automation, and drive technology who are
familiar with the applicable national standards.

Signal words

The signal words used in the documentation are classified below. In order to prevent injury and damage to
persons and property, read and follow the safety and warning notices.

Personal injury warnings

A DANGER

Hazard with high risk of death or serious injury.

Hazard with medium risk of death or serious injury.

A CAUTION

There is a low-risk hazard that could result in medium or minor injury.

Warning of damage to property or environment

The environment, equipment, or data may be damaged.

Information on handling the product

d This information includes, for example:

recommendations for action, assistance or further information on the product.

(e}

Version: 1.6.4 TF3800, TF3810
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1.3 Notes on information security

The products of Beckhoff Automation GmbH & Co. KG (Beckhoff), insofar as they can be accessed online,
are equipped with security functions that support the secure operation of plants, systems, machines and
networks. Despite the security functions, the creation, implementation and constant updating of a holistic
security concept for the operation are necessary to protect the respective plant, system, machine and
networks against cyber threats. The products sold by Beckhoff are only part of the overall security concept.
The customer is responsible for preventing unauthorized access by third parties to its equipment, systems,
machines and networks. The latter should be connected to the corporate network or the Internet only if
appropriate protective measures have been set up.

In addition, the recommendations from Beckhoff regarding appropriate protective measures should be
observed. Further information regarding information security and industrial security can be found in our

https://www.beckhoff.com/secquide.

Beckhoff products and solutions undergo continuous further development. This also applies to security
functions. In light of this continuous further development, Beckhoff expressly recommends that the products
are kept up to date at all times and that updates are installed for the products once they have been made
available. Using outdated or unsupported product versions can increase the risk of cyber threats.

To stay informed about information security for Beckhoff products, subscribe to the RSS feed at https://
www.beckhoff.com/secinfo.

TF3800, TF3810 Version: 1.6.4 7
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2 Overview

Introduction

The idea behind machine learning is to learn a generalized correlation between inputs and outputs on the
basis of example data. Accordingly, a certain amount of training data is required, on the basis of which a
model is trained. In the training of the model, parameters of the model are adapted automatically to the
training data by means of a mathematical process. In machine learning, the user has a large number of
different models at his disposal. The selection and design of the models is part of the engineering process.
Different types or designs of models fulfill different tasks, wherein the most important subdivisions are the
classification and regression.

Classification: The model receives an input (an image, one or more vectors, etc.) and assigns it to a class.
The output is correspondingly a categorized variable. These classes could be, for example, good part or bad
part. Distinction can also be made between several classes, for example quality classes A, B, C, D.

Regression: The model receives an input and generates a continuous output. Not only are directly learned
inputs assigned to directly learned outputs (as with a lookup table), but in addition the model is able to
interpolate or, respectively, extrapolate non-learned inputs, provided it generalizes well. A functional
correlation is learned.

Once a model has been trained, it can be used for the learned task, i.e. the model is used for inference.

TC3 Machine Learning Runtime

Beckhoff supplies components for the inference of models in the TwinCAT XAR with its products TF3800
TwinCAT 3 Machine Learning Inference Engine and TF3810 Neural Network Inference Engine. A
common software basis is used for both products, which is referred to in the following as the Machine
Learning Runtime (ML Runtime for short).

The ML Runtime is a module (TcCOM) integrated in TwinCAT 3 and executed in the TwinCAT XAR. It is thus
possible to access the model interface (model inputs and model outputs) as well as to execute the model
loaded in the ML Runtime in hard real-time.

The TF3800 and TF3810 have different licenses. The license required depends on the ML model to be
loaded. In principle, the TF3800 is required for loading and executing classic ML models. The TF3810
license is required for the loading of neural networks. The TF3810 includes the TF3800 license.

Additional information on supported models and required licenses. [» 20

Workflow
Basically, the process of machine learning and integration into TwinCAT 3 consists of three phases:

1. The collection of data
2. The training of a model
3. The deployment in the TwinCAT XAR

A large number of TwinCAT products are available for the collection of data from the controller:
see TwinCAT Scope, TwinCAT Database Server, TwinCAT Analytics Logger, TwinCAT loT, etc.

ML models can be trained in a large number of software tools. ML models are usually created in
programming environments such as Python or R. Various open source and free tools exist that are suitable

for the creation of ML models, such as PyTorch, Keras and Scikit-learn. Trained models can be exported from

these tools in a standardized format as an ONNX file. The ONNX file is a standardized description of the
trained ML model. This file is first converted into a format that is conditioned for TwinCAT (XML or BML file).

Further Information:

» Creation of ONNX files [P 61]
e Conversion of ONNX files [» 63]

TwinCAT offers two methods for deploying the model:

8 Version: 1.6.4 TF3800, TF3810
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1. The library TC3_MLL is provided for use in the PLC environment. ML models can be loaded
asynchronously via a method call and subsequently executed cyclically in the PLC program by calling
a further method. Additional information on the PLC API [» 80]

2. A simple method of machine learning without programming effort: a TcCOM object that can be
inserted in the TwinCAT object tree in the development environment and configured. On starting the
system, the TcCOM loads the configured model and executes it in the assigned cycle time.
Additional information on the ML TcCOM [» 78]

The picture below illustrates the deep integration of the Machine Learning Runtime in the TwinCAT XAR.
Like all TwinCAT Runtime objects, the module is a TcCOM and is accordingly anchored deep in the hard

real-time.
myModel.bml r‘
myModel.xml

TwinCAT fransport layer — ADS

TwinCAT Automation Device Driver—ADD | | |/ ]|
t
Fieldbus

Integration of machine learning into TwinCAT Analytics

The products Machine Learning Inference Engine and Neural Network Inference Engine can also be

integrated into the TwinCAT Analytics workflow. Refer to the TwinCAT Analytics documentation for detailed
information.

MAIN.fOut{1] @ Virtual I [V]

[Result @ ScalingOffset V]

Result @ ScalingFactor || ¢ _"\Desktop\PdM_Example\RUL MLPxml| | .. |
7 layers

66 neurons

600 weights

MAINFOut[1] @ Virtual .. [V]

[Result @ RUL_Prediction [+

RUL(cycle)
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3 Installation

3.1 System requirements

Runtime

Technical data Description

Operating system Windows 7 64-bit, Windows Embedded Standard 7 64-bit, Windows
10 64-bit, TwinCAT/BSD

Target platform PC architecture (x64)

TwinCAT version TwinCAT 3.1 Build 4024.0 or higher

Required TwinCAT setup level TwinCAT 3 XAR

Required TwinCAT license TF3800 TC3 Machine Learning Inference Engine or
TF3810 TC3 Neural Network Inference Engine

The required license depends on the loaded ML model, see Machine learning models supported [P_20].

Engineering
Technical data Description
TwinCAT version TwinCAT 3.1. Build 4024.0 and higher
Required TwinCAT setup level TwinCAT 3 XAE
o

The setup is to be executed both on the Engineering PC and on the Runtime PC.
7-day trial licenses can be generated for the runtime

3.2 Installation

The following section describes how to install the TwinCAT 3 Function for Windows-based operating
systems.

v' The TwinCAT 3 Function setup file was downloaded from the Beckhoff website.

1. Run the setup file as administrator. To do this, select the command Run as administrator in the context
menu of the file.

= The installation dialog opens.

10 Version: 1.6.4 TF3800, TF3810
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2. Accept the end user licensing agreement and click Next.

License Agreement

Flease read the following license agreement carefully.

Software Usage Agreement for Beckhoff Software Products

[ »

& 1 Subject Matter of thiz Agreement

(1) Licen=or grants Licenzee a non-tranzsferable, non-exclusive right to use the data
processing applications specified in Appendix 1 hereto (herginafter called "Software™) under
the conditions specified hereinafter.

(2} The Software ghall be delivered to Licensee on machine-readable recording media as
specified in Appendix 1, on which it iz recorded as an object program in an executable status.
One copy of the user documentation shall be part of the application and it shall be delivered to
Licensee in printed form, or also on a machine-readable recording medium or online. The form
the user documentation is delivered in iz specified in Appendix 1. The Software and the
documentation are hereinafter called "License Materials™. 57

@ I accept the terms in the license agreement

(71 I do not accept the terms in the license agreement

InstallShield

<Back || MNext> || cancel |

3. Enter your user data.

Customer Information

Please enter your information.

User Mame:

IMax Mustermann

Qrganization:

I ustermann Inc.

InstallShield

<Back || MNext> || cancel

TF3800, TF3810 Version: 1.6.4 1
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4. If you want to install the full version of the TwinCAT 3 Function, select Complete as installation type. If
you want to install the TwinCAT 3 Function components separately, select Custom.

Setup Type
Choose the setup type that best suits your needs,

Please select a setup type.

@ Complete
i All program features will be installed to all installed TwinCAT 3
versions on your system. (Requires the most disk space. )

TwinCAT 3 version they will be installed. Recommended for

ﬂ Choose which program features you want installed and to which
advanced users.

InstallShield

< Back ]I Mext = I [ Cancel

5. Select Next, then Install to start the installation.

Ready to Install the Program

The wizard is ready to beqin installation.

Click Install to begin the installation.

If you want to review or change any of your installation settings, dick Back. Click Cancel to
exit the wizard,

InstallShield

< Back “ Instail ] [ Cancel

= A dialog box informs you that the TwinCAT system must be stopped to proceed with the installation.

12 Version: 1.6.4 TF3800, TF3810
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6. Confirm the dialog with Yes.

e

"

TwinCAT Server Installation 3

TwinCAT systern has to be stopped before proceeding with installation,
Should TwinCAT be stopped?

ey [

7. Select Finish to exit the setup.

Beckhoff Setup Completed

| The Beckhoff Setup has successfully installed TF 33
Click Finish to exit the wizard.

[T] show the Windows Installer log

= The TwinCAT 3 Function has been successfully installed and can be licensed (see Licensing [P_13]).

3.3 Licensing

The TwinCAT 3 function can be activated as a full version or as a 7-day test version. Both license types can

be activated via the TwinCAT 3 development environment (XAE).

Licensing the full version of a TwinCAT 3 Function

A description of the procedure to license a full version can be found in the Beckhoff Information System in

the documentation "TwinCAT 3 Licensing".

Licensing the 7-day test version of a TwinCAT 3 Function

o
1 A 7-day test version cannot be enabled for a TwinCAT 3 license dongle.

1. Start the TwinCAT 3 development environment (XAE).
2. Open an existing TwinCAT 3 project or create a new project.

TF3800, TF3810 Version: 1.6.4
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3. If you want to activate the license for a remote device, set the desired target system. To do this, select

the target system from the Choose Target System drop-

down list in the toolbar.

= The licensing settings always refer to the selected target system. When the project is activated on
the target system, the corresponding TwinCAT 3 licenses are automatically copied to this system.

4. In the Solution Explorer, double-click License in the SYSTEM subtree.

Solution Explorer * 0 X

@ o-a|s =
Search Solution Explorer (Ctrl+0) P

m Solution TwinCAT SampleProject’ (1 project)
4 Iii TwinCAT SampleProject
4 || SYSTEM
¥ License
b @) Real-Time
b B Tasks
gfs Routes
215 Type System
|88 TcCOM Objects

= The TwinCAT 3 license manager opens.

5. Open the Manage Licenses tab. In the Add License column, check the check box for the license you
want to add to your project (e.g. "TF4100 TC3 Controller Toolbox").

6.

Order Information (Funtime) Manage Licenses  Project Licenses

] Disable automatic detection of required licenses for project

Online Licenses

Order Mo License

TF3601 TC3 Condition Menitoring Level 2
TF3650 TC3 Power Monitoring

TF2620 TC3 Filter

TF3200 TC3 Machine Learning Inference Engine
TF3210 TC3 Meural Metwork Inference Engine
TF3900 TC3 Solar-Position-Algorithm

TF4100 TC3 Controller Toolbox

TR0 TC3 Temperature-Controller

TR4500 TC3 Speech

Open the Order Information (Runtime) tab.

|Add License
I_ cpu license

I_ cpu license
I_ cpu license
I_ cpu license
I_ cpu license
I_ cpu license
I_ cpu license
I_ cpu license

= In the tabular overview of licenses, the previously selected license is displayed with the status

“missing”.

14
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7. Click 7-Day Trial License... to activate the 7-day trial license.

Order Information (Runtime) ~ Manage Licenses  Project Licenses  Orline Licenses

License Device Target (Hardware |1d) ~
System Id: Platform:
2DB25408-B4C0-810F-5488-6A305B45EF 15 | other (31)

License Request

Provider: Beckhoff Automation w Generate File. ..
License |d: | Customer Id:
Comment: |
License Activation
7 Days Tral License... I License Response File...

= A dialog box opens, prompting you to enter the security code displayed in the dialog.

Enter Security Code *

Fleaze type the following 5 characters: k.

| Ke8T4 |

8. Enter the code exactly as it is displayed and confirm the entry.

9. Confirm the subsequent dialog, which indicates the successful activation.

= In the tabular overview of licenses, the license status now indicates the expiry date of the license.

10. Restart the TwinCAT system.
= The 7-day trial version is enabled.

TF3800, TF3810 Version: 1.6.4
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4 Quick start

Convert model (optional)

An ML description file (KerasMLPExample_cos.XML) is provided in the ZIP of the https://
infosys.beckhoff.com/content/1033/tf38x0_tc3_ML_NN_Inference Engine/Resources/8746884875/.zip. This
file can be used directly for integration into TwinCAT, or optionally converted to a binary format (BML).

The method of converting a description file is shown below by way of an example. The same procedure also
applies to the more usual case where an ONNX file is to be converted.

v" The Machine Learning Model Manager [»_64] is open.
Menu bar: (Extensions)* > TwinCAT > Machine Learning > Machine Learning Model Manager
* Only with Visual Studio 2019

. Use the Convert tool.

. Click Select file and select the file KerasMLPExample _cos.XML.
. In the drop-down menu, select Convert to *.bml

. Click Convert files.

= The corresponding BML appears under <TwinCATpath>\Functions\TF38xx-Machine-
Learning\ConvertToolFiles

A W N -

d You can change the default path for saving converted ML description files in the Machine Learning
1 Model Manager with Select Target Path. The change is persistent.

@ You can also convert several files at once by means of multi-selection.
The converted files are saved by default on the XAE system in the folder
1 <TwinCATpath>\Functions\TF38xx-Machine-Learning\ConvertToolFiles.

Integration in TwinCAT via the PLC API

The procedure to load the ML description file into TwinCAT and to run it cyclically is described below. The
PLC API [» 80] is dealt with first.

 First of all, create a TwinCAT project and a PLC project
* Add the PLC library Tc3_MLL under the References node

In the Declaration, please create an instance of FB_MlIIPrediction. In this simple case, the description file
contains an MLP with one input and one output of the type FP32; accordingly, variables for input and output
are created as REAL. A more generally accepted possibility to handle the inputs and outputs can be found in

the Samples for PLC API [» 93].

In addition, create a string variable that contains the file name incl. path to the ML description file (path on
the target system). Copy the corresponding file to this location on the target system (FTP, RDP, Shared
Folder, ...).

Further information on this step can be found here [P 75].

Path of the description file on the target system

Pay attention to the settings of the File Writer and the writing rights on the target system.

PROGRAM MAIN
VAR

fbPredict : FB MllPrediction; // ML Interface
nInputDim, nOutputDim : UDINT := 1;
fDatalIn, fDataOut : REAL;
sModelName : T _MaxString := 'C:/TwinCAT/3.1/Boot/ML_Boot/KerasMLPExample cos.xml';
hrErrorCode : HRESULT;
bLoadModel : BOOL;
nState : INT := 0;
END VAR

16 Version: 1.6.4 TF3800, TF3810
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In the Implementation part you create a state machine, for example, which enables you to switch between
the Idle state, Config state, Predict state and Error state.

In the first state you initially wait for the command to load a description file. Subsequently, the Configure
method [P_84] of the fbPredict function block is called until TRUE is returned. This is present for one
cycle and means that the configuration has been completed. A check is then done to establish whether an
error occurred. If no error occurred, the state is switched to the next state, which is the Predict state. The
state machine remains in the Predict state as long as no error occurs or a (new) model is to be loaded.

CASE nState OF
0: // idle state

IF bLoadModel THEN
bLoadModel := FALSE;
nState := 10;

END IF

10: // Config state

fbPredict.stPredictionParameter.M1lModelFilepath := sModelName; // provide model path and name

IF fbPredict.Configure() THEN // load model
IF fbPredict.bError THEN

nState := 999;
hrErrorCode := fbPredict.hrErrorCode;
ELSE // no error -> proceed to predict state
nState := 20;
END IF
END IF

20: // Predict state
fbPredict.Predict (

pDataInp := ADR (fDataln),

nDataInpDim := nInputDim,

fmtDataInpType := ETcMllDataType.E MLLDT FP32 REAL,
pDataOut := ADR (fDatalOut),

nDataOutDim := nOutputDim,

fmtDataOutType := ETcMllDataType.E MLLDT FP32 REAL,
nEngineId := 0,

nConcurrencyId := 0);

IF fbPredict.bError THEN // error handling

nState := 999;
hrErrorCode := fbPredict.hrErrorCode;
ELSIF bLoadModel THEN // load (updated) model
bLoadModel := FALSE;
nState := 10;
END IF;

999: // Error state
// add error handling here
END_CASE

The Predict method [» 89] of fbPredict is used in the Predict state. This runs the loaded model. The
method is informed of the input variables via the first three parameters of the method — pointer to a PLC
variable, number of inputs and associated data type. The same is to be specified for the output variables
(parameters 4 to 6). nEngineId and nConcurrencyId are not required in this simple example and are
always transferred with the value zero. Details for these parameters can be found in the samples Detailed
example [» 93] and Parallel, non-blocking access to an inference module [» 93].

Before activating the project on a target, you must select the TF3810 license manually on the Manage
Licenses tab under System>License in the project tree, as you wish to load a multi-layer perceptron (MLP).

You can now activate the configuration. Log into the PLC and start the program. By setting the bL.oadModel
variable in the online view to TRUE, the model is now loaded and begins with the prediction. You can
manipulate the input variable fDataIn and view the results in the output fDataout. The multi-layer
perceptron loaded approximately maps a cosine function in the input range of [-pi, pi] to the value range
[-1,1]. Outside of the range [-pi, pi] the function increasingly diverges from the cosine function.

TF3800, TF3810 Version: 1.6.4 17
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TwinCAT_Project5.Untitled LMAIN

Expression Type Value
+ @ fbPredict FE_MIPrediction
& nlnputDim LDIMNT 1
@ nOutputDim UDINT 1
@ fDataln REAL 314
@ fDataOut REAL -1.018022
@ sModelName T_MaxString 'CyTwinCATS3.1...
@ hrErrorCode HRESULT 1600000000
# blLoadMode BOCL
@ nState INT 20

You can download the sample described above here [» 93].

Incorporation of a model by means of TcCOM object

This section deals with the execution of machine learning models by means of a prepared TcCOM object. A

detailed description can be found here [P _78]. This interface offers a simple and clear way of loading
models, executing them in real-time and generating appropriate links in your own application by means of
the process image.

Generate a prepared TcCOM object TcMachineLearningModelCycal
1. To do this, select the node TcCOM Objects with the right mouse button and select Add New Item...

Insert TeCom Object

Search: | M arne: |I:I|:uiect1 (TcMachineleamingM odelCycal) | | oE |
Type: EI--@ Beckhaff Autarmation GrabH Cancel
#-f= NC Obijects
(|l | dpplication Runtime o "
EIE Machine Leaming Model Multiple: |: e

Tokachinelearningtdodel [Module]

Tk achinelearningtdodelCocal [Module]
@ TcFilter |nzert Instance. ..

G-l Analytics
@ External Time Provider Feload
-l lat

G-[E8] TeloEth Modules

File: C:ATwinCATS3 1A Confighkd odulesh T ch achinel eamingh odel. trnc

Under Tasks, generate a new TwinCAT task and assign this task context to the newly generated
instance of TcMachineLearningModelCycal
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2. To do this, open the Context tab of the generated object.
3. Select your generated task in the drop-down menu.

= The instance of TcMachineLearningModelCycal has a tab called ML model configuration where you
can load the description file of the ML algorithm (XML or BML) and the available data types for the inputs
and outputs of the selected model are then displayed.

» The file does not have to be on the target system. It can be selected from the development system and
is then loaded to the target system on activating the configuration.

o A distinction is made between preferred and supported data types. The only difference is that a
conversion of the data type takes place at runtime if a non-preferred type is selected.
This may lead to slight losses in performance when using non-preferred data types.

» The data types for inputs and outputs are initially set automatically to the preferred data types. The
process image of the selected model is created by clicking Generate 10. Accordingly, by loading
KerasMLPExample_cos.xml, you get a process image with an input of the type REAL and an output of
the type REAL.

L - To o+ ol . N
w & | ©-a | + E Object Context Parameter {Init) Data Area  Intefaces Intedace Pointer ML model configuration
Search Solution Explorer (Ctrl+0) P

1] Solution ‘TwinCAT Project5' (2 projects)
3 ﬂ TwinCAT Measurement Project]
4 ol TwinCAT Projects
4 [ svSTEM
1 License
b @ Real-Time

b B Tasks

= Routes |Select input type: | |Select output type: |

Select a ML model file to load for the TeCOM object

|ige\ Te3MLStA\ML Training\Models\KerasMLPExample_cosxml| | Select file

¥1= Type System |preferred_FP3Z_REﬁL V| |preferred_FP32_HEAL Vl
4[] TeCOM Objects
4 @ Object (TcMachinelearningModel Cycal)
4 Inputs Generate 10 [ Generate 10 as amay
#1 MLinput_0
4« [ Outputs
E- MLOutput 0

Activating the project on the target

1. Before activating the project on a target, you must select the TF3810 license manually on the Manage
Licenses tab under System>License in the project tree, as you wish to load a multi-layer perceptron
(MLP).

2. Activate the configuration.

= You can now test the model by manually writing at the input.

@ o8| L= Variable Flags  Onine
Search Solution Explorer (Ctrl+a) P~
Value: 3.0999939 |
R Solution ‘TwinCAT Project5' (2 projects)
b [l TwinCAT Messurement Project] New Vaue Force... Release Viite...
4 il TwinCAT Projects . Set Value Dialog P
4 [ sYSTEM Comment:
¥ License Dee EX | o]
b @ Real-Time
b Tasks Hex 0x00000003 Cancel
gfe Routes Float: 4203035445
215 Type System
4 [{ TcCOM Objects
4[] Object! (TeMachineLearningModelCycal) 37 Boot 0 1 Hex Edit.
4 Inputs
—| B 03 0000 00
%1 MLinput 0 q = ‘ B ]
4 [ Outputs Bit Gize: Q1 08 Q1 @32 O O7
E- MLOutput_0 B
[ moTon
a PLC
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5 Machine Learning Models and file formats

This chapter provides an overview of supported Machine Learning models [»_20] and lists guiding principles
for the selection of a suitable model [»_58]. In addition, it contains for each algorithm an example-based
description of how you can export trained models from a Python environment as an ONNX file [»_60]. The

exported ONNX file must be converted into a TwinCAT-specific XML or BML file [P 63]. For this purpose,
several interfaces to a converter are available (CLI, API and GUI), with which the file management process
can be integrated into your existing software landscapes.

5.1 Machine learning models supported

The table below lists all supported model types, including the required license and software version.
Selecting a model

An introduction explaining which criteria you should consider when selecting a model can be found here:
Machine Learning Cheat Sheet: selection of models [P 58].

ONNX export for supported model types

Python examples of the ONNX export from different frameworks are given for all supported model types in
the section Samples of ONNX export [» 61].

Required license for supported model types

The required TwinCAT license differs depending on the model type that is loaded into the Machine Learning
Runtime. Note that the TF3810 license contains the TF3800 license, which means that if the TF3810 license
is valid, all models that require a TF3800 or TF3810 license can be loaded.

Supported models

For licensing, refer also to: System requirements [P_10].

Model type License Available from setup version
Support vector machine [» 271 TF3800 3.1.42.0
(SVM)

Principal Component Analysis TF3800 3.1.57.0
[» 341 (PCA)

k-Means [» 33] TF3800 3.1.57.0
Random Forest [P 43] TF3800 3.1.58.0
Multi-layer perceptron [»_20] TF3810 3.1.42.0
(MLP)

Decision Tree [P 36] TF3800 3.1.62.0
Extra Tree [» 38] TF3800 3.1.62.0
Extra Trees [P 41] TF3800 3.1.62.0
Gradient Boosting [P 46] TF3800 3.1.62.0
Hist Gradient Boosting [» 481 TF3800 3.1.62.0
XGBoost [P 501 TF3800 3.1.62.0
LightGBM [» 54] TF3800 3.1.62.0
511 Multi-layer perceptron

A multi-layer perceptron (MLP) can be used both for classification and for regression [»_60]. The basic idea
of an MLP is the linking of the smallest units — so-called neurons — in a network. Each neuron takes up
information from previous neurons or directly via model inputs and processes it. A directional flow of
information takes place through this network from inputs to outputs.
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A neuron processes its inputs x as a weighted sum plus an ordinate value and transforms the intermediate
result with an activation function.

Y= faci,(wx + 'h‘.-‘g)

Neurons are usually arranged in layers, which are then linked one after the other. If a network has more than
one layer between inputs and outputs, then it is referred to as a multi-layer perceptron.

The structure is illustrated in the figure below.

* Input layer: Has no neurons of its own. Serves as an input layer and defines the number and data type
of the inputs.

» Hidden layer: Layer with its own neurons. The layer is characterized by the number of neurons as well
as the selected activation function. Any number of hidden layers can be layered one after the other.

« Output layer: Layer with its own neurons. The number of neurons and their activation function are
oriented to the application to be implemented.

Input Output

signals signals

Input layer Hidden layer Hidden layer Output layer

Supported properties
ONNX support

The following ONNX operators are supported:

+ MatMul (matrix multiplication) followed by ADD (add)
* GEMM (general matrix multiplication)

In addition, the following activation functions are supported:

Activation function Description

tanh Hyperbolic tangent (-1.1)

sigmoid Sigmoid function — an exponential function (0.1)

softmax Softmax — a normalized exponential function — often used for classification
(0.1)

sine Sine function (-1.1)

cosine Cosine function (-1.1)

relu "Rectifier" — positive portion is linear — good learning properties in case of
deep networks (0, inf)

abs Absolute value of the input (0, inf)

linear/id Linear identity — simple linear function f(x) = x (-inf, inf)

exp A simple exponential function e”(x) (0, inf)

logsoftmax Logarithm of softmax — sometimes more efficient than softmax in the
calculation (-inf, inf)

sign Sign function (-1.1)

softplus Sometimes better than relu due to the differentiability (0, inf)

softsign Conditionally better convergence behavior than tanh (-1.1)

Samples of the ONNX support for MLPs from Pytorch, Keras and Scikit-learn can be found here: ONNX
export of an MLP [» 22].

Supported data types
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A distinction must be made between "supported datatype" and "preferred datatype". The preferred datatype
corresponds to the precision of the execution engine.

The preferred datatype is floating point 32 (E_MLLDT_FP32-REAL).

When using a supported datatype, an efficient type conversion automatically takes place in the library. Slight
losses of performance can occur due to the type conversion.

A list of the supported datatypes can be found in ETcMIIDataType [»_80].

Further comments

There are no limits on the software side with regard to the number of layers or the number of neurons. With
regard to the calculation duration and memory requirement, the limits of the employed hardware are to be
observed.

5111 ONNX export of an MLP

® Download Python samples
1 A Zip archive containing all samples can be found here: Samples of ONNX export [» 61]

MLP Regressor with PyTorch

import torch
import numpy as np

input dim = 3

output dim = 5

n_samples = 100

dummy input = np.random.random((n_samples, input dim))
dummy output = np.random.random((n_samples, output dim))

tensor_in = torch.FloatTensor (dummy input)

tensor out = torch.FloatTensor (dummy output)

train dataset = torch.utils.data.TensorDataset (tensor in, tensor out)

train loader = torch.utils.data.DatalLoader (train dataset, shuffle=True, batch size=32)

class MLP_Net (torch.nn.Module) :
def init (self):

super (). init ()
self.fcl = torch.nn.Linear (input dim, 10)
self.fc2 = torch.nn.Linear (10, output dim)

def forward(self, x):
x = torch.nn.functional.relu(self.fcl (x))
x = torch.sigmoid(self.fc2 (x))
return x
mlp net = MLP Net ()
optimizer = torch.optim.Adam(mlp net.parameters(), lr =0.001)
n_epochs = 5
for epoch in range (n_epochs) :
for batch in train loader:
input, output = batch
mlp net.zero grad()
pred out = mlp net (input)
criterion = torch.nn.MSELoss ()
loss = criterion(pred out, output)
loss.backward ()
optimizer.step ()
onnx file = 'pytorch mlp.onnx'
tensor_ input_size = torch.FloatTensor (np.random.random( (1, input_dim))) # First dimension must be 1
torch.onnx.export (mlp net, tensor input size, onnx file, verbose=True)
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onnxsGemm_0

Sigmoid

MLP Regressor with Keras

import tensorflow as tf
import numpy as np
import tf2onnx

input dim = 3
output dim = 5
n_samples = 100

MODEL PROPERTIES

format  OMNMNX VT
producer  pytorch 1.13.0

imports  al.onnx w14

INPUTS

onnx:Gemm_0  name: onnxz:Gemm_0

type: float3z2[1,3]

QUTPUTS

8 name: g

type: float3z[1,5]

dummy input = np.random.random((n_samples, input dim,))
dummy output = np.random.random((n_samples, output dim))

model = tf.keras.Sequential ()

model.add (tf.keras.layers.Dense (5, input shape = (input dim,), activation=tf.keras.activations.relu,

use bias = True))

model.add (tf.keras.layers.Dense (output dim, activation='sigmoid'))

model.build ()
model.summary ()

learning rate = 0.001

loss = 'mean_squared_error'

optimizer = tf.keras.optimizers.Adamax (lr=learning rate)

model.compile (optimizer=optimizer,
model.fit (x=dummy input, y=dummy output, batch size=32 ,epochs=5,verbose=1,

filename = 'tf keras mlp'

loss=loss)

onnx_model, = tf2onnx.convert.from keras (model)

with open(fifename+'.onnx','wb') as f:
f.write (onnx model.SerializeToString())

shuffle=True)

TF3800, TF3810
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MODEL PROPERTIES X

format  OMNX V7
producer  tfZonnx 1.13.0 2c1db5

unk_6x3

imports  ai.onnx w13

al.onmeml vz

description  converted from sequential

Mathiul

INPUTS

dense_input  name: dense_input

type: float32[unk_ 5,3]
OUTPUTS

dense_1  name: dense_1

Mathiul

Add
5y

type: float32[unk__7,5]

Sigmoid

unk_T=5

dense_1

MLP Regressor with Scikit-learn

import sklearn.neural network as skl
import numpy as np

input_dim = 3

output dim = 5

n_samples = 100

dummy input = np.random.random((n_samples,input dim))
dummy output = np.random.random((n_ samples,output dim))

model = skl.MLPRegressor (hidden layer sizes =(5), activation ='relu')
model.fit (dummy input,dummy output)

filename = 'skl relu reg'

from skl2onnx import convert sklearn

from skl2onnx.common.data types import FloatTensorType

initial type = [('float input',6 FloatTensorType ([None,input dim]))]

onx = convert sklearn(model,initial types=initial type)
with open(filename+'.onnx','wb') as f:
f.write(onx.SerializeToString())
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MODEL PROPERTIES X

format  OMMNX vE

float_input producer  skiZonnx 1.13

domain  ai.onnx

imports  ai.onnx v16

INPUTS

Mathul fleat_input  name: float_input

B {3=5}
type: float3z[?,3]

QUTPUTS

variable  name: variable

type: float3z[?,1]

Mathul

l variable l

MLP Classifier with Scikit-learn

import sklearn.neural network as skl

import numpy as np

import onnx

from skl2onnx import convert sklearn

from skl2onnx.common.data types import FloatTensorType

def modify onnx MLPClassifier (onnx MLPCLassifier):
""" Function to modify onnx model from MLPClassifier to make it suitable for TwinCAT Machine Lea
rning
The function removes unsupported nodes and uses the probability estimates of the classes as outp
ut for
the model.
The output of the modified onnx model is the same as the output of the predict proba() method fr
om
sklearn.neural network.MLPClassifier.
To get the class as an integer output either a binarization or an argmax function must be applie
d to the
model output.
# Delete nodes after last sigmoid/softmax layer
output node types = {'Sigmoid', 'Softmax'}
len onx init = len(onnx MLPCLassifier.graph.node)
erased node inputs = []
for idx, node in enumerate (reversed(onnx MLPCLassifier.graph.node)) :
if node.op_type in output node types:
idx_last node = len_onx_init - idx -1
break
else:
for idx, input in enumerate (node.input):
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erased node inputs.append (input)
onnx MLPCLassifier.graph.node.remove (node)
# Get output dimension and clean initializers
onnx MLPCLassifier.graph.node[idx last node-1]

second last node =
for initializer in

if initializer.

output dim

if initializer.

onnx MLPCLassifier.graph.initializer:
name in second last node.input:

= initializer.dims[1]

name in erased node inputs:

onnx MLPCLassifier.graph.initializer.remove (initializer)

# Erase original outputs and create new output
for output in reversed(onnx MLPCLassifier.graph.output) :
onnx MLPCLassifier.graph.output.remove (output)

name new output = "probabilities"
newOutput =

one, output dim))

onnx.helper.make tensor value info(name new output,

onnx MLPCLassifier.graph.output.append (newOutput)

# Create new node and connect to new output
onnx MLPCLassifier.graph.node[idx last node].output

last node output =
new_node =

onnx.helper.make node ("Identity",

last _node output,

onnx MLPCLassifier.graph.node.append(new node)

return onnx MLPCLassifier

input dim = 3

output dim = 2

n_samples = 100
dummy input =
dummy output =
model =
model.fit (dummy input,dummy output)

np.random.random( (n_samples,input dim))
np.random.randint (2, size=(n_samples, output dim))
skl.MLPClassifier (activation ='relu', hidden layer sizes=(5))

filename = 'skl mlp clf'
initial type = [('float input',6 FloatTensorType ([None,input dim])) ]
onx = convert sklearn(model,initial types=initial type,

onx = modify onnx MLPClassifier (onx)
with open (filename+'.onnx','wb') as f:
f.write(onx.SerializeToString())

B¢

MODEL PROPERTIES

options={type (model) :

onnx.TensorProto.

[name new output],

{'zipmap"':

FLOAT, shape= (N

"Identity Out"

False}})

format  OMNMXvE
float_input producer  sklZonnx 1.13
domain  ai.onnx
imports  ai.onnx vi4
ai.onnx.ml vi
INPUTS
float_input  name: float_input
type: float3z[?,3]
QUTPUTS
probabilities  name: probabilities
type: float3z[?,2]
Mathiul
Add
Sigmoid
Identity
probabilities
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Observe the function modify_onnx_MLPClassifier. This modifies the lower part of the ONNX graph so that
only operators supported by the TwinCAT Neural Network Inference Engine are used. Without this

modification, the operators shown here will be generated (depending on the dimensionality of the problem).
Only the area with the green border is supported.

float_input

MatMul

5.1.2

ArrayFeatureExtractor

Reshape

Support vector machine

MatMul

B (3x5)

MatMul

Sigmoid

r

ArrayFeatureExtractor

Reshape

float_input

l o e e e e e e e e e =

=2

probabilities

probabilities

Binarizer

A support vector machine (SVM) can be used both for classification and for regression [P 60]. The SVM is a
frequently used tool in particular with regard to classification tasks.

The fundamental goal of an SVM is to find a hyperplane in an N-dimensional space, wherein the distance
between the closest data point and the plane is maximized. A hyperplane can only separate the space
linearly (also called linear SVM). A non-linear separation is also possible by means of a so-called kernel trick
(also called kernel SVM). The N-dimensional space is transformed into a higher-dimensional space here. A
linear separation with a hyperplane is possible in an accordingly higher-dimensional space.

If a distinction needs to be made between several classes, several support vector machines are generated

internally and classification takes place by means of comparisons. A one-class SVM can also be trained and

used for anomaly detection.

Supported properties
ONNX support

The following ONNX operators are supported:

* SVMRegressor
+ SVMClassifier

TF3800, TF3810
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Supported kernel functions are listed in the following table:

Kernel function Description
Linear

K(x1,x2) = X}-‘Xg

Radial Basis Function (RBF) .
K (x1%2) = exp(—7 [x1 —x2[%)

Sigmoid
K(x1,x2) = t':11'11'1((_1}::—11"}.;2 +b)

Polynomial
K(x1,%2) = (x] X2 + 1)?

For samples of the export of SVMs as ONNX, see ONNX export of an SVM [» 28].

@® Classification limitation

With classification models, only the output of the labels is mapped in the PLC. The scores/
probabilities are not available in the PLC.

Supported data types

A distinction must be made between "supported datatype" and "preferred datatype". The preferred datatype
corresponds to the precision of the execution engine.

The preferred datatype is floating point 64 (E_MLLDT_FP64-LREAL).

When using a supported datatype, an efficient type conversion automatically takes place in the library. Slight
losses of performance can occur due to the type conversion.

A list of the supported datatypes can be found in ETcMIIDataType [»_80].

5.1.2.1 ONNX export of a SVM

® Download Python samples
1 A Zip archive containing all samples can be found here: Samples of ONNX export [»_61]

SVM Regressor with Scikit-learn

from sklearn.svm import SVR
from sklZ2onnx import convert sklearn
from skl2onnx.common.data types import FloatTensorType

X
Y

model = SVR(kernel='rbf',gamma=10)
model.fit (X,Y)

out = model.predict (X)

input type = [('float input', FloatTensorType ([None,len(X[0])]))]
onnx filename = 'svr-rbf.onnx'

onx = convert sklearn(model,initial types=input type)

with open(onnx filename, "wb") as f:

f.write(onx.SerializeToString())
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MODEL PROPERTIES

format

float_input producer

domain
k2
imports
SVMRegressor
INPUTS
7wl float_input
variable
OUTPUTS
variable

SVM

Classifier with Scikit-learn

One-class SVM

from
from
from
from

n_sam
input

X,
e, ra
svm =
svm. £
initi

onnx_|

filen

with
f

f.clo

sklearn.datasets import make blobs

sklearn.svm import OneClassSVM

skl2onnx import convert sklearn
skl2onnx.common.data types import FloatTensorType

ples = 150

~dim = 3

= make blobs(n_samples=n_samples, n_ features=input dim,

centers=1,

OMNNX vE

sklzonnx 1.10.2

ai.onnx

al.onnx v

al.onnemi v

name: float_input

type: float3z[?,2]

name: variable

type: float3z[?,1]

ndom_state=42, )

OneClassSVM (kernel="rbf', nu=0.3)

it (X)

al type = [('float input', FloatTensorType ([None, X.shape[l]]))]
model = convert sklearn(svm, initial types=initial type)

ame = 'skl oneclass_svm'

open (filename + '.onnx', "wb") as f:

.write( onnx model.SerializeToString())

se ()

cluster std=0.3,

shuffle=Tru

TF3800, TF3810 Version: 1.6.4
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MODEL PROPERTIES X

format  ONNX v8

producer  skl2onnx 1.13

float_input

domain  ai.onnx

imports  ai.onnx v9

ai.onnxml v1

INPUTS
SVMRegressor

float_input  name: float_input

type: float32[?,3]

OUTPUTS
label  name: label
type: int64[ ?,1]
scores
scores name: scores
type: float32[?,1]
Binary classification
from sklearn.svm import SVC
import numpy as np
# random dataset
n_samples = 150
input_dim = 4
n_classes = 2 # binary classification
rand in = np.random.random((n_ samples, input dim,))
rand singleout multiclass = np.random.randint (n classes, size=(n_samples, 1))
X = rand in
y = rand singleout multiclass
# train SvVC
clr = SVC(kernel='linear', gamma=10) # decision function shape option is ignored for binary classifi

cation
clr.fit (X, vy)

# Convert into ONNX format
from skl2onnx import convert sklearn
from skl2onnx.common.data types import FloatTensorType

initial type = [('float input', FloatTensorType ([None, X.shape[l]]))]

# # Zipmap should be always turned off as it's not implemented in TF3800
onx = convert sklearn(clr, initial types=initial type, options={type(clr): {'zipmap':False}})
with open("svc random.onnx", "wb") as f:

f.write(onx.SerializeToString())
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MODEL PROPERTIES X
format = ONMX w8
producer  ski2onnx 1.13
domain  ai.onnx
imports  ai.onnx v9
float_input zlannml vi
INPUTS
flogt_input  name: float_input
type: float32[?,4]
SVMClassifier
OUTPUTS
abel  name: label
type: intea[ ?]
probabilities  name: probabilities
type: float32[?,2]
probabilities
Multi-class classification
from sklearn.datasets import load iris
from sklearn.model selection import train test split
from sklearn.svm import SVC
# data set
iris = load iris()
X, y = iris.data, iris.target
X train, X test, y train, y test = train test split(X, y)
# train SVC, note that decision function shape ovo is mandatory
clr = SVC(kernel='linear', gamma=10,decision function shape='ovo')
clr.fit (X train, y train)
# Convert into ONNX format
from skl2onnx import convert sklearn
from sklZ2onnx.common.data types import FloatTensorType
initial type = [('float input', FloatTensorType ([None, 4]))]
onx = convert sklearn(clr, initial types=initial type)
with open("svc_iris.onnx", "wb") as f:
f.write(onx.SerializeToString())
@® Observe the shape of the ONNX graph!
The decision_function_shape “ovo” option must be used with multi-class SVC models so that an
ONNX graph that is compatible with TF3800 is generated.
Invalid ONNX graph
The following example shows the invalid ONNX graph: decision_function_shape “ovr”:
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float_input

SVMClassifier

ArrayFeatureExtractor ArrayFeatureExtractor ArrayFeatureExtractor

ArrayFeatureExtractor ArrayFeatureExtractor ArrayFeatureExtractor

7
Valid ONNX graph
The following example shows the valid ONNX graph: decision_function_shape “ovo”:

MODEL PROPERTIES X

format  OMNMX v
producer  skizonnx 1.13
domain  ai.onnx

imports  ai.onmuml v

float_input zhonmid

INPUTS

floal_input  name: float_input
type: float32[?,4]

SVMClassifier
OQUTPUTS

abel name: label

type: inteaf?]

probabilities  name: probabilities

type: float32[2,3]

probabilities
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51.3 k-Means

The k-Means algorithm is one of the unsupervised learning methods and is used for cluster analysis [»_60].
k-Means attempts to divide a random sample into k-clusters of the same variance; however, the number of
clusters k must be known in advance. The algorithm scales well to a large number of samples and is one of
the most widely used clustering methods.

Unsupervised means that the k-Means does not need to be trained with annotated (labeled) data. This
property makes the algorithm very popular. As soon as the training has been executed and the clusters have
been defined, new data can be assigned to the already known clusters in the inference.

Supported properties
ONNX support

So far, only export from Scikit-learn is supported. The specification of the ONNX Custom Attributes Key:
“sklearn_model” value: “KMeans” is necessary for k-Means models so that the conversion step works in XML
and BML.

® Restriction

With classification models, only the output of the labels is mapped in the PLC. The scores/
probabilities are not available in the PLC.

An example of the export of an ONNX file from Scikit-learn for use in TwinCAT can be found here: ONNX
export of a k-Means [P 33].

Supported data types

A distinction must be made between "supported datatype" and "preferred datatype". The preferred datatype
corresponds to the precision of the execution engine.

The preferred datatype is floating point 64 (E_MLLDT_FP64-LREAL).

When using a supported datatype, an efficient type conversion automatically takes place in the library. Slight
losses of performance can occur due to the type conversion.

A list of the supported datatypes can be found in ETcMIIDataType [»_80].

5.1.3.1 ONNX export of a k-Means

® Download Python samples
1 A Zip archive containing all samples can be found here: Samples of ONNX export [» 61]

k-Means with Scikit-learn

from sklearn.datasets import make blobs

from sklearn.cluster import KMeans

from skl2onnx import convert sklearn

from skl2onnx.common.data types import FloatTensorType

# Generate data for clustering: num of samples, dimensions, num of clusters

X, y, centers = make blobs(n_samples=50, n_ features=3, centers=5, cluster std=0.5, shuffle=True, ran
dom state=42, return_centers=True)

num_features = X.shape[l]

num_clusters = centers.shape[0]

# Define and train K-Means model

km = KMeans (n clusters=num clusters, init='k-means+

+', n_init=10, max iter=500, tol=le-04, random state=42)
km. fit (X)

y _km = km.predict (X)

# Export model as ONNX
out_onnx = "kmeans.onnx"

initial type = [('float input', FloatTensorType ([None, num features]))]
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onnx model = convert sklearn(km, initial types=initial type)

# for k-means models this meta info is mandatory. Otherwise convert process to TwinCAT-
specific format will fail!

meta = onnx model.metadata props.add()
meta.key = "sklearn model"
meta.value = "KMeans"

with open(out onnx, "wb") as f:
f.write( onnx model.SerializeToString())

According to our level of knowledge, only Scikit-learn with skl2onnx is currently capable of converting a k-
Means to ONNX. For this reason, the description is limited to that.

® ONNX Custom Attributes necessary

The specification of the Custom Attribute "sklearn_model" and "KMeans" is necessary for k-means
models, so that the conversion step in Beckhoff XML and Beckhoff BML works.

File Edit View Help
E®Q MODEL PROPERTIES X

format  ONNX v8

producer  sklZonnx 1.10.2

float_input

domain  ai.onnx
imports  ai.onnx vi4
sklearn_model  KMeans

INPUTS

float_input  name: float_input

type: float32[?,3]

OUTPUTS
label  name: label
type: int64[?]

scores name: scores

type: float32[?,5]

7x5

scores

5.1.4 Principal Component Analysis

Principal Component Analysis (PCA) calculates so-called principal components with the help of which one
can rotate the coordinate system of a given data set in such a way that the variance of the data, i.e. its
information content, is maximized along the new principal axes. The covariance matrix of the transformed
data is diagonalized and the order of principal components is sorted so that the first principal component
carries the largest information portion of the data set, the second then carries the second largest information
portion, and so on.

The latter principal components often contribute little information to the data set, which means that they can
be ignored. As a result, the parameter space is reduced with the least possible loss of information
(Dimension reduction [P _60]). The dimension reduction with PCA is often used for preprocessing prior to the
cluster analysis or a classification. The PCA can also be used for anomaly detection [P_60] by reducing a
large space to a few principal components and determining limit values for the important principal
components “by hand”.

Supported properties
ONNX support
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Supported ONNX operators:

e Sub
e MatMul

A sample showing how a PCA for dimension reduction can be exported from Scikit-learn and used in
TwinCAT can be found here: ONNX export of a PCA [» 35].

Supported data types

A distinction must be made between "supported datatype" and "preferred datatype". The preferred datatype
corresponds to the precision of the execution engine.

The preferred datatype is floating point 64 (E_MLLDT_FP64-LREAL).

When using a supported datatype, an efficient type conversion automatically takes place in the library. Slight
losses of performance can occur due to the type conversion.

A list of the supported datatypes can be found in ETcMIIDataType [»_80].

5.1.41 ONNX export of a PCA

® Download Python samples
1 A Zip archive containing all samples can be found here: Samples of ONNX export [P 61]

PCA with Scikit-learn

import numpy as np

from sklearn.decomposition import PCA

from skl2onnx import convert sklearn

from skl2onnx.common.data types import FloatTensorType, Int64TensorType

#Generate imput data types
rng = np.random.RandomState (1)
X = np.dot (rng.rand (4, 3), rng.randn(3, 300)).T

# Dimensionality reduction with PCA

pca = PCA(n_components=2)

pca.fit (X)

X pca = pca.transform(X)

print ("original shape: ", X.shape)
print ("transformed shape:", X pca.shape)

#Convert model to ONNX

initial type = [('float input', FloatTensorType ([None, X.shape[l]]))]
model onnx = convert sklearn(pca, initial types=initial type)
meta = model onnx.metadata props.add()

with open ("pca.onnx", "wb") as f:
f.write( model onnx.SerializeToString())

According to our level of knowledge, only Scikit-learn with skl2onnx is currently capable of converting a PCA
to ONNX. For this reason, the description is limited to that.
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MODEL PROPERTIES X

format  OMNMX v8

float_input producer  sklZonnx 1.10.2

domain  ai.onnx

imports  ai.onnx v13

INPUTS

floatinput  name: float_input

type: float32[?,4]

QUTPUTS

variable

varisble  name: variable

type float3z2[?,2]

51.5 Decision Tree

A Decision Tree is an ML model that uses a tree-like structure to make predictions. It is a simple, but
powerful tool for the prediction of values (regression) or classes (classification) [»_60] on the basis of several
inputs, which works by dividing the data into smaller and smaller subsets until a final decision is made. The
structure of the tree enables a simple interpretation and visualization of the model.

Supported properties

ONNX support
» TreeEnsambleClassifier
* TreeEnsambleRegressor

Samples of the export of Decision Tree models can be found here: ONNX export of a Decision Tree [P_36].

@® Classification limitation

With classification models, only the output of the labels is mapped in the PLC. The scores/
probabilities are not available in the PLC.

Supported data types

A distinction must be made between "supported datatype" and "preferred datatype". The preferred datatype
corresponds to the precision of the execution engine.

The preferred datatype is floating point 64 (E_MLLDT_FP64-LREAL).

When using a supported datatype, an efficient type conversion automatically takes place in the library. Slight
losses of performance can occur due to the type conversion.

A list of the supported datatypes can be found in ETcMIIDataType [»_80].

5.1.5.1 ONNX export of a Decision Tree

® Download Python samples
1 A Zip archive containing all samples can be found here: Samples of ONNX export [» 61]
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Decision Tree Regressor with Scikit-learn

from sklearn.datasets import make regression

from sklearn.tree import DecisionTreeRegressor

from skl2onnx import convert sklearn

from skl2onnx.common.data types import FloatTensorType

# # Generate data for regression
X, y = make regression(n samples=300, n features=10, n informative=10, n targets=1)

# # Construct Decision Tree-Model
model = DecisionTreeRegressor (criterion='squared error', splitter='best', max depth=None, min sample
s _split=2, min samples leaf=1)
model.fit (X,y)
# # Convert model to ONNX
onnxfile = 'decisiontree-regressor.onnx'
initial type = [('float input', FloatTensorType ([None, X.shape([1l]]))]
onnx model = convert sklearn(model, initial types=initial type, target opset=12)
# # Export to ONNX file
with open (onnxfile, "wb") as f:
f.write( onnx model.SerializeToString())

f.close()
exit ()
MODEL PROPERTIES X
format  OMNX T
producer  skiZonnx 1.13
domain  ai.onnx
imports  al.onmoml vl
alonnxvi2
INPUTS
float_input fioat_input  name: float_input
type: float32[ ?,18]
=10
OUTPUTS
W vanable  name: variable
Tat type: float3z[?,1]

variable

Decision Tree Classifier with Scikit-learn

from sklearn.datasets import load iris

from sklearn.model selection import train test split
from sklearn.tree import DecisionTreeClassifier

from sklZ2onnx import convert sklearn

from skl2onnx.common.data types import FloatTensorType

# # Load dataset
X, y = load iris(return X y = True)
# # Construct Decision Tree-Model
X _train, X test, y train, y test = train test split(X, y, test size = 0.1)
model = DecisionTreeClassifier(criterion='gini', splitter='best', max depth=None, min samples split=
2, min samples leaf=1)
model.fit (X train,y train)
# # Convert model to ONNX
onnxfile = 'decisiontree-classifier.onnx'
initial type = [('float input', FloatTensorType ([None, X.shape[1l]]))]
# # Zipmap should be always turned off as it's not implemented in TF3800
onnx _model = convert sklearn(model, initial types=initial type, options={type (model): {'zipmap':Fals
e}}, target opset=12)
# # Export to ONNX file
with open (onnxfile, "wb") as f:
f.write( onnx model.SerializeToString())
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f.close()
exit ()

MODEL PROPERTIES

format

producer

domain

imports

ONNX VT

sklZonnx 1.13

al.onnx

al.onn.mi vl

alonnx w12
INPUTS

float_input  name: float_input

type: float3z2[?,4]
QUTPUTS

abel  name: label

type: inted[?]

probabilities probabilities  name: probabilities

type: float3z2[?,3]

5.1.6 ExtraTree

An Extra Tree is the randomized variant of a Decision Tree [P_36]. It can also be used for the prediction of
values (regression) or classes (classification) [P 60].

Supported properties

ONNX support
» TreeEnsambleClassifier
» TreeEnsambleRegressor

Examples of the export of Extra Tree models can be found here: ONNX export of an Extra Tree [P 39]

@ Classification limitation

With classification models, only the output of the labels is mapped in the PLC. The scores/
probabilities are not available in the PLC.

Supported data types

A distinction must be made between "supported datatype" and "preferred datatype". The preferred datatype
corresponds to the precision of the execution engine.

The preferred datatype is floating point 64 (E_MLLDT_FP64-LREAL).

When using a supported datatype, an efficient type conversion automatically takes place in the library. Slight
losses of performance can occur due to the type conversion.

A list of the supported datatypes can be found in ETcMIIDataType [P_80].
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5.1.6.1 ONNX export of an Extra Tree

® Download Python samples
1 A Zip archive containing all samples can be found here: Samples of ONNX export [»_61]

Extra Tree Regressor with Scikit-learn

from sklearn.datasets import make regression

from sklearn.tree import ExtraTreeRegressor

from skl2onnx import convert sklearn

from skl2onnx.common.data types import FloatTensorType

# # Generate data for regression
X, y = make regression(n_samples=300, n_ features=10, n_informative=10, n_targets=1)

# # Construct Extra Tree-Model

model = ExtraTreeRegressor(criterion='squared error', splitter='random', max depth=None, min samples
_split=2, min samples leaf=1)

model.fit (X,y)

# # Convert model to ONNX

onnxfile = 'extratree-regressor.onnx'
initial type = [('float input', FloatTensorType ([None, X.shape[l]]))]
onnx model = convert sklearn(model, initial types=initial type, target opset=12)
# # Export to ONNX file
with open (onnxfile, "wb") as f:
f.write( onnx model.SerializeToString())
f.close()
exit ()

MODEL PROPERTIES X

format  OMNX T
producer  ski2onnx 1.13

domain  ai.onnx

imports  ai.onmoml vl

aionnxviz

INPUTS

fioat_input : i
float_input ost_inpu name: float_input

type: float3z[?,18]

%10

OUTPUTS
TreeEnsembleR = -
vanable  name: variable
Tx1 type: float3z[?,1]

variable

Extra Tree Classifier with Scikit-learn

from sklearn.datasets import load iris

from sklearn.model selection import train test split
from sklearn.tree import ExtraTreeClassifier

from skl2onnx import convert sklearn

from skl2onnx.common.data types import FloatTensorType

# # Load dataset

X, y = load_iris(return_ X y = True)

# # Construct Decision Tree-Model

X train, X test, y train, y test = train test split(X, y, test size = 0.1)

model = ExtraTreeClassifier(criterion='gini', splitter='random', max depth=None, min samples split=2
, min_samples_ leaf=1)

model.fit (X train,y train)
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# # Convert model to ONNX

onnxfile = 'extratree-classifier.onnx'

initial type = [('float input', FloatTensorType ([None, X.shape[l]]))]

# # Zipmap should be always turned off as it's not implemented in TF3800

onnx model = convert sklearn(model, initial types=initial type, options={type (model) :

e}}, target opset=12)
# # Export to ONNX file
with open (onnxfile, "wb") as f:
f.write( onnx model.SerializeToString())
f.close()
exit ()

MODEL PROPERTIES

format  OMNX VT
producer  skl2onnx 1.13
domain  ai.onnx
imports  ai.onnx.mi w1
ai.onnx w12

INFUTS

float_input  name: float_input

type: float3z[?,4]

OUTPUTS

label  name: label

type: inted[?]

probabilities probabilities  name: probabilities

type: float3z2[?,3]

51.7 Ensemble Tree methods

{'zipmap':Fals

Ensemble methods combine several Decision Trees in order to achieve a better prediction performance. The
basic principle is to train not just one model (one tree), but several trees — a forest of trees — and to combine

the individual results into a common result.

There are basically two technologies with which an ensemble of trees can be created.

Bagging

The bagging methods include:
e Random Forest [P 43]
o Extra Trees [P 41]

Boosting
The boosting methods include:
« Gradient Boosting [P 46]
» Histogram Gradient Boosting [P 48]
XGBoost [P 50]
LightGBM [P 54]
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® Unsupported additional Ensemble Tree methods

1 The models BaggingClassifier, BaggingRegressor, AdaBoostClassifier and AdaBoostRegressor are
also available in Scikit-learn. During an ONNX export they currently generate a graph that is
incompatible with TwinCAT libraries, which means they cannot be supported.

51.71 ExtraTrees

Extra Trees creates an ensemble of randomized Decision Trees [P 38]. Each tree is trained to a subset of the
data set and the partial results are averaged. This increases the accuracy of the prediction in comparison

with the Decision Tree [P_36] and the tendency toward overfitting is reduced.

Supported properties
ONNX support

» TreeEnsambleClassifier
* TreeEnsambleRegressor

Samples of the export of Extra Trees can be found here: ONNX export of Extra Trees [P 41].

@® Classification limitation

With classification models, only the output of the labels is mapped in the PLC. The scores/
probabilities are not available in the PLC.

Supported data types

A distinction must be made between "supported datatype" and "preferred datatype". The preferred datatype
corresponds to the precision of the execution engine.

The preferred datatype is floating point 64 (E_MLLDT_FP64-LREAL).

When using a supported datatype, an efficient type conversion automatically takes place in the library. Slight
losses of performance can occur due to the type conversion.

A list of the supported datatypes can be found in ETcMIIDataType [»_80].

51.711 ONNX export of Extra Trees

® Download Python samples
1 A Zip archive containing all samples can be found here: Samples of ONNX export [»_61]

Extra Trees Regressor with Scikit-learn

from sklearn.ensemble import ExtraTreesRegressor

from sklearn.datasets import make regression

from skl2onnx import convert sklearn

from skl2onnx.common.data types import FloatTensorType
# import onnx

# # Generate data for regression

X, y = make regression(n samples=300, n features=10, n informative=10, n targets=1)
# # Construct the model
model = ExtraTreesRegressor (max depth=None, n estimators=100)

model.fit (X,v)

# # Convert model to ONNX
onnxfile = 'extratrees-regressor.onnx'
initial type = [('float input', FloatTensorType ([None, X.shape[l]]))]
onnx model = convert sklearn(model, initial types=initial type, target opset=12)
# # Export to ONNX file
# onnx.checker.check model (onnx model)
with open (onnxfile, "wb") as f:
f.write( onnx model.SerializeToString())
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f.close()
exit ()
MODEL PROPERTIES X
format  OMNXWT
producer  skiZonnx 1.13
domain  ai.onnx
imporis  al.onnx.ml w1
al.onnxvi2
INPUTS
- o float_input  name: float_input
loat_input
type: float32[ ?,18]
=10
OUTPUTS
W vanable  name: variable
?x1 type: float3z[?,1]

variable

Extra Trees Classifier with Scikit-learn

from sklearn.datasets import load iris

from sklearn.model selection import train test split
from sklearn.ensemble import ExtraTreesClassifier

from skl2onnx import convert sklearn

from skl2onnx.common.data types import FloatTensorType

# # Load data for classification
X, y = load iris(return X y = True)
X train, X test, y train, y test = train test split(X, y, test size = 0.1)
# # Construct ExtraTrees-Model
X train, X test, y train, y test = train test split(X, y, test size = 0.1)
model = ExtraTreesClassifier(criterion ='entropy', n estimators=100, max features=None)
model.fit (X train,y train)
# # Export model into ONNX format
onnxfile = 'extratrees-classifier.onnx'
initial type = [('float input', FloatTensorType ([None, X.shape[1l]]))]
# # Zipmap should be always turned off as it's not implemented in TF3800
onnx_model = convert sklearn(model, initial types=initial type, options={type (model): {'zipmap':Fals
et})
# # Export to ONNX file
with open (onnxfile, "wb") as f:
f.write( onnx model.SerializeToString())
f.close()
exit ()
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MODEL PROPERTIES X
format  ONNX T
producer  skl2onnx 1.13

domain  ai.onn

imports  al.onnx.mi v

alonnx w12
INPUTS

float_input  name: float_input

type: float3z2[?,4]
OUTPUTS
abel  name: label
type: inted[?]

probabilities  name: probabilities

probabilities

type: float3z2[?,3]

5.1.7.2 Random Forest

A Random Forest can be used both for classification and for regression [»_60]. The algorithm belongs to the
ensemble methods, since a user-defined number of uncorrelated decision trees is built and trained. In the
Random Forest, the prediction of the ensemble results from the averaged prediction of the individual trees.

Compared to individual Decision Trees [» 36], a Random Forest often has a better accuracy at the cost of the
Random Forest is not being transparent with regard to the predictions made.

Compared to an SVM, a Random Forest is more efficient in terms of computing time, especially for high-
dimensional data.

Supported properties

ONNX support
» TreeEnsambleClassifier
* TreeEnsambleRegressor

Samples of the export of Random Forest models can be found here: ONNX export of a Random Forest
[»44]
@® Classification limitation

With classification models, only the output of the labels is mapped in the PLC. The scores/
probabilities are not available in the PLC.

Supported data types

A distinction must be made between "supported datatype" and "preferred datatype". The preferred datatype
corresponds to the precision of the execution engine.

The preferred datatype is floating point 64 (E_MLLDT_FP64-LREAL).

When using a supported datatype, an efficient type conversion automatically takes place in the library. Slight
losses of performance can occur due to the type conversion.

A list of the supported datatypes can be found in ETcMIIDataType [»_80].
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5.1.7.21 ONNX export of a Random Forest

® Download Python samples

1 A Zip archive containing all samples can be found here: Samples of ONNX export [»_61]

Scikit-learn: Random Forest Classifier

from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import make classification

from skl2onnx import convert sklearn

from skl2onnx.common.data types import FloatTensorType

X, y = make classification(n_samples=1000, n features=3, n informative=3, n redundant=0, random stat

e=1)

clf = RandomForestClassifier (n estimators=100)
clf.fit (X, y)

initial type = [('float input', FloatTensorType ([None, X.shape([1l]]))]
# # Zipmap should be always turned off as it's not implemented in TF3800

onnx model = convert sklearn(clf, initial types=initial type, options={type(clf): {'zipmap':False}})

with open("rf classifier.onnx", "wb") as f:
f.write( onnx model.SerializeToString())
exit ()

MODEL PROPERTIES

format  OMNX VT
producer  skl2onnx 1.13
domain  ai.onnx
imports  al.onnx.mil vl
al.onnkviz2

INPUTS

float_input  name: float_input

type: float3z2[?,4]
OUTPUTS

label  mame: label

type: inted[?]

probabilities probabilities  name: probabilities

type: float32[?,3]

Scikit-learn: Random Forest Regressor

from sklearn.ensemble import RandomForestRegressor
from sklearn.datasets import make regression

from skl2onnx import convert sklearn

from sklZ2onnx.common.data types import FloatTensorType

X, y = make regression(n_samples=1000, n_ features=5, n_informative=5, random state=2)

clf = RandomForestRegressor (n _estimators=100)
clf.fit (X, y)

initial type = [('float input', FloatTensorType ([None, X.shape([1l]]))]
onnx model = convert sklearn(clf, initial types=initial type)
with open ("rf regressor.onnx", "wb") as f:

f.write( onnx model.SerializeToString())

44 Version: 1.6.4

TF3800, TF3810



BEGKHOFF Machine Learning Models and file formats

MODEL PROPERTIES X

format  OMNXWT
producer  skiZonnx 1.13

domain  ai.onnx

imporis  al.onnx.ml w1

al.onnxvi2

INPUTS

float_input : i
float_input oEL_Inpu name: float_input

type: float32[ ?,18]

=10
OUTPUTS

?x1 type: float3z[?,1]

variable

LightGBM: Random Forest Regressor

import numpy as np

import onnx graphsurgeon as gs

import lightgbm as 1lgb

from lightgbm import LGBMRegressor

from skl2onnx.common.data types import FloatTensorType

from sklearn.datasets import make regression

from sklearn.model selection import train test split

from onnxmltools.convert import convert lightgbm

import onnxmltools.convert.common.data types

import onnx

# # Generate data for regression

X, y = make regression(n_samples=300, n_ features=10, n_informative=10, n_ targets=1)

X train, X test, y train, y test = train test split(X, y, test size = 0.1)

# # Construct LightGBM-RandomForest-Model

model = LGBMRegressor (boosting type='rf', class weight=None, colsample bynode=0.3, colsample bytree=
1.0, importance type='split', learning rate=0.05, max depth=-1, min child samples=2, min child weigh
£=0.001, min split gain=0.0, n_estimators=150, n_ jobs=-1, num class=1, num leaves=500, objective='re
gression', random state=None, reg alpha=0.0, reg lambda=0.0, silent=True, subsample=0.632, subsample
_for bin=200000, subsample freqg=1)

model.fit (X train, y train,eval set=[(X test,y test),

(X _train,y train)],eval metric='rmse', verbose=20)

# # Convert model to ONNX

onnxfile = 'lgbm-regressor-randomforest.onnx'

initial type = [('float input', FloatTensorType ([None, X.shape[l]]))]

onnx _model = convert lightgbm(model, initial types=initial type, target opset=12)

# Manipulate ONNX graph

# # Import model to graph object

graph = gs.import onnx(onnx model)

graph.name = "LGBM-RandomForest"

# # Modify TreeEnsemble output shape (necessary to meet TwinCAT requirement, working on an update to
make this step obsolete)

tree node = [node for node in graph.nodes if node.op == "TreeEnsembleRegressor"] [0]

tree node.outputs[0].shape = [None, 1]

tree node.outputs[0].dtype = np.float32

# # Modify DIV Node inputs to provide correct averaging (necessary to correct a bug in onnxmltools v

ersion 1.11.1)

div_node = [node for node in graph.nodes if node.op == "Div"] [0]

div_node.inputs[l].to constant (values=np.asarray([[model.n estimators]], dtype=np.float32))

# # Export graph object to ONNX ProtoModel

graph.cleanup () . toposort ()

onnx model = gs.export onnx(graph)

# # Add ONNX domain tag to TreeEnsemble Node for proper node recognition (only a reset of the tag as
it gets lost during onnx manipulation)
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tree node = [node for node in onnx model.graph.node if node.op type == "TreeEnsembleRegressor"] [0]
tree node.domain = "ai.onnx.ml"
tree node.doc_string = "Converted from LGBMRegressor () model with explicit shaping"

# # Export ONNX model to file
onnx.checker.check model (onnx model)

with open (onnxfile, "wb") as f:

f.write( onnx model.SerializeToString())
f.close()
exit ()

MODEL PROPERTIES X

format  ONNXv8
producer  OnnxMLTools 1.13.0

imports  ai.onnx.ml v1

| float_input INPUTS

?=x10

! OUTPUTS
TreeEnsembleRegressor
7%

B {1x1)
71

[
I variable I

51.7.3 Gradient Boosting

al.onnx v&

float_input  name: float_input

type: float32[ ?,10]

variable  name: variable

type: float32[?,1]

A Gradient Boosting model can be used both for classification and for regression [P _60]. Like the Random
Forest [P 43], for example, the model is one of the Ensemble Tree [P 40] methods. Compared to an individual
Decision Tree, the accuracy of the prediction can be improved with the Gradient Boosting model at the cost
of the model no longer being simple to explain. Random Forest and Gradient Boosting differ from each other
in the way the individual trees are generated.

Supported properties

ONNX support
» TreeEnsambleClassifier
* TreeEnsambleRegressor

Samples of the export of Gradient Boosting models can be found here: ONNX export of Gradient Boosting
[» 47].

@® Classification limitation

With classification models, only the output of the labels is mapped in the PLC. The scores/
probabilities are not available in the PLC.

Supported data types

A distinction must be made between "supported datatype" and "preferred datatype". The preferred datatype
corresponds to the precision of the execution engine.
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The preferred datatype is floating point 64 (E_MLLDT_FP64-LREAL).

When using a supported datatype, an efficient type conversion automatically takes place in the library. Slight
losses of performance can occur due to the type conversion.

A list of the supported datatypes can be found in ETcMIIDataType [»_80].

5.1.7.31 ONNX export of Gradient Boosting

® Download Python samples
1 A Zip archive containing all samples can be found here: Samples of ONNX export [»_61]

Gradient Boosting Regressor with Scikit-learn

from sklearn.ensemble import GradientBoostingRegressor
from sklearn.datasets import make regression

from skl2onnx import convert sklearn

from sklZ2onnx.common.data types import FloatTensorType
# import onnx

# # Generate data for regression

X, y = make regression(n_ samples=300, n features=10, n informative=10, n targets=1)
# # Construct the model
model = GradientBoostingRegressor (learning rate=0.08, max depth=3, n_estimators=300)

model.fit (X,v)

# # Convert model to ONNX
onnxfile = 'gdb-regressor.onnx'
initial type = [('float input', FloatTensorType ([None, X.shape([1l]]))]
onnx model = convert sklearn(model, initial types=initial type, target opset=12)
# # Export to ONNX file
# onnx.checker.check model (onnx model)
with open (onnxfile, "wb") as f:
f.write( onnx model.SerializeToString())
f.close()
exit ()

MODEL PROPERTIES X

format  OMNNX vE

float_input producer  sklZonnx 1.10.2

domain  ai.cnnx
7x5
imports  ai.onnx.mi vi

TreeEnsembleRegressor ai.onnx v15

o sklearn_model  RandomForest

variable INPUTS

floatinput  name: float_input

type: float32[?,5]
OUTPUTS

varigble  name: variable

type: float32[?,1]

Gradient Boosting Classifier with Scikit-learn

from sklearn.ensemble import GradientBoostingClassifier
from sklearn.datasets import load iris

from sklearn.model selection import train test split
from skl2onnx import convert sklearn

from sklZ2onnx.common.data types import FloatTensorType
# import onnx

# # Load data for classification

X, y = load iris(return X y = True)

X train, X test, y train, y test = train test split(X, y, test size = 0.1)

model = GradientBoostingClassifier (n_estimators=100, learning rate=0.1, max depth=3)
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model.fit (X train,y train)

# # Convert model to ONNX

onnxfile = 'gdb-classifier.onnx'

initial type = [('float input', FloatTensorType ([None, X.shape([1l]]))]

# # Zipmap should be always turned off as it's not implemented in TF3800

onnx model = convert sklearn(model, initial types=initial type, options={type(model): {'zipmap':Fals
e}}, target opset=12)

# # Export to ONNX file

# onnx.checker.check model (onnx model)

with open (onnxfile, "wb") as f:

f.write( onnx model.SerializeToString())
f.close()
exit ()

MODEL PROPERTIES X

format  OMNMNX vE

float_input

progucer

domain

imports

skl2onnx 1.10.2

al.onnx

ai.onnx.mi vl

TreeEnsembleClassifier al.onnx v15

sklearn_model  RandomForest

INPUTS

probabilities

float_input  name: float_input

type: float3z[?,4]
OUTPUTS

abel  name: label
type: intea[?]

probabilities  name: probabilities

type: float3z2[?,3]

51.74 Histogram-based Gradient Boosting

A histogram-based Gradient Boosting model can be used both for classification and for regression [P _60].

The model is based on the Gradient Boosting [»_46]; here, however, the continual inputs are discretized in
bins with the help of a histogram. This hugely accelerates the training of the model, in particular with very
large data sets.

Supported properties
ONNX support

* TreeEnsambleClassifier
* TreeEnsambleRegressor

Samples of the export of Hist Gradient Boosting models can be found here: ONNX export of Hist Gradient

Boosting [P 49].

@® Classification limitation

With classification models, only the output of the labels is mapped in the PLC. The scores/
probabilities are not available in the PLC.

Supported data types

A distinction must be made between "supported datatype" and "preferred datatype". The preferred datatype
corresponds to the precision of the execution engine.
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The preferred datatype is floating point 64 (E_MLLDT_FP64-LREAL).

When using a supported datatype, an efficient type conversion automatically takes place in the library. Slight
losses of performance can occur due to the type conversion.

A list of the supported datatypes can be found in ETcMIIDataType [»_80].

5.1.7.41 ONNX export of Hist Gradient Boosting

® Download Python samples

1 A Zip archive containing all samples can be found here: Samples of ONNX export [»_61]

Hist Gradient Boosting Regressor with Scikit-learn

from sklearn.ensemble import HistGradientBoostingRegressor
from sklearn.datasets import make regression

from skl2onnx import convert sklearn

from sklZ2onnx.common.data types import FloatTensorType

# import onnx

# # Generate data for regression

X, y = make regression(n_ samples=300, n features=10, n informative=10, n targets=1)
# # Construct the model
model = HistGradientBoostingRegressor (learning rate=0.08, max depth=3, max iter=300)

model.fit (X,v)

# # Convert model to ONNX

onnxfile = 'histgdb-regressor.onnx'

initial type = [('float input', FloatTensorType ([None, X.shape([1l]]))]

onnx model = convert sklearn(model, initial types=initial type, target opset=12)
# # Export to ONNX file

# onnx.checker.check model (onnx model)

with open (onnxfile, "wb") as f:

f.write( onnx model.SerializeToString())
f.close()
exit ()

MODEL PROPERTIES X

format  ONNX w7
producer  skiZonnx 1.13
domain  ai.onnx
imports  gi.onmoml vl
al.onnxvi2
INPUTS

fioat_input ame: i
float_input oat_inpu name: float_input

type: float32[?,10]

=10

OUTPUTS
TreeEnsembleRegressor variable  name: variable
e type: float3z2[?,1]

variable

Hist Gradient Boosting Classifier with Scikit-learn

from sklearn.ensemble import HistGradientBoostingClassifier
from sklearn.datasets import load iris
from sklearn.model selection import train test split
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from skl2onnx import convert sklearn
from sklZ2onnx.common.data types import FloatTensorType
# import onnx

# # Load data for classification

X, y = load iris(return X y = True)

X train, X test, y train, y test = train test split(X, y, test size = 0.1)

# # Construct the model

model = HistGradientBoostingClassifier (learning rate=0.08, max depth=3, max iter=300)
model.fit (X train,y train)

# # Convert model to ONNX
onnxfile = 'histgdb-iris.onnx'
initial type = [('float input', FloatTensorType ([None, X.shape[1l]]))]
# # Zipmap should be always turned off as it's not implemented in TF3800
onnx model = convert sklearn(model, initial types=initial type, options={type (model) :
e}}, target opset=12)
# # Export to ONNX file
# onnx.checker.check model (onnx model)
with open (onnxfile, "wb") as f:
f.write( onnx model.SerializeToString())
f.close()
exit ()

MODEL PROPERTIES

format  ONNX T
producer  skl2onnx 1.13
domain  ai.onnx
imports  al.onnx.mi v
ai.onnx w12

INPUTS

float_input  name: float_input

type: float3z[?,4]
QUTPUTS

label  name: label

type: inted[?]

probabilities probabilities  name: probabilities

typer float3z2[?,3]

5.1.7.5 XGBoost

An XGBoost model can be used both for classification and for regression [» 60].

{'zipmap':Fals

Compared to Gradient Boosting [P 46], the XGBoost has advantages with regard to the generalization of the

model. The training data set should be large — considerably more samples compared to the
features used.
Supported properties

ONNX support
» TreeEnsambleClassifier
* TreeEnsambleRegressor

number of

Samples of the export of XGBoost models can be found here: ONNX export of XGBoost [P 51]
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@® Classification limitation

With classification models, only the output of the labels is mapped in the PLC. The scores/
probabilities are not available in the PLC.

Supported data types

A distinction must be made between "supported datatype" and "preferred datatype". The preferred datatype
corresponds to the precision of the execution engine.

The preferred datatype is floating point 64 (E_MLLDT_FP64-LREAL).

When using a supported datatype, an efficient type conversion automatically takes place in the library. Slight
losses of performance can occur due to the type conversion.

A list of the supported datatypes can be found in ETcMIIDataType [»_80].

5.1.7.51 ONNX export of XGBoost

® Download Python samples
1 A Zip archive containing all samples can be found here: Samples of ONNX export [P 61]

® Limitation of the version of XGBoost

1 The supported versions of XGBoost are limited due to the ONNX export behavior: version <= 1.5.2
or>=1.7.4.

XGB Regressor

# # Important Requirement: XGBoost version must be 1.7.4 or higher
(otherwise onnxmltools 1.11.1 does not match)

import xgboost as xgb

from xgboost import XGBRegressor

from sklearn.datasets import make regression

from sklZ2onnx.common.data types import FloatTensorType

from onnxmltools.convert import convert xgboost

import onnx

# # Generate data for regression

X, y = make regression(n_samples=300, n features=10, n_informative=10, n_targets=1l)
# # Construct XGB-Model
model = XGBRegressor (objective='reg:squarederror',booster="'gbtree', max depth=3, learning rate=0.08,

n_estimators=300)
model.fit (X,vy)
# # Convert model to ONNX

onnxfile = 'xgb-regressor.onnx'

initial type = [('float input', FloatTensorType ([None, X.shape([1l]]))]

onnx model = convert xgboost (model, initial types=initial type, target opset=12)
onnx model.graph.doc_string = "Converted from XGBoost ver."+xgb. version

# # Export to ONNX file
onnx.checker.check model (onnx model)

with open (onnxfile, "wb") as f:

f.write( onnx model.SerializeToString())
f.close()
exit ()
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MODEL PROPERTIES X

format  OMNNXv7

producer  OnnxMLTools 1.13.0
domain  onnxconverter-commeon
imports  ai.onnxml w1

description  Converted from XGBoost ver.1.5.1

INPUTS

float_input  name: float_input
float_input

type: float32[?,10]

7210
OQUTPUTS

TreeEnsembleRegressor variable  name: variable

type: float32[?,1]

7=

variable

XGB Classifier

import onnx

from sklearn.datasets import load iris

from sklearn.model selection import train test split

import xgboost as xgb # # Important Requirement: XGBoost version must be 1.7.4 or higher (otherwise
onnxmltools 1.11.1 does not match)

from xgboost import XGBClassifier

from skl2onnx.common.data types import FloatTensorType

from onnxmltools.convert import convert xgboost

X, y = load iris(return X y = True)

X train, X test, y train, y test = train test split(X, y, test size = 0.1)

model = XGBClassifier (objective= 'multi:softmax', learning rate=0.03, max depth=3, n _estimators=300,
eval metric='mlogloss', early stopping rounds=20, verbosity=1, use label encoder=False)

model.fit (X train,y train, eval set=[(X train, y train), (X test, y test)], verbose=True)

onnxfile = 'xgb-iris.onnx'

# # Convert model to ONNX

initial type = [('float input', FloatTensorType ([None, X.shape([1l]]))]

onnx model = convert xgboost (model, initial types=initial type, target opset=12)
onnx model.graph.doc _string = "Converted from XGBoost ver."+xgb. version

# # Export to ONNX file
onnx.checker.check model (onnx model)
with open (onnxfile, "wb") as f:

f.write( onnx model.SerializeToString())
f.close()
exit ()
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MODEL PROPERTIES X

format  OMNNXv7

producer  OnnxMLTools 1.13.0
domain  onnxconverter-commeon
imports  ai.onnx.ml v1

description  Converted from XGBoost ver.1.5.1
INPUTS

float_input  name: float_input

float_input

type: float32[?,4]

OQUTPUTS

TreeEnsembleClassifier

label  name: label

type: intb4[?]

probabilities  name: probabilities

probabilities

type: float32[?,3]

XGB binary classifier

from skl2onnx.common.data types import FloatTensorType

from sklearn.model selection import train test split

from sklearn.datasets import make moons, make circles, make classification
import onnx

# # Important Requirement: XGBoost version must be 1.7.4 or higher
(otherwise onnxmltools 1.11.1 does not match)

import xgboost as xgb

from xgboost import XGBClassifier

from onnxmltools.convert import convert xgboost

# # Generate data for binary classification

X, y = make moons(n_samples=300, noise=0.3, random state=1)

# X, y = make circles(n_samples=300, shuffle=True, noise=0.3, random state=1, factor=0.8)

# # Construct XGB-Model

X train, X test, y train, y test = train test split(X, y, test size = 0.1)

model = XGBClassifier (objective= 'binary:logistic', learning rate=0.03, max depth=3, n estimators=30
0, eval metric='auc', early stopping rounds=20, verbosity=1, use label encoder=False)
model.fit (X train,y train, eval set=[(X_train, y train), (X test, y test)], verbose=True)

# # Convert model to ONNX

onnxfile = 'xgb-binary.onnx'

initial type = [('float input', FloatTensorType ([None, X.shape[l]]))]

onnx_model = convert xgboost (model, initial types=initial type, target opset=12)
onnx model.graph.doc string = "Converted from XGBoost ver."+xgb. version

# # Export to ONNX file
onnx.checker.check model (onnx model)
with open (onnxfile, "wb") as f:

f.write( onnx model.SerializeToString())
f.close()
exit ()
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format  ONNX v7

producer  OnnxMLTools 1.13.0
domain  onnxconverter-common
imports  ai.onnml v

description  Converted from XGBoost ver.1.5.1

INPUTS

float_input  name: float_input

float_input
type: float32[?,2]

QUTPUTS

TreeEnsembleClassifier label  name: label

type: int64[?]

[probabilities ] [Iabel ] probabilities  name: probabilities

type: float32[?,2]

5.1.7.6 LightGBM

A LightGBM model can be used both for classification and for regression [»_60].

LightGBM is one of the histogram-based Gradient Boosting [» 48] methods. This makes training efficient, in
particular with large data sets.

Supported properties

ONNX support

» TreeEnsambleClassifier
* TreeEnsambleRegressor

Samples of the export of LightGBM models can be found here: ONNX export of LightGBM [P 54].

@® Classification limitation

With classification models, only the output of the labels is mapped in the PLC. The scores/
probabilities are not available in the PLC.

Supported data types

A distinction must be made between "supported datatype" and "preferred datatype". The preferred datatype
corresponds to the precision of the execution engine.

The preferred datatype is floating point 64 (E_MLLDT_FP64-LREAL).

When using a supported datatype, an efficient type conversion automatically takes place in the library. Slight
losses of performance can occur due to the type conversion.

A list of the supported datatypes can be found in ETcMIIDataType [»_80].

5.1.7.6.1 ONNX export of LightGBM

® Download Python samples

1 A Zip archive containing all samples can be found here: Samples of ONNX export [» 61]
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LGBM Regressor

from lightgbm import LGBMRegressor

from skl2onnx.common.data types import FloatTensorType
from sklearn.datasets import make regression

from sklearn.model selection import train test split
from onnxmltools.convert import convert lightgbm
import onnx

# # Generate data for regression

X, y = make regression(n_samples=300, n_ features=10, n_informative=10, n targets=1)

X train, X test, y train, y test = train test split(X, y, test size = 0.1)

# # Construct LightGBM-Model

model = LGBMRegressor (objective='regression', max depth=31, learning rate=0.05, n estimators=300)
model.fit (X train, y train,eval set=[(X test,y test),

(X _train,y train)],eval metric='rmse', verbose=20)

# # Convert model to ONNX

onnxfile = 'lgbm-regressor.onnx'

initial type = [('float input', FloatTensorType ([None, X.shape[l]]))]

onnx model = convert lightgbm(model, initial types=initial type, target opset=12)

onnx.checker.check model (onnx model)
with open (onnxfile, "wb") as f:
f.write( onnx model.SerializeToString())

f.close()
exit ()
MODEL PROPERTIES X
format  ONNX v3
producer  OnnxMLTools 1.13.0
domain  onnxconverter-commeon
imports  ai.onnx v8
al.onnxml vl
INPUTS
float_input  name: float_input
float_input
type: float32[?,10]
=10 OUTPUTS
TreeEnsembleRegressor variable  name: variable
type: float32[?,1]
7=

variable l

LGBM Regressor (gamma objective)

import numpy as np

from lightgbm import LGBMRegressor

from sklZonnx.common.data types import FloatTensorType
from sklearn.model selection import train test split
from onnxmltools.convert import convert lightgbm
import onnx

# # Generate data for regression

N _ROWS = 1000

N COLS = 4

np.random.randn (N_ROWS, N_COLS)

For 'poisson' and 'gamma' objective, all target values need to be non-negative
abs (np.random.randn (N_ROWS) )

X train, X test, y train, y test = train test split(X, y, test size = 0.1)

# # Construct LightGBM-Model

model = LGBMRegressor (objective='gamma', max depth=-1, learning rate=0.05, n _estimators=300)
model.fit (X train, y train,eval set=[(X_test,y test),

(X train,y train)],eval metric='rmse', verbose=20)

==

X
#
y
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# # Convert model to ONNX

onnxfile = 'lgbm-regressor-gamma.onnx'
initial type = [('float input', FloatTensorType ([None, X.shape[l]]))]
onnx model = convert lightgbm(model, initial types=initial type,

onnx.checker.check model (onnx model)
with open (onnxfile, "wb") as f:
f.write( onnx model.SerializeToString())
f.close()
exit ()

float_input

TreeEnsembleRegressor

variable

LGBM Regressor (poisson objective)

import numpy as np
from lightgbm import LGBMRegressor

MODEL PROPERTIES

format
producer
domain

imports

INPUTS

float_input

QUTPUTS

variable

from skl2onnx.common.data types import FloatTensorType
from sklearn.model selection import train test split
from onnxmltools.convert import convert lightgbm

import onnx

# # Generate data for regression
N _ROWS = 1000
N _COLS = 4

target opset=12)

ONNX v3

OnnxMLTools 1.13.0
onnxconverter-commaon
al.onnx ve

ai.onnx.ml v

name: float_input

type: float32[?,4]

name: variable

type: float32[?,1]

X = np.random.randn(N_ROWS, N_COLS)

# # For 'poisson' and 'gamma' objective, all target values need to be non-negative

y = abs (np.random.randn (N _ROWS) )

X train, X test, y train, y test = train test split(X, y, test size = 0.1)

# # Construct LightGBM-Model

model = LGBMRegressor (objective='poisson', max depth=-1, learning rate=0.05, n_estimators=300)

model.fit (X train, y train,eval set=[(X test,y test),
(X train,y train)],eval metric='rmse', verbose=20)

# # Convert model to ONNX

onnxfile = 'lgbm-regressor-poisson.onnx'
initial type = [('float input', FloatTensorType ([None, X.shape[1l]]))]
onnx model = convert lightgbm(model, initial types=initial type, target opset=12)
onnx.checker.check model (onnx model)
with open (onnxfile, "wb") as f:
f.write( onnx model.SerializeToString())
f.close()
exit ()
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MODEL PROPERTIES X

format  ONNXv3
producer  OnnxMLTocls 1.13.0
domain  onnxconverter-common

imports  ai.onnx v8

al.onnxml v

float_input INPUTS

float_input  name: float_input

type: float32[?,4]

OUTPUTS
TreeEnsembleRegressor

variable  name: variable

type: float32[?,1]

variable

LGBM Classifier

import onnx

import onnx graphsurgeon as gs

from sklearn.datasets import load iris

from sklearn.model selection import train test split
from lightgbm import LGBMClassifier

from skl2onnx.common.data types import FloatTensorType
from onnxmltools.convert import convert lightgbm

# # Load data for classification

X, y = load iris(return X y = True)

X train, X test, y train, y test = train test split(X, y, test size = 0.1)

# # Construct LightGBM Model

model = LGBMClassifier (objective='multiclass', learning rate=0.05, max depth=-1, n estimators=100, r
andom_state=42)

model.fit (X train,y train,eval set=[(X_test,y test),

(X train,y train)],verbose=20,eval metric='logloss"')

# # Convert model to ONNX

onnxfile = 'lgbm-iris.onnx'

initial type = [('float input', FloatTensorType ([None, X.shape([1l]]))]

# # Zipmap should be always turned off as it's not implemented in TF3800

onnx model = convert lightgbm(model, initial types=initial type, zipmap=False)

# # Manipulate graph to force its ONNX conformity (necessary to correct a bug in onnxmltools version
1.11.1)
graph = gs.import onnx(onnx model)
graph.name = "LGBMClassifier"
tree node = [node for node in graph.nodes if node.op == "TreeEnsembleClassifier"][0]
tree node.name = "TreeEnsembleClassifier"
tree node.outputs = graph.outputs
tree node.outputs[0].shape = [None]
tree node.outputs[l].shape = [None, model.n classes ]
# # Collect 2 artifacts of the converter
cast node = [node for node in graph.nodes if node.op == "Cast"][0]
mul node = [node for node in graph.nodes if node.op == "Mul"] [0]
# # Clear outputs of these two nodes
mul node.outputs.clear ()
cast node.outputs.clear ()
# # Remove these nodes from the graph
graph.cleanup () . toposort ()
onnx model = gs.export onnx(graph)
nodes = onnx model.graph.node
for node in nodes:
# # Modify node attributes.
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if node.op type == "TreeEnsembleClassifier":
node.domain = "ai.onnx.ml" # # Domain info is required for ONNX conformity
node.doc_string = "Converted from LGBMClassifier () model"

# # Export to ONNX file
onnx.checker.check model (onnx model)

with open (onnxfile, "wb") as f:

f.write( onnx model.SerializeToString())
f.close()
exit ()

MODEL PROPERTIES X

format  ONNX v8
producer  OnnxMLTools 1.13.0
imports  ai.onnx v9
ai.onmeml vl

INPUTS

float_input  name: float_input

type: float32] ?,4]

float_input

OUTPUTS

label  name: label

t rinte4[?
TreeEnsembleClassifier ype: int64[?]

probabilities  name: probabilities
%3

probabilities

type: float32[?,3]

5.2 Machine Learning Cheat Sheet: selection of models

Which of the supported models is suitable for my problem? This question is frequently asked. The following
information is intended to assist you in selecting suitable algorithms.

Type of input data of the model

The first essential question concerns the type of input data of the model: image data, time series or tabular
data?

d The supported models are mainly suitable for tabular data. This means that the input of the model
1 forms an array of values.

Image data

Convolutional Neural Networks (CNNs) are usually used for the direct processing of image data. These are
expected to be supported starting from Q3/2023. MLPs can also deliver adequate results for a restricted
application area. For this purpose, an image pixel is input into the model as a vector.

In addition, it is expedient to extract features from the image data first and to use these features as the input
data of an Al model. TwinCAT Vision provides a powerful library for image capture, preprocessing and
feature generation. The features can then be combined as an array and the problem interpreted as a tabular
data problem.

Time series
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Recurrent neural networks such as the LSTM are usually used for the direct processing of time series, i.e.
series of data points in which the temporal sequence of the samples carries essential information. These are
expected to be supported starting from Q3/2023. MLPs can also deliver adequate results for a restricted
application area. N-samples are input into the model as vectors.

In addition, it is expedient to extract signal features from the time series and to use these features as the

input data of an Al model. PLC libraries such as the Condition Monitoring library or the Analytics library are
suitable for the feature generation of time series. In practice it has proven to be very efficient, for example, to
form static variables over a defined time segment, such as mean value, standard deviation, maximum and
minimum value, etc. The time segment might be the length of a process step, for example from the start to
the end of a cut, or from the start to the end of a bending process. In addition to static variables, frequency-
based features such as the signal power in defined frequency bands have proven to be useful, especially
with rotary processes. The generated features are then combined in an array and used as the input for the Al
model. Accordingly, the problem can be interpreted as a tabular data problem.

Tabular Data

Tabular Data can be used directly as the input for most Al models. Situations where an array of input data
are directly available could be: the length, width and mass as well as its optical components in R, G and B
values are measured with different measuring instruments. The values can be directly combined as an array
of 6 elements and used as the input for an Al model — for example, for classification as OK or NOK.

Description of the goal

Once the type of input data has been defined, the question arises as to what exactly the Al should do, or
what it can do under given conditions. Do annotated (labeled) data exist and what type are the labels?

Clustering

In clustering, the inner structure of the input data are analyzed. No annotated data are necessary for the
cluster analysis; however, the number k of the expected clusters must be known.

Anomaly detection

A popular application, likewise for the case that no annotated data exist. In the training phase, only data that
can be described as “normal” are presented to the model. In the inference phase, the model can distinguish
between a known input data structure and an unknown input data structure. In the latter case an anomaly is
assumed. The challenge in anomaly detection is the preprocessing of the training data, so that if possible
only the normal case is used in the training, as well as the limited meaningfulness of the result.

Dimensionality reduction

Human beings are good at visualizing the 2- and 3-dimensional space. Point clouds in a 3D plot are easy to
handle and can improve the understanding of processes. However, it quickly becomes confusing if several
dimensions are involved. The purpose of dimension reduction is to map an N-dimensional input vector to a
smaller vector while losing the least possible amount of information: for example, a 10-dimensional input is
reduced to 3 dimensions while retaining 95% of the information. Redundant information of the input data is
exploited. The dimension reduction is well suited for use as a feature generation step, e.g. before a classifier.

Regression

A regression problem requires the existence of an annotated data set. As a rule, a problem is described with
N REAL or LREAL as the input of the model and M REAL or LREAL as the output.

Example: N features are created during a forming process (e.g.: maximum, standard deviation, skew of the
servo motor current). For each of these features, the resulting diameter of the formed product in the
longitudinal and transverse direction is known. From the 3 features, 2 values are estimated accordingly.

If the curve of a time series is to be modeled, the N past time values can be used as the input vector and the
N+1 value as the label. The manual labeling of the data is thus unnecessary.

Classification

A classification problem requires an annotated data set. As a rule, N REAL or LREAL values are mapped
here to a category that is usually represented as INT in TwinCAT. For example, whether a finished product
corresponds to quality class A, B or C is calculated from N features.
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Explainability of an Al model

In some situations it is of great importance to be able to explain the results of an Al model, i.e. to answer the
question, for example, as to why a model has classified a product as defective. Unfortunately, most
algorithms work like black boxes, and the results can only be explained with difficulty if at all — even if they
are very precise. Decision Trees are models that can be explained very well, because the path through the
tree can be retraced with the individual limit values of the branches. However, the accuracy of these models
is often not as convincing as with other models that cannot be explained.

Al model Cheat Sheet

The following figure provides a simple guide to the selection of a suitable Al model. It illustrates the
classification of Al models for different application purposes, provided the model input is tabular data.
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5.3 Creation and conversion of ONNX

The learning process of a Machine Learning model takes place outside of the real-time, usually in a script
language such as Python or R. The learned model is to be exported from the selected ML framework as an
ONNX file. In order to load the description of the model in the TwinCAT runtime, the ONNX file must first be
converted into a proprietary, TwinCAT 3-specific format.

An overview of the description formats for machine learning models:
* Open Neural Network Exchange Format (ONNX) [»_60]
» Beckhoff ML XML [» 73]
» Beckhoff ML BML [» 75]

Beckhoff's proprietary formats in XML and BML are directly readable from the Machine Learning Runtime.
The ONNX data format must be converted to a Beckhoff proprietary format using provided converters

[»63].

Whereas ONNX and XML are openly visible formats, BML is a binary format and thus characterized above
all by a small file size and an efficient loading behavior (execution time of the Configure method) in the XAR.

5.3.1 Open Neural Network Exchange (ONNX)
What is ONNX?

ONNX is an open file format for the representation of Machine Learning Models and is managed as a
community project. Homepage of the ONNX community: onnx.ai
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The ONNX format defines groups of operators in a standardized format, allowing learned models to be used
interoperably with various frameworks, runtimes and further tools.

ONNX supports descriptions of neural networks as well as classic machine learning algorithms and is
therefore the suitable format for both the TwinCAT Machine Learning Inference Engine and the TwinCAT
Neural Network Inference Engine.

Why ONNX?

Through support for ONNX, Beckhoff integrates the TwinCAT Machine Learning products in an open manner
and thus guarantees flexible workflows. While the automation specialist can work in TwinCAT 3, the data
scientist can work with his usual tools (PyTorch, Scikit-Learn, ...).

The use of ONNX facilitates cross-workgroup working, both internally and cross-company with partners.
The automation specialist provides the data scientist with recorded data. The data scientist creates an ML
model and hands over his work as an ONNX file to the automation specialist. This file already contains all

information to execute the created model in TwinCAT.

The offline testing of models is simplified, because all common Al frameworks can load and also execute
the ONNX file.

Which software supports ONNX?

Supported tools of the ONNX community can be viewed here: onnx.ai/supported-tools.

Including, for example, the frameworks:
* PyTorch
» Keras/TensorFlow
+ MXNet
+ Scikit-learn

Graph Optimizer

* ONNX Optimizer (https://github.com/onnx/onnx/blob/enable noexpception build/docs/Optimizer.md)

Graph Visualizer

* Netron (https://github.com/lutzroeder/Netron)

5.3.2 Samples of ONNX export

How do | create ONNX files?

Below, several ways of exporting certain models as ONNX from different frameworks are shown using
examples. The samples do not claim to be complete and only serve to provide a primary overview. For more
detailed documentation, refer to the documentation for the respective framework.

The listed examples are limited to the creation of an ONNX file. Examples for conversion to make the file

available in TwinCAT can be found here: Converting ONNX to XML and BML [P 63] as well as in the ZIP
archive for the linked samples (see below) in the PythonAPI_mllib folder.
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Overview of available samples

Python package Model type Option Comment Sample link
PyTorch MLP Regressor GoToPage [P 22]
Keras MLP Regressor GoToPage [P 23]
Scikit-learn MLP Regressor GoToPage [» 24]
Scikit-learn MLP Classifier ONNX graph must  |GoToPage [P 25]
be adapted
Scikit-learn SVR GoToPage [» 28]
Scikit-learn SVvC decision_function_s GoToPage [P 29]
hape="'ovo'
Scikit-learn k-means Meta Key must be GoToPage [P 33]
entered in ONNX.
Scikit-learn PCA GoToPage [P 35]
Scikit-learn Decision Tree GoToPage [P 37]
Classifier
Scikit-learn Decision Tree GoToPage [P 37]
Regressor
Scikit-learn Extra Tree Classifier GoToPage [P 39]
Scikit-learn Extra Tree GoToPage [P 39]
Regressor
Scikit-learn Extra Trees GoToPage [P 42]
Classifier
Scikit-learn Extra Trees GoToPage [P 41]
Regressor
Scikit-learn Random Forest GoToPage [P 44]
Classifier
Scikit-learn Random Forest GoToPage [P 44]
Regressor
LightGBM Random Forest ONNX graph must GoToPage [P 45]
Regressor be adapted
Scikit-learn Gradient Boosting GoToPage [P 47]
Classifier
Scikit-learn Gradient Boosting GoToPage [P 47]
Regressor
Scikit-learn Hist Gradient GoToPage [P 49]
Boosting Classifier
Scikit-learn Hist Gradient GoToPage [P 49]
Boosting Regressor
XGBoost XGBClassifier Not all Package version <= GoToPage [P 52]
configurations allow [1.5.2 or>=1.7.4
an ONNX export required
XGBoost XCBRegressor Not all Package version <= |GoToPage [P 51]
configurations allow [1.5.2 or>=1.7.4
an ONNX export required
LightGBM LGBMRegressor Not all GoToPage [P 55]
configurations allow
an ONNX export
LightGBM LGBMClassifier ONNX graph must | GoToPage [» 57]
be adapted

All samples can be downloaded here as a ZIP archive: https://infosys.beckhoff.com/content/1033/
tf38x0_tc3_ML_NN_Inference_Engine/Resources/13668699915/.zip
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5.3.3 Conversion from ONNX to XML and BML

The method for converting one or more ONNX files to the Beckhoff specific XML or BML format is described
below.

Why convert ONNX to XML or BML?

The ONNX format cannot be directly loaded to the target platform by the ML Runtime. Therefore, a
conversion step is necessary in the engineering before the ML description file can be transferred to the
target system. The creation of an XML file has the advantage that it is openly readable. This allows all
information in the XML to be viewed during the engineering phase using a simple XML editor. The BML file is
binary and the contents are therefore no longer simply viewable. In addition, a BML file is loaded
considerably faster by the ML Runtime, therefore the BML file is recommended for the delivery.

Which TwinCAT-specific information can be entered in the XML or BML file?
Creation of multi-engines

It is possible to load more than one ML model into an instance of the FB_MlIPrediction [»_81]. Switching
between the models, referred to in the following as engines in this context, is possible without latency. This
way, for example, a set of models can be trained for different work areas of the machine and the correct
engine can be addressed without latency during the inference phase.

The condition for merging several models is that the model structure — the <Configuration> [P 74] section in
Beckhoff XML — is identical for all models. For example, this means that MLPs can only be merged if their
structure (number of layers, number of neurons per layer and activation functions) is the same. Only the
model parameters, i.e. the weights in the example of the MLPs, may be different.

Cf. the Beckhoff ML XML description: XML Tag Parameters [P_75].

During merging, therefore, several Al models with an identical structure but different parameters are
combined in a description file. The individual models (= engines) are loaded via a single description file in the

ML Runtime. The engine ID that is to be addressed is to be transferred in each case to the Predict method
[»_89] when calling in the PLC. The engine can be addressed via a string using the PredictRef method

[».90]. A GetEngineldFromRef method [P 87] is also available for finding the associated ID from the
reference.

Multi-engines should be regarded as an organization unit. Of course, it is also possible to instantiate several
instances of a FB_MIIPrediction [ 81] in the PLC and to load a dedicated description file into each FB.

Minimum version of the ML Runtime driver

When converting the description file, two entries are automatically set in the XML or BML file. One is the
version of the converting component and the other is a “required version” of the ML Runtime driver. On
loading the model file into TwinCAT, the “required version” is checked and a warning is output if the result of
the query is false.

Cf. the Beckhoff ML XML description: XML Tag Auxiliary Specifications [P 74].

Which application-specific information can be entered in the XML or BML file?
Input and output scalings

The inputs of the Al model are often scaled for the training process. This scaling must then also be
performed for the inference. This can either be implemented by hand in the PLC or entered directly as
information in the XML or BML file. If the scaling entries are set, the scaling is performed automatically. A
scaling and an offset must be specified for the scaling. The following applies:

y = x * Scaling + Offset

If scaled inputs are used for a model, back-scaling of the model output is usually also necessary. Therefore,
an output scaling is available in addition to the input scaling.

® Output transformation for selected models only

Whereas an input transformation is possible for all Al models, output transformations can only be
used for models of the regression type.
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Cf. the Beckhoff ML XML description: XML Tag Auxiliary Specifications [P 74].
Model name, model version, model description, etc.

For the unambiguous identification of a model description file, it is possible to add various descriptions of a
model. These can be used as a free string:

* A model version

* A model name

* A model description

* A model author

» Further optional tags

Cf. the Beckhoff ML XML description: XML Tag Auxiliary Specifications [P 74].

Free Custom Attributes section

Custom Attributes are optional and may be freely used by the user. The number of attributes and the number
of XML tags are not limited. The attributes are typed in the XML/BML so that the entries can be read again in
the PLC. The methods GetCustomAttribute array, GetCustomAttribute_fp64, GetCustomAttribute_int64 and

GetCustomAttribute_str are available for this. See also Detailed sample [P 93].

Examples of the use of Custom Attributes could be:
» Specification of an internal version or identification number
« Specification of the input range of the individual features
» Description of the inputs and outputs

Cf. the Beckhoff ML XML description: XML Tag CustomAttributes [P 74].

How can | convert files and add information?

Different interfaces are offered for the simple conversion and information modeling step in your work
process:

e A GUI in the TwinCAT XAE “Machine Learning Model Manager [» 64]"
e A CLI “mllib toolbox.exe [» 69]”
* An API as a Python package “beckhoff.toolbox [P 71]”

Not every interface offers the actions described above. The CLlI is limited to basic applications — mainly
conversion. The Python API and the GUI offer the largest functional scope.

5.3.3.1 GUI

The TwinCAT 3 Machine Learning Model Manager is the central Ul for the editing of ML model description
files. The tool is integrated in Visual Studio and can be opened via the menu bar under TwinCAT > Machine
Learning.

® Required Visual Studio version

1 The graphic interface of the TwinCAT 3 Machine Learning Model Manager is compatible with Visual
Studio 2017 and 2019 as well as the TcXaeShell. If you use a different version, you can run the
interface as a standalone executable. This is located in
<TwinCATInstallDir>\3. 1\Components\TcMachineLearning\ML_VS_Extension\
ModelManagerStandalone.exe.

As an alternative to the editing of ML model description files via the interface of the TwinCAT 3 Machine
Learning Model Manager, you can also use a command line tool, see CLI [»_69], or a Python library, see

Python API [» 711.
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Conversion of ML model files

A conversion tool for ML model description files is located on the Convert tool tab. XML [»_ 73] and ONNX
[»_60] files can be selected and converted to XML or BML [» 75] format.

Conversion of Beckhoff BML back to XML is not provided for

The objective of Beckhoff BML is to represent the content as a not freely readable binary file. Therefore, the
conversion process from Beckhoff BML to Beckhoff XML is not provided for.

The File Browser is opened via Select files and ML model description files can be selected (multi-selection
is possible by Ctrl + click). Selected ML model files are listed on the left-hand side with their path and file
name. Files can be removed from the list again with Remove selected from list.

ModelManagerWindow

Convert tool | Merge tool | Extract tool | Configuration tool | Automation tool
Select files to convert CATwinCAT\ 3.1\ \Functions\TF38xx-Machine-Learning\ConvertToolFiles
CAmoedels\KerasMLPExample_cosxml

KerasMLPExample_cos.bml Select converted
Select files
CAmodels\KerasMLPExample_sinxml KerasMLPExample_cosxml files path

CAmodels\TrigonometryMLP xml KerasMLPExample_sin.bml
Remove selected | | MLP_Trsiningacml Open converted
from list - files path

Convert to *xml ¥

Convert files

Listed ML model description files can be selected in the left-hand list (multi-selection is possible with Ctrl +
click here, too) and converted with Convert files into the format selected in the drop-down menu. The
converted files are saved in the converted file path. The default path is <TwinCATPath>\Functions\TF38xx-
Machine-Learning\ConvertToolFiles. The converted file path can be opened in the File Browser by clicking
Open converted file path.

The path can be changed with Select converted files path. The change is retained even after restarting the
PC.

Creating a multi-engine description

To create a multi-engine, multiple ML model description files must be loaded with Select files. The entries
are then visible, engine-based, in the list on the left-hand side. If several engines already exist in a
description file, they are listed individually in the list.

The MergeReferenceName field is freely editable. A reference name for the selected engine can be entered
here so that this engine is addressable in the PLC via this reference, cf. PredictRef [» 90] and
GetEngineldFromRef [P 87]. If the Engineld is used in the PLC instead of the reference name, the rule is

that the uppermost engine in the list bears the ID = 0 and those that follow it accordingly 1, 2, 3 and so on.

Using the IsIncluded checkbox you can specify whether or not a selected engine should be included in the
merged description file.
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The position of the engines in the list can be manipulated in the central section of the user interface.
Selected engines can be moved up or down in the list (up and down arrow). Any number of engines can be
selected at the same time. Also, using the cross symbol, any number of engines can be manipulated at the
same time with regard to the Isincluded checkbox. If two engines are selected, their places can be swapped
using the round double-arrow symbol. Engines can be removed from the list using the recycle bin symbol.

ModelManagerWindow ~ [ x

Convert tool | Merge tool | Extract tool | Cenfiguration teol | Automation tool

CATwinCAT 2. 1\ AFunctions\TF32xx-Machine-Learning\MergeTeolFiles

TrigonemetryMLP.xml Select converted
files path

KerasMLPExample_sinxml | mlp_fp32_engine mlp_fp32_engine_1
TrigonometryMLPxml mlp_fp32_engine:merged | engine_cos Open target
TrigonometryMLP.xml mip_{p32_engine:merge! EFTEEL I folder

Filename Engine MergeReferencMName Islncluded Select files

KerasMLPExample_cosxml| mlp_fp32_engine mlp_fp32_engine

(3] (][}

+ o
=]

mergedxml

The name of the merged ML description file can be entered in the text box in the central section. With
Merge, the file is generated and saved in the file path <TwinCATPath>\Functions\TF38xx-Machine-
Learning\MergeToolFiles. The path can be changed with Select target path.

Extracting multi-engine descriptions

Using the Extract tool it is possible to separate merged description files again. An ML model description file
can be loaded using Select file to extract. All engines that it contains appear in the list on the left-hand side.
If an engine is selected, it can be converted to a discrete ML description file using Extract. The name of the
newly generated file is to be entered using the text box. If the Auto file name checkbox is active, the string
in the text box is appended to the original file name. If the checkbox is inactive, only the string in the text box
is used as the new file name. The newly generated file is saved in the file path
<TwinCATPath>\Functions\TF38xx-Machine-Learning\ExtractToolFiles. The path can be changed with
Select target path.
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ModelManagerWindow

Convert tool | Mergetool | Extract tool | Configuration tool | Automation tool

Chmodels\TrigonometryMLP.xml

Engines

mip_fp32_enginezmerged
mip_fp32_engineimergel

A X

Select file to extract

CATwinCAT\3, 1\ \Functions\TF38xx-Machine-Learning'\Extract ToolFiles
MLP_MultiEngine_extractxml

Select target path

Open target
folder

Extract

extracted

Auto file name

Creating metadata for the model

The Configuration tool tab displays the configurator for:

e Custom attributes [P 73]

* Product Version and Target Version Information [P 74]

* Input and Output Scaling [» 74]

An ML description file can be selected using Select file and then edited. After editing, the original file is

overwritten using Save changes.
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B ModelManager — O X
Convert fool | Merge tool | Extract ool | Configuration tool | Automation _

‘ C:\Femp\TrigonometryMLP.xml Select file
4 Custom atiributes Name Type Content
- . Add attribute
MetaInfa Name str | SineAndCosineApprox Erims
Version str |1.2.11.0
Add free entry

Rename free entry|

Remove free eniry|
Save changes
Inpuf transformation Output transformation

Trafo active Paste scalings | | Paste offsets | Trafo active Paste scalings | | Paste offsets
Scalings Offsets Scalings Offsets
1 g 1 1
1 45 1 8
Producer Producer Version Required Version Model infao:
Beckhoff MLib [3.0.200525.0 n/a | model_type mip_neural_network

input_dim 2

output_dim 2

The Custom Attributes are edited using the buttons:

+ Add attribute entry: Adds an attribute to the selected tree item. The tree item must be selected in the
left-hand list.

o If an attribute is created, then the name, the data type and the value or values respectively must
be specified.

o Attributes are deleted by selecting the attribute and pressing the Delete button.

* Add tree entry: Adds a tree item under the selected tree item (as a subtree item).

* Rename tree entry: The selected tree item can be renamed.

* Remove tree entry: The selected tree item incl. the subtree items is deleted.
The editing area for Input and Output Transformations can be enabled by activating the Trafo active
checkbox. Depending on the number of inputs and outputs, a corresponding number of rows is offered, in
each of which scaling and offset are to be entered, cf. XML Tag Auxiliary Specifications [P_74]. A value from
a list of numbers from the clipboard can be entered as an offset or scaling using the Paste Scaling and

Paste Offset buttons. The number sequence can be separated by comma, semicolon or space. Only the
number of numbers in the list must match the number of inputs or outputs respectively.

The Producer and Target Version Information is set automatically by the TwinCAT 3 ML Model Manager.
The Target Version is determined automatically on the basis of the feature set of the model description file
used. If an older ML Runtime version is used to load this model file, a warning message appears when
executing the Configure method.

The number of inputs and outputs of the model as well as the model type are displayed in the lower right
area of the window. This cannot be edited and is only for information.
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5.3.3.2 CLI

In addition to the GUI and the Python package, a command line tool is available for the programmatic
processing of ML description files, e.g. conversion from ONNX to XML or BML: mllib_toolbox.exe

The executable is located in <TwinCatlnstallDir>\Functions\TF38xx-Machine-
Learning\Utilities\ModelManagerAPI.

Use of the executable

mllib toolbox.exe can be used, for example, from the command prompt. The built-in help is displayed
by running the exe without arguments.

Command Prompt . - -

Machine-Learning\Utilities>cd ModelManagerAPI

Machine-Learning\Utiliti ManagerAPI>mllib_toolbo

<paramN> [--optl] ... [--opt2]

Shows detailed info about the model contained in the specified file.

input file> [output file]
res the input file to the destination file and format, which is
ified using the file ext , fo "dst.xml" or “dst.bml".

IX file> [output file]
NNX neural network file to the native ML1ib file formats.

convert <input file> [output file] --output_model="dst_model_type"
Attempts to convert the model stored in the input file to the

You can move/copy the mllib_toolbox.exe to any other place you like on your PC. The exe uses the path
environment variable, which points to the mllib_um.dll (default
<TwinCatlnstallDir>\3.1\Components\Base\Addins\TcMLExtension).

Conversion of ONNX files

ONNX files are converted using the method onnximport

mllib toolbox.exe onnximport ".\decision tree\decisiontree-classifier.onnx" ".
\decision treel\decisiontree-classifier.bml"

Alternatively, an argument can also be used (--xml or —bml).
M1lib toolbox onnximport myOnnxFile.onnx --xml

Mllib toolbox onnximport myOnnxFile.onnx -bml

The conversion command automatically writes the “required version” (minimum version of the ML Runtime
driver) in the generated XML or BML.

Merging and extracting engines

Use the merge command to create multi-engines. The following command merges the two named XML files
to form a multi-engine with 2 engines. The last-named file is overwritten in the process.

mllib toolbox.exe merge KerasMLPExample cos.xml KerasMLPExample sin.xml

A new target file can also be specified. This may be both an XML and a BML file.

mllib toolbox.exe merge KerasMLPExample cos.xml KerasMLPExample sin.xml MultiEngine.bml

The number of files to be combined with a command is not limited.
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Use the Extract method to extract engines from a description file with multiple engines. Using the Info
command, first check how many engines exist in the file — and what they are called.

ES Command Prompt - O X

\models>mllib_toolbox.exe info MultiEngine.xml

uting ‘info’

input file:

5 F 6 weight
f ML1ib 285.08
2

2.0
input dimen
output dime
_engine-merge

preferred)
preferred)

_engine-merge’

In the figure above you can see two engines with the designations mip_fp32_engine::merge0 or merge1. To
extract the first engine into the target file Extracted.xml, call:

mllib toolbox.exe extract MultiEngine.xml?eng='mlp fp32 engine::mergel' Extract.xml
Displaying information from an ML model description file

The info command can be used to quickly check what model is described in a description file. This can
analyze ONNX files as well as XML and BML files.

mllib toolbox.exe info decisiontree-classifier.xml

mllib toolbox.exe info decisiontree-classifier.bml

mllib toolbox.exe info decisiontree-classifier.onnx

Command Prompt - O X

C:\models>mllib toolbox.exe info decisiontree-classifier.

using
build for Wint4d/Release

Executing 'info' command. ..

producer
req. target version:
input dimension:
output dimension:
auto-selected engine: rf_fp64_engine
default engine type: rf_fp64 ¢ ne
- input ty ( Ferred)
- output ty : int32 inte4 fp32 fp64 (int32 preferred)

'info® command completed successfully in 13 ms.

AT e
C:\models>_
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Execution of an instruction list
You can perform operations graphically in the Machine Learning Model Manager. Each operation that you
perform in a session is written as an XML command on the “Automation Tool” tab.

TC3 ML Model Manager ¥y B X

Convert tool | Merge tool | Extract tool | Configuration tool Automation tool

Paste command Add command

Last executed commands

<MLIibXMLCommand command="modify'= <Inputs=> <File name="C\models\decisiontree-classifierxml|’ /> </Inputs= <Outputs > <File name="C\models\decisiontre
: <MLlibXMLCommand command="onnximport’> <Inputs> <File name="C:\Work\04 TC Produkte\TF38xx Machine Learning\my local ONNX model zog\ Beckhoff OF

Execute selected
commands

Copy commands
to clipboard

Create XML file

1 »

In the figure above, for example, a conversion command and a command to enter Custom Attributes can be
seen. Mark the commands that you wish to export and select Create XML file. Pay attention to the order in
which you select the commands in the Machine Learning Model Manager. The order of selection determines
the order of the commands in the exported file.

You can use the generated XML file to reproduce the command order via

mllib toolbox.exe rawxml AutomationToolExport.xml

Custom Attributes, Scalings and Model description

These properties are not available in the CLI. Use the Python package [P _71] or the TwinCAT Machine
Learning Model Manager [P 64] for that. The CLI is limited to basic functions.

5.3.3.3 Python API

Installation of the Python package

The Python package is stored as a whl file in the folder <TwinCatlnstallDir>\Functions\TF38xx-Machine-
Learning\Utilities\ModelManagerAPI\PythonPackage.

To install the package, use pip install <TwinCatlnstallDir>\Functions\TF38xx-Machine-
Learning\Utilities\ModelManagerAPI\PythonPackage\<whl-file-name>. The folder may contain different
versions of the package (only if you have installed a new setup on top of an old TwinCAT Machine Learning
Setup). Make sure you always use the current version.

pip install "C:\TwinCAT\Functions\TF38xx-Machine-
Learning\Utilities\ModelManagerAPI\PythonPackage\beckhoff toolbox-3.1.230205-py3-none-any.whl"

Use of the Beckhoff toolbox

For a description of the individual points such as Custom Attributes and Model Description, see: Conversion
from ONNX to XML and BML [» 63].

The following source code is also available as a py file. See: https://infosys.beckhoff.com/content/1033/
tf38x0_tc3_ML_NN_Inference_Engine/Resources/13668699915/.zip in the PythonAPI_mllib directory.

The package is loaded with

import beckhoff.toolbox as tb

Conversion of an ONNX file to XML

tb.onnximport ("../decision tree/decisiontree-regressor.onnx", "../decision tree/decisiontree-
regressor.xml")
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tb.onnximport ("../decision tree/decisiontree-regressor.onnx", "../decision tree/decisiontree-
regressor.bml")

Display of model information

tb.info("../decision tree/decisiontree-regressor.onnx")

tb.info("../decision tree/decisiontree-regressor.xml")

Add Custom Attributes

new ca = { 'nID' : -34234, 'bTested' : True, 'fNum' : 324.3E-12, 'AnotherTreelItem' : { 'fPi' : 3.134
12, 'bFalseFlag' : False }}
tb.modify ca("../decision tree/decisiontree-regressor.xml","../decision tree/decisiontree-regressor-

custom.xml", new ca)

Add Model Description (name, version, author, etc. of a model)

model description = {
"new version" : "2.3.1.0",
"new_name" : "CurrentPreControlAxisd42",

"new desc":"This is the most awesome model to control Axis42",
"new_author":"Max",
"new_ tags":"awesome, ingenious, astounding",
}
tb.modify md("../decision tree/decisiontree-regressor-custom.xml", "../decision tree/decisiontree-
regressor-md2.xml",
**model description)

Add Input and Output Transformations

® Output Transformations only for selected models

Whereas an input transformation is possible for all Al models, output transformations can only be
used for models of the regression type.

# add input / output scalings (input-output-transformations)
tb.modify iot("../decision tree/decisiontree-regressor-md.xml",
regressor-iot.xml",

tb.iot scaled offset((1.2,3.4,1.0,1.1,1.0,1.0,1.0,1.0,1.0,1.0],
[l1.2,3.4,1,0,1,1,1,0,1.,0,1.,0,1.0,1.0,1.01}),

None) # no output transformation

'../decision tree/decisiontree-

The function 1ot _scaled offset expects a list of offsets and scalings. A value must be specified for each
input or output.

def iot scaled offset (offsets : list, scalings : list):

The number of inputs in the example above is 10, therefore a list of 10 elements is transferred. No output
transformation is available for decision trees, therefore a None is transferred here.

Generate multi-engines

Merge several models into one XML file.

# # Create a Multi-Engine
# merge two XML files - output file is Merged.xml
tb.merge ([ 'KerasMLPExample sin.xml', 'KerasMLPExample cos.xml'],'Merged.xml')

# merge two specific engines from two XML files

tb.merge ([tb.input engine('Merged.xml', 'mlp fp32 engine::mergel'),
tb.input engine ('KerasMLPExample cos.xml',6 'mlp fp32 engine')],
'DoubleMerged.xml"')

# merge two specific engines from two XML files and provide a reference name for both engines in the
target file
tb.merge ([tb.input engine ('KerasMLPExample sin.xml', 'mlp fp32 engine', 'sine'),

tb.input engine ('KerasMLPExample cos.xml', 'mlp fp32 engine', 'cosine')],

'MergedRef.xml"')

# extract a specific engine from a Multi-Engine file
tb.extract (tb.input reference('MergedRef.xml', 'sine'),'Extract.xml')

Test-Predict for the ML Runtime in Python
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Generate an XML and subsequently predict-call the ML Runtime. The ML Runtime is compiled as a DLL and
is called from Python as a user-mode process. No TwinCAT Runtime is required.

tb.onnximport ("../decision tree/decisiontree- regressor.onnx", "../decision tree/decisiontree-
regressor.xml")

inp file xml = "../decision tree/decisiontree-regressor.xml"

# define input and output format and input values (10 in, 1 out)

prediction = [{'input type': 'fp64', 'output type': 'fp64', 'input': [-1.0,-1.0,1.0,1.4,-1.0,-1.0,1.

0,1.4,4.2,4.2]1}]

# call predict method of Python-ML-Runtime
out = tb.predict (inp file xml,prediction)
print (out)

Further sample of a Classifier.

tb.onnximport ("../decision tree/decisiontree-classifier.onnx", "../decision tree/decisiontree-
classifier.xml")

inp file xml = "../decision tree/decisiontree-classifier.xml"

# define input and output format and input values (4 in, 1 out)

prediction = [{'input type': 'fp64', 'output type': 'int32', 'input': [-1.0,-1.0,1.0,1.4]}]

# call predict method of Python-ML-Runtime

out = tb.predict (inp file xml,prediction)

print (out)

5.3.34 Description of the Beckhoff-specific XML and BML format

5.3.3.4.1 Beckhoff ML XML
Introduction to Beckhoff ML XML

The Beckhoff-specific XML format for the representation of trained Machine Learning Models forms a core
component of the TwinCAT Machine Learning Inference Engine and TwinCAT Neural Network Inference

Engine. The file is created from an ONNX file [» 60] using the TC3 Machine Learning Model Manager [P _64]
or the Machine Learning Toolbox [»_69] or the provided Python package [P 71].

As opposed to ONNX, the XML-based description file can map TwinCAT-specific properties. The XML
guarantees an extended functional scope of the TwinCAT Machine Learning product — see for example the

concept of the Multi-engines [P _75]. On the other hand, it ensures seamless cooperation between the
creator and user of the description file - compare Input and output transformations [»_74] and Custom

Attributes [» 73].

Essential areas of the Beckhoff ML XML are described below. This helps you to understand the functions it
provides.

XML Tag <MachineLearningModel>
Obligatory tag with 2 obligatory attributes. The tag is generated automatically and may not be manipulated.

Sample:

<MachinelLearningModel modelName="Support Vector Machine" defaultEngine="svm fp64 engine">

The attribute mode1Name can be read in the PLC via the method GetModelName [»_88]. The model type
that is to be loaded is identified by the model name. For example, the attribute can take the values
support vector machine Ormlp neural network .

The attribute modelName in this tag should not be confused with the attribute str_modelName from
<ModelDescription>.

XML Tag <CustomAttributes>

The tag CustomAttributes is optional and may be freely used by the user. The depth of the tree and the
number of attributes are not limited. Creation can take place via the TC3 Machine Learning Model Manager.
The XML can also be manually edited in this area.

Attributes can be read in the PLC via the methods GetCustomAttribute array [P 84],

GetCustomAttribute fp64 [P 85], GetCustomAttribute int64 [» 86] und GetCustomAttribute str [» 86]. In
the XML the typification is given by the prefixes str_, int64_, fp64_and so on.
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Sample:

<CustomAttributes>

<Model str Name="TempEstimator" str Version="1.2.11.0" />

<MetaInfo arrfp64 InputRange="0.10000000000000001,0.90000000000000002" int64 TheAnswer="42" />
</CustomAttributes>

Here, a model with the name "TempEstimator" is created in the version 1.2.11.0. Thus, an array and an
integer value are provided as further information. Sample code for reading the CustomAttributes can be

downloaded from the Samples [»_93] section.
XML Tag <AuxilliarySpecifications>
The AuxilliarySpecifications area is optional and is subdivided into the children <PTI> and <IOModification>.

Sample:

<AuxiliarySpecifications>

<PTI str producer="Beckhoff MLlib Keras Exporter" str producerVersion="3.0.200525.0 str requiredVv
ersion="3.0.200517.0d"/>

<ModelDescription str modelVersion="2.3.1.0" str modelName="CurrentPreControlAxis42" str modelDes
c="This is the most awesome model to control Axis42" str modelAuthor="Max" str modelTags="awesome, in
genious,astounding" />

<IOModification>

<OutputTransformation str type="SCALED OFFSET" fp64 offsets="0.48288949404162623" fp64 scaling

s="1.4183887951105305"/>

</IOModification>
</AuxiliarySpecifications>

<PTI>

PTI stands for "Product Version and Target Version Information". The tool with which the XML was created
and version of the tool at the time of the XML generation are specified here.

A minimum version of the executive ML Runtime can also be specified via the attribute str_requiredVersion.
The query is regarded as passed if the attribute is not set. If the attribute is set, the query is regarded as
passed if the ML Runtime Version is higher than or equal to the required version. If the query is not passed,
i.e. if the version of the ML Runtime used is lower than the required version, then a warning is displayed
when executing the Configure method.

<IOModification>

If inputs or outputs of the learned model are scaled in the training environment, the scaling parameters used
can be integrated directly in the XML file so that TwinCAT automatically performs the scaling in the ML
Runtime.

The scaling takes place by means of y = x * Scaling + Offset.
<ModelDescription>

Write attributes to this optional tag
» the model version str_modelVersion
» the model name str_modelName
» the model description str_modelDesc
« the author of the model str_modelAuthor
« further optional tags str_modelTags

XML Tag <Configuration>
The obligatory area Configuration describes the structure of the loaded model.

Example - SVM

<Configuration str operationType="SVM TYPE NU_ REGRESSION" fp64 cost="0.1" fp64 nu="0.3" str_kernelFu
nction="KERNEL FN RBF" fp64 gamma="1.0" int64 numInputAttributes="1"/>

Example - MLP

74 Version: 1.6.4 TF3800, TF3810



BEGKHOFF Machine Learning Models and file formats

<Configuration int numInputNeurons="1" int numLayers="2" bool usesBias="true">
<MlpLayerl int numNeurons="3" str activationFunction="ACT FN TANH"/>
<MlpLayer2 int numNeurons="1" str activationFunction="ACT FN IDENTITY"/>
</Configuration>

A configuration exists once only and is generated automatically.
XML Tag <Paramaters>

The obligatory area Parameters substantiates the loaded model with the described <Configuration>. The
learned parameters of the model are stored here, e.g. the weights of the neurons.

In the standard case, i.e. a learned model is described in an XML, the <Parameters> tag exists only once in
the XML.

<Parameters str engine="mlp fp32 engine" int numLayers="2" bool usesBias="true">

Several models with identical <Configuration> can be merged via the Machine Learning Model Manager so
that both models are described in a single XML. Distinction can then be made between the parameter sets
by Engines, which is specified as an attribute for each parameter tag.

Sample:

<Parameters str engine="mlp fp32 engine::merge0" int64 numLayers="2" bool usesBias="true">

</Parameters>
<Parameters str engine="mlp fp32 engine::mergel" int64 numLayers="2" bool usesBias="true">

</Parameters>
<IODistributor str distributor="multi engine io distributor::mlp fp32 engine-
merge" str engine type="mlp fp32 engine" int64 engine count="2">

<Engine0 str engine name="merge0" str reference="sin engine" />

<Enginel str_engine name="mergel" str reference="cos_engine" />
</IODistributor>

Two MLPs with an identical Configuration were merged here. The first engine bears the ID 0 and the internal
name "mlp_fp32_engine::merge0" and can be addressed by the user via the reference "sin_engine". The
second engine bears the ID 1 and the internal name "mlp_fp32_engine::merge1" and the reference
"cos_engine".

The ID of the engine is sequentially incremented by the value one, starting from zero. The reference is a
string that can be specified in the Model Manager during Merge.

If several engines are merged in an XML, all engines are loaded in the ML Runtime and are available for
inference. The Predict method [P 89] is to be transferred when calling the engine ID that is to be used. The
reference for the engine can be transferred via the PredictRef method [ 90]. A GetEngineldFromRef

method [P_87] is also available for finding the associated ID from the reference. Switching between the
engines is possible without latency.

There is an example of the use of multi-engines in the PLC in the Samples area.

5.3.3.4.2 Beckhoff ML BML

The BML format is a binary representation of the XML-based ML description file. As a result, the format is not
openly visible and the file size is smaller in comparison with ONNX and XML. This also makes the charging
process of the model much faster than charging an XML.

A BML file can be generated via the TC3 Machine Learning Model Manager [»_64] from an XML or an ONNX
file. The way back from a BML file to an XML file is not provided for.

5.4 File management of the ML description files

File management on the Engineering PC (XAE)
Conversion, editing of ONNX, XML and BML
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The Machine Learning Model Manager [P _64] serves as a central tool for the processing and conversion of
Machine Learning models. If a file is loaded and edited, the resulting file is saved in the standard case in the
following folders — depending on the action performed:

* \Functions\TF38xx-Machine-Learning\ConvertToolFiles
* \Functions\TF38xx-Machine-Learning\ExtractToolFiles
* \Functions\TF38xx-Machine-Learning\MergeToolFiles

Each default folder can be adapted in the Model Manager.

If the Machine Learning Toolbox [P 69] is used instead of the GUI-based Machine Learning Model Manager,
the newly created file is stored in the active path as long as no other path has been specifically named.

Integrating a model into a TwinCAT solution

If a BML or XML description file is used in a TwinCAT solution, a distinction must be made between TcCOM
API [» 78] and the PLC API [» 80] with regard to the file management.

TcCOM API

After the integration of a description file in the TcCOM TcMachineLearningModelCycal, the corresponding
description file is copied into the Visual Studio project directory and is thus part of the project: <VS
Projekt>\_MLlInstall.

On activating the configuration, the file is copied from the Visual Studio project directory into the boot folder
on the target system: \TwinCAT\3.1\Boot\ML_Boot.

PLC API

When using the PLC API, the file name and path of the Machine Learning model file are specified in the PLC
code as T MaxString — accordingly, the user must ensure that a corresponding file exists coming from the
target system. This means that the description file does not become part of the Visual Studio project
directory, nor is it transferred automatically to the target system.

Transfer of the ML description files to the target system on activating the configuration

TcCOM API

When using the TcCOM object TcMachineLearningModelCycal, the ML description file is transferred
automatically from the XAE system to the XAR system.

The file is transferred from the Visual Studio project folder <VS Project>\ MLlInstall to the Boot folder
TwinCAT\3.1\Boot\ML_Boot on the XAR.

PLC API

If the PLC API is used, the user is responsible for the transfer of the ML description file. As a result, the
flexibility of the application is increased on the one hand, while corresponding steps have to be implemented
by the user on the other.

The ML description file can be transferred to the target system in many ways. One of them is named below
by way of example.

+ Via the properties of the PLC project under "Deployment" it is possible to specify which files are to be
transferred to the target system in the case of a certain event, for example the activation of the
configuration.
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Commen

Configuration: |INA& ~ Platform:  [NAA ~
Compile
Licenses
Event %omern and Parameter] Parameter2
Statistic ki
src 3 Activate Conf... |~ | Copy w | Cmodels' KerasMLP Example _cos xml LTC_BOOTPRJIPATHY \KerasMLPExample_cos xml
- e ~

Visualization

Visualization Profile

Static Analysis

Writing rights on the target system

The writing rights on the operating system side and the Write Filter settings must be observed.

Updating ML description files in the field

An important scenario in machine learning is the updating of data-based algorithms in the field during the
running time of a machine. Here too, distinction must be made between use of the TcCOM [» 78] API and
use of the PLC API [» 80].

TcCOM API

In the case of the TcCOM API, the update behavior is the same as with other changes in the TcCOM area.
An XAE system is necessary with an ADS route to the target system. In the XAE, a new ML description file
can be integrated in the TwinCAT project. The new project is then transferred to the target system by
activating the configuration. Therefore, it is necessary to restart the TwinCAT runtime here.

PLC API

If the PLC API is used, it is possible to update the ML description file on the target system without restarting
the TwinCAT runtime. To do this it is merely necessary to update the ML description file on the target system
and to retrigger the Configure method.

In addition, for example using ADS, you can set the PLC variable containing the full path of the ML
description file to the value of the new file that was transferred beforehand to the file system and then set the
state of the state machine back to "load".
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Two ways of programming are available to the user in TwinCAT 3. Static TcCOM objects can be created and
triggered via a cyclic task, or an instance can be created from and configured via the PLC.

The programming interface of the PLC offers far greater flexibility than the use of a TcCOM instance;
conversely, the latter is very simple and in many cases adequate.

6.1 TcCOM

The use of a TcCOM for the inference of an ML model in TwinCAT provides a very simple possibility to
execute trained models in the TwinCAT XAR. In principle, the entire procedure is documented in the quick
start, so that the steps described there are initially repeated and a few further details are given below.

Incorporation of a model by means of TcCOM object

This section deals with the execution of machine learning models by means of a prepared TcCOM object.
This interface offers a simple and clear way of loading models, executing them in real-time and generating
appropriate links in your own application by means of the process image.

Generate a prepared TcCOM object TcMachineLearningModelCycal
1. To do this, select the node TcCOM Objects with the right mouse button and select Add New Item...

Insert TeCom Ohbject

Search: | t arme: |EII:|iec:t1 (Tt achineleamingt odelCyezal) | | oK I
Type: EI--@ Beckhoff Automation GrnbH Cancel

@55 NC Objects

.. Application Funtime Multple: |: x

=] Machine Leaming Model

! Tk achinelearmingtdodel [kModule]
TeMachinel earningtdodelCozal [Maodule]

@ TeFilker Inzert [nstance. .

G-l Analytics
@ Extemal Time Pravider Reload
-l ot

G-[28] TeloEth Modules

File: CATwinCATA3 1A Confighkd oduleshT ch achinel eaminghd odel. trnc

Under Tasks, generate a new TwinCAT task and assign this task context to the newly generated
instance of TcMachineLearningModelCycal

2. To do this, open the Context tab of the generated object.
3. Select your generated task in the drop-down menu.
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= The instance of TcMachineLearningModelCycal has a tab called ML model configuration where you
can load the description file of the ML algorithm (XML or BML) and the available data types for the inputs
and outputs of the selected model are then displayed.

« The file does not have to be on the target system. It can be selected from the development system and
is then loaded to the target system on activating the configuration.

o A distinction is made between preferred and supported data types. The only difference is that a
conversion of the data type takes place at runtime if a non-preferred type is selected.
This may lead to slight losses in performance when using non-preferred data types.

« The data types for inputs and outputs are initially set automatically to the preferred data types. The
process image of the selected model is created by clicking Generate 10. Accordingly, by loading
KerasMLPExample_cos.xml, you get a process image with an input of the type REAL and an output of
the type REAL.

P S
G & | @-a |" E Object Context Parameter (Int) Data Area  Intefaces  Inteface Pointer ML model configuration
Search Solution Explorer (Ctrl+0) PRt

&1 Solution "TwinCAT Project5' (2 projects)
4 ﬂ TwinCAT Measurement Project]
4 o] TWinCAT Projects
4 ([ svSTEM
1 License
b @ Real-Time
P % Tasks
Sf= Routes |Select input type: | |Select output type: |
2iz Type System [prefemed_FP32_REAL | |prefemed_FP32_REAL |
4 [d] TeCOM Objects
4 @ Object1 (TcMachinelearningModel Cycal)
4 Inputs Generate 10 [] Generate 10 as amay
# MLinput_0
4 [ Outputs
E» MLOutput_0

Select a ML model file to load for the TeCOM object

||ge\Tc3M LStuff\ML Training*Modelz'KerazMLP Example_cos xml | Select file

Activating the project on the target

1. Before activating the project on a target, you must select the TF3810 license manually on the Manage
Licenses tab under System>License in the project tree, as you wish to load a multi-layer perceptron
(MLP).

2. Activate the configuration.
= You can now test the model by manually writing at the input.

Bl @&
& & ‘ [CRa=l | ’E Variable Fags Online
Search Solution Explarer (Ctrl+ii) P-
Value: 30999339 |
3] Solution TwinCAT Project5' (2 projects)
b [ TwinCAT Measurement Project] New Value: Forc... Release Virte...
4 il TwinCAT Projects i Set Value Dialog X
4 @ svsTEM Commert:
; License Dec EX] | ]
P @ Real-Time
b Tesks Hex 000000003 Cancel
gfs Routes Float 42038354245
212 Type System
4 [{§] TeCOM Objects
4 [# Object! (TeMachineLeamingModelCycal) 37 Boot 0 1 Hex Edi..
rl Inputs
~| Binan 02000000 4
+ MLlnput_0 L ¥ ‘ |
4 [ Outputs Bit Size: O1 08 Q1 ®32 O 07
B+ MLOutput 0 L
MOTION
a PLC

If the process image is larger, i.e. many inputs or outputs exist, it may be helpful not to generate each input
individually as a PDO, but to define an input or output as an array type. To do this, check the checkbox
Generate 10 as array and click Generate 10.

Models with several engines, cf. XML Tag parameters [»_75], can be loaded, but only Engineld = 0 is used.
Switching between the Enginelds with the TcCOM API is not provided for.

The ML description file used is automatically transferred from the Engineering system to the Runtime system
on activating the configuration. File management details are described in the section File management of the
ML description files [P 75].
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6.2 PLCAPI

6.2.1 Datatypes

6.2.1.1 ETcMIIDataType
Syntax

Definition:

TYPE ETcMllDataType :
(

E MLLDT UNDEFINED 0,

E_MLLDT INT8 SINT _ 10,
E MLLDT INT16 INT := 20,
E_MLLDT INT32 DINT := 30,
E MLLDT INT64 LINT := 40,
E MLLDT FP16 = 50,
E_MLLDT FP16B = 55,
E_MLLDT FP32 REAL := 60,
E MLLDT FP64 LREAL := 70,
E MLLDT SPECIAL = 99
) BYTE;
END_TYPE
Values
Name Description
E_MLLDT_UNDEFINED invalid / undefined data type
E_MLLDT_INT8_SINT 8-bit signed integer number (SINT / char)
E_MLLDT_INT16_INT 16-bit signed integer number (INT / short)
E_MLLDT_INT32_DINT 32-bit signed integer number (DINT / long)
E_MLLDT_INT64_LINT 64-bit signed integer number (LINT / long long)
E_MLLDT_FP16 16-bit IEEE floating point number (future usage)
E_MLLDT_FP16B 16-bit "bfloat16" floating point number (future usage)
E_MLLDT_FP32_REAL 32-bit IEEE floating point number (REAL / float)
E_MLLDT_FP64 LREAL 64-bit IEEE floating point number (LREAL / double)
E_MLLDT_SPECIAL Function-specific byte stream
6.2.1.2 ST_MIIPredictionParameters
Syntax
Definition:
TYPE ST MllPredictionParameters :
STRUCT
M1ModelFilepath : STRING(255);
MaxConcurrency : UINT;
END_STRUCT
END TYPE
Parameters
Name Type Default Description
MIModelFilepath STRING(255) File path of the loaded
model. Either *.xml or
*.bml file
MaxConcurrency UINT 1 Maxium number of
threads calling predict on
the FB in the same time.
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6.2.2 Function Blocks
6.2.2.1 FB_MIIPrediction
FB_MIIPrediction

— stPredictionParameter bBusy ——
— €Tracelevel bError ——

ipResultMessage ——

hrErrorCode ——

Syntax
Definition:

FUNCTION BLOCK FB MllPrediction
VAR INPUT

stPredictionParameter : ST MllPredictionParameters;
eTracelevel : TcEventSeverity;
END VAR
VAR OUTPUT
bBusy : BOOL;
bError : BOOL;
ipResultMessage : I TcMessage;
hrErrorCode : HRESULT;
END_VAR
% Inputs
Name Type Description
stPredictionPar General Prediction parameters
ameter ST MllPredictionParamete
rs [» 80

eTraceLevel |TcEventSeverity

Eventlogger trace level. Default = Critical. Must be set before
Configure method is called

E- Qutputs

Name Type Description

bBusy BOOL True if a asynchronous action is taking place
bError BOOL Indicates error in method

ipResultMessa ||_TcMessage Contains the last invoked error

ge

hrErrorCode HRESULT Unique error code
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‘w Methods

Name Description
CheckPreferredlODataTypes
[»83]
CheckSupportedlODataTypes
[»83]

Configure [P 84]

GetCustomAttribute array

[» 841

GetCustomAttribute fp64
[»85]

GetCustomAttribute int64
[»_86]

GetCustomAttribute str [P 86]
GetEngineldFromRef [P 871
GetlnputDim [» 87]
GetMaxConcurrency [» 88]
GetModelName [P 88]
GetOutputDim [»_89]

Predict [» 89]

PredictRef [» 90]

Reset [» 91]
SetActiveEngineOptions [P 92]

General information

The FB_M11Prediction is a central Function Block for the usage of TC3 Machine Learning in the PLC.
The Function Block offers a variety of Methods as described above. Basically, the FB M11Prediction
offers the functionality to load and to execute ML models. Hence, it is an interface to the TwinCAT 3
integrated inference engine (ML Runtime).

Error handling

Note that all methods of FB_ M11Prediction return a BOOL which indicates if the execution on the method
caused any error, e.g.

bFailed := fbprediction.GetInputDim(nInputDim) ;

The evaluation of the return value of the methods is equivalent to the evaluation of the Output bError of
FB MllPrediction.

Further, FB_ M11Prediction references the TwinCAT 3 EventlLogger and thus ensures that information
(events) is provided via the standardized interface | TcMessage. The trace level can be adjusted using

TcEventSeverity.

Sample Code
Sample code for the usage of the Function Block is available here [P 93].
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System Requirements

6.2.2.1.1 CheckPreferredlODataTypes
CheckPreferredIODataTypes
— fmtInputType CheckPreferredIODataTypes ——
— fmtOutputType
— IsPreferred
Syntax
Definition:
METHOD CheckPreferredIODataTypes : BOOL
VAR INPUT
fmtInputType : ETcMllDataType;
fmtOutputType : ETcMllDataType;
IsPreferred : Reference To BOOL;
END VAR
# Inputs
Name Type Description

fmtinputType |ETcMIIDataType [P 80] Input type to check

fmtOutputType |ETcMIIDataType [P 80] Output type to check

IsPreferred Reference To BOOL Return true if preferred typo

E- Return value
BOOL

A distinction is made between preferred and supported data types. The only difference is that a conversion
of the data type takes place at runtime if a non-preferred type is selected. This may lead to slight losses in
performance when using non-preferred data types.

6.2.2.1.2 CheckSupportediODataTypes
CheckSupportedIODataTypes
— fmtInputType CheckSupportedIODataTypes ——
—1 fmtOutputType
—1 IsSupported
Syntax
Definition:
METHOD CheckSupportedIODataTypes : BOOL
VAR _INPUT
fmtInputType : ETcMllDataType;
fmtOutputType : ETcMllDataType;
IsSupported : Reference To BOOL;
END_ VAR
# Inputs
Name Type Description

fmtinputType |ETcMllDataType [» 80]  |Input type to check

fmtOutputType |[ETcMIIDataType [» 80] Output type to check

IsSupported Reference To BOOL returns true if supported
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E- Return value

BOOL
6.2.2.1.3 Configure
Configure
Configure —
Syntax
Definition:

METHOD Configure : BOOL

E- Return value
BOOL

The method loads the specified ML model description file and configures the inference engine. Specify all
settings using the stPredictionParameter before calling the configure method.

fbPredict.stPredictionParameter.MIModelFilepath := 'C:/myModel.xml';
fbPredict.stPredictionParameter.MaxConcurrency := 1;
bConfigured := fbPredict.Configure();

6.2.2.1.4 GetCustomAttribute_array

GetCustomAttribute_array

—1 sCustomAttributeName GetCustomAttribute_array ——
— fmtAttributeDataType
— pDataBuffer

— nDataBufferLen

— nArrayLength

— pnBytesWritten

Syntax

Definition:

METHOD GetCustomAttribute array : BOOL

VAR INPUT
sCustomAttributeName : T MaxString;
fmtAttributeDataType : Reference To ETcMllDataType;

pDataBuffer : PVOID;

nDataBufferLen : UDINT;

nArrayLength : Reference To UDINT;

pnBytesWritten : Pointer To UDINT;
END VAR
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% Inputs

Name Type Description

sCustomAttribu | T_MaxString Name of the custom attribute

teName

fmtAttributeDat |Reference To Data format of the custom attribute

aType ETcMlIDataType [>_80]

pDataBuffer PVOID Destination data buffer, where the custom attribute is copied into

nDataBufferLe |UDINT Length of the destination data buffer in bytes

n

nArrayLength |Reference To UDINT Number of data type elements (i.e. number of fp32 values)
found in the custom attribute

pnBytesWritten |Pointer To UDINT Returns the number of bytes that have been written to the
destination buffer

E- Return value
BOOL

Methods reads a custom attribute specified by sCustomAttributeName of type Array. Refer to this sample
code [P 93] showing how to read an array of LREAL.

6.2.2.1.5 GetCustomAttribute_fp64
GetCustomAttribute_fp64
—1 sCustomAttributeName GetCustomAttribute_fp64 ——
— IrDataOut
Syntax
Definition:
METHOD GetCustomAttribute fp64 : BOOL
VAR INPUT
sCustomAttributeName : T MaxString;
lrDataOut : Reference To LREAL;
END_VAR
# Inputs
Name Type Description
sCustomAttribu | T_MaxString Name of the custom fp64 attribute
teName
IrDataOut Reference To LREAL Output value of the custom fp64 attribute

E- Return value
BOOL

Methods reads a custom attribute specified by sCustomAttributeName of type LREAL.

sCustomKey : T MaxString := XmlTreeltem/XmlAttribute';
fValue : LREAL;

fbprediction.GetCustomAttribute fp64 (sCustomKey, fValue);
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6.2.2.1.6 GetCustomAttribute _int64
GetCustomAttribute_int64
—1 sCustomAttributeName GetCustomAttribute_int64 ——
—1 nDataOut
Syntax
Definition:

METHOD GetCustomAttribute int64 :
VAR_INPUT

sCustomAttributeName : T MaxString;

nDataOut : Reference To LINT;
END_ VAR
# Inputs
Name Type Description

sCustomAttribu | T_MaxString
teName

Name of the custom int64 attribute

nDataOut Reference To LINT

Output value of the custom int64 attribute

E- Return value

BOOL

Methods reads a custom attribute specified by sCustomAttributeName of type LINT.

sCustomKey : T MaxString := XmlTreeItem/XmlAttribute';

ivalue : LINT;

fbprediction.GetCustomAttribute int64 (sCustomKey, iValue);

6.2.2.1.7 GetCustomAttribute_str

— sCustomAttributeName
— sDstAttributeStringBuffer
— pnStringLen

GetCustomAttribute_str

GetCustomAttribute_str ——

Syntax

Definition:

METHOD GetCustomAttribute str : BOOL

VAR INPUT

sCustomAttributeName : T MaxString;
sDstAttributeStringBuffer : Reference To T MaxString;
pnStringlLen : Pointer To UDINT;

END_ VAR

# Inputs

Name Type

Description

sCustomAttribu | T_MaxString
teName

Name of the custom string attribute

sDstAttributeSt |Reference To
ringBuffer T_MaxString

Pointer to a string buffer to write the custom string attribute into

pnStringLen Pointer To UDINT

(Optional) Actual length of the string attribute
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E- Return value
BOOL

Methods reads a custom attribute specified by sCustomAttributeName of type T_MaxString.

sCustomKey : T MaxString := XmlTreeltem/XmlAttribute';
sValue : T MaxString ;

fbprediction.GetCustomAttribute str (sCustomKey, sValue);

6.2.2.1.8 GetEngineldFromRef
GetEngineldFromRef

— sEngineRef GetEngineldFromRef ——
— nEngineld
Syntax
Definition:
METHOD GetEngineIdFromRef : BOOL
VAR INPUT

sEngineRef : T MaxString;

nEngineId : Reference To UDINT;
END_VAR
| Inputs
Name Type Description
sEngineRef T_MaxString Reference string of model engine (or parameter set) used for

prediction, use default value 0 if there are no multi-engines used

nEngineld Reference To UDINT Id of model engine (or parameter set)

E- Return value
BOOL

In case of multi engines in an ML model description file, engines can be selected via ID or reference name.
While the Predict-method expects an ID as input, the PredictRef method expects a reference name as input.

GetEngineIdFromRef can convert a reference name into an engine ID. Reference names can be found in
the Beckhoff ML XML file inside the <IODistributor> section, see XML attribute str_reference, and can be set
via the TC3 Machine Learning Model Manager, see Merge Tool.

6.2.2.1.9 GetIlnputDim

GetInputDim
— nInputDim GetInputDim ——

Syntax

Definition:

METHOD GetInputDim : BOOL
VAR INPUT

nInputDim : Reference To UDINT;
END VAR
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% Inputs
Name Type Description
ninputDim Reference To UDINT Size of the input data array

E- Return value

BOOL
6.2.2.1.10 GetMaxConcurrency
GetMaxConcurrency
— nConcurrency GetMaxConcurrency ——
Syntax
Definition:
METHOD GetMaxConcurrency : BOOL
VAR INPUT
nConcurrency : Reference To UDINT;
END VAR
# Inputs
Name Type Description
nConcurrency |Reference To UDINT Maximum supported number of concurrently processing threads

E- Return value
BOOL

Methods reads out current configuration of inference engine regarding possible number of concurrently
processing threads. This value is set by the user using stPredictionParameter before calling Configure
method.

6.2.2.1.11 GetModelName
GetModelName

— sDstModelNameBuffer GetModelName ——
— pnStringLen
Syntax
Definition:
METHOD GetModelName : BOOL
VAR INPUT

sDstModelNameBuffer : Reference To T MaxString;

pnStringLen : Pointer To UDINT;
END_ VAR
# Inputs
Name Type Description
sDstModelNam |Reference To Name of the loaded model
eBuffer T_MaxString
pnStringLen Pointer To UDINT (Optional) Actual length of the string attribute
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E- Return value

BOOL

The method reads the model name of the loaded ML description file. The model name is an identifier of the
machine learning model type. Returned strings can be for example ‘support_vector_machine’ or

‘mlp_neural_network’.

6.2.2.1.12 GetOutputDim

— nOutputDim

GetOutputDim

GetOutputDim

Syntax

Definition:

METHOD GetOutputDim :
VAR INPUT

BOOL

nOutputDim : Reference To UDINT;

END VAR

% Inputs

Name Type

Description

nOutputDim Reference To UDINT

Size of the output data array

E- Return value

BOOL

6.2.2.1.13 Predict
Predict

— pDatalnp Predict

— nDatalnpDim

— fmtDatalnpType

— pDataOut

— nDataOutDim

— fmtDataOutType

—1 nEngineld

—1 nConcurrencyld

Syntax

Definition:

METHOD Predict : BOOL

VAR INPUT
pDatalnp : PVOID;
nDataInpDim : UDINT;
fmtDataInpType : ETcMllDataType;
pDatalOut : PVOID;
nDataOutDim : UDINT;
fmtDataOutType : ETcMllDataType;
nEngineId : UDINT;
nConcurrencyId : UDINT;

END_ VAR
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% Inputs

Name Type Description

pDatalnp PVOID Pointer to the input data array (e.g. ARRAY[0..10] OF REAL in
PLC)

nDatalnpDim |UDINT Number of inputs in the current vector

fmtDatalnpTyp |ETcMIIDataType [» 80] ETcMlIDataType data type of input array
e

pDataOut PVOID Pointer to the output data array (e.g. ARRAY[0..10] OF REAL in
PLC)
nDataOutDim |UDINT Number of outputs in the current vector

fmtDataOutTyp |ETcMIIDataType [» 80] ETcMlIDataType data type of output array
e

nEngineld UDINT Id of model engine (or parameter set) used for prediction, use
default value 0 if there are no multi-engines used

nConcurrencyl |UDINT Id of the processing thread. Important: Never have two

d concurrently processing threads use the same id.

E- Return value
BOOL

The method performs the inference of the loaded model with the given input data and stores the result in the
output data. Use configure method to load a ML model description file before calling Predict method.

For the inputs and outputs a pointer, the number of inputs/outputs and the data type are needed.

Sample call:

dtype : ETcMllDataType.E_MLLDT FP32 REAL;
nInputDim : UDINT := 3;

nOutputDim : UDINT := 2;

nInput : ARRAY[1..3] OF REAL;

nOutput : ARRAY[1..2] OF REAL;
nCurrentEngineID : UDINT := 0;

nConcurrencyId : UDINT := 0O;

fbprediction.Predict (
pDataInp:=ADR (nInput) ,
nDataInpDim:= nInputDim,
fmtDataInpType:= dtype,
pDataOut :=ADR (nOutput) ,
nDataOutDim:= nOutputDim,
fmtDataOutType:= dtype,
nEnginelId:= nCurrentEnginelID,
nConcurrencylId:= nConcurrencylId );

6.2.2.1.14 PredictRef

PredictRef

— pDatalnp PredictRef ——
— nDatalnpDim
— fmtDatalnpType
— pDataOut

— nDataOutDim
— fmtDataOutType
—1 sEngineRef

—1 nConcurrencyld

Syntax

Definition:

90 Version: 1.6.4 TF3800, TF3810



BECKHOFF AP
METHOD PredictRef : BOOL
VAR _INPUT
pDatalnp : PVOID;
nDataInpDim : UDINT;
fmtDataInpType : ETcMllDataType;
pDatalOut : PVOID;
nDataOutDim : UDINT;
fmtDataOutType : ETcMllDataType;
sEngineRef : T MaxString;
nConcurrencyId : UDINT;
END_VAR
| Inputs
Name Type Description
pDatalnp PVOID Pointer to the input data array (e.g. ARRAY[0..10] OF REAL in
PLC)
nDatalnpDim |UDINT Number of inputs in the current vector
fmtDatalnpTyp |ETcMIIDataType [» 80] ETcMIIDataType data type of input array
e
pDataOut PVOID Pointer to the output data array (e.g. ARRAYJ[0..10] OF REAL in
PLC)
nDataOutDim |UDINT Number of outputs in the current vector

fmtDataOutTyp |ETcMIIDataType [» 80]
e

ETcMlIDataType data type of output array

sEngineRef T_MaxString Reference string of model engine (or parameter set) used for
prediction, use default value 0 if there are no multi-engines used

nConcurrencyl |[UDINT Id of the processing thread. Important: Never have two

d concurrently processing threads use the same id.

E- Return value

BOOL

The method performs the inference of the loaded model with the given input data and stores the result in the
output data. Use configure method to load a ML model description file before calling PredictRef method.

For the inputs and outputs a pointer, the number of inputs/outputs and the data type are needed.

Sample call:

dtype : ETcMllDataType.E MLLDT FP32 REAL;
nInputDim : UDINT := 3;

nOutputDim : UDINT := 2;

nInput : ARRAY[1..3] OF REAL;

nOutput : ARRAY[1..2] OF REAL;
sCurrentEngineRef: T MaxString := 'EngineRef';
nConcurrencyId : UDINT := 0;

fbprediction.Predict (
pDatalInp:=ADR (nInput) ,
nDataInpDim:= nInputDim,
fmtDatalnpType:= dtype,
pDataOut :=ADR (nOutput) ,
nDataOutDim:= nOutputDim,
fmtDataOutType:= dtype,

sEngineRef:= sCurrentEngineRef,

nConcurrencyld:= nConcurrencyId );

6.2.2.1.15 Reset

Reset
Reset
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Syntax

Definition:

METHOD Reset :

BOOL

E- Return value

BOOL

This Methods resets the FB'’s error state.

6.2.2.1.16

SetActiveEngineOptions

—1 sEngineOptions

SetActiveEngineOptions
SetActiveEngineOptions ——

Syntax

Definition:

METHOD SetActiveEngineOptions

VAR INPUT

sEngineOptions

END VAR

# Inputs

: BOOL

: T MaxString;

Name

Type

Description

sEngineOption
s

T_MaxString

E- Return value

BOOL

Input is a JSON-String with the following Key-Value-Pairs:

Key Value Defaut-Value*
allow_FPU TRUE / FALSE TRUE
Allow_SSE3 TRUE / FALSE TRUE
Allow_AVX TRUE / FALSE TRUE
Allow_FMA TRUE / FALSE TRUE
Allow_AVX_512F TRUE / FALSE TRUE

*Default-Values: The library uses as default the maximum performance. Hence, all available SIMD-
extensions provided by the target PC’s CPU are set to TRUE by default.

Sample Code to disable FMA and allow AVX (all others will be left unaltered):

fbPredict : FB MllPrediction;
EngineOpts : T MaxString

:= '{ "allow AVX":"true", "allow FMA":"false" }';

fbPredict.SetActiveEngineOptions (EngineOpts) ;
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7 Samples

71 PLC API

711 Quick start

The sample from the section Quick start [P_16] can be downloaded here: https://infosys.beckhoff.com/
content/1033/tf38x0_tc3_ML_NN_Inference_Engine/Resources/8746884875/.zip.

The ZIP contains a tszip archive (see PLC documentation, tszip) and a Beckhoff ML XML file
(KerasMLPExample_cos.XML). Copy the XML file to the place defined in the PLC as the destination, or
change the string to a different path.

7.1.2 Detailed example

The sample can be downloaded here: https://infosys.beckhoff.com/content/1033/
tf38x0_tc3_ML_NN_Inference_Engine/Resources/8763219467/.zip.

The ZIP contains a tszip archive (see PLC documentation, tszip) and a Beckhoff ML XML file
(TrigonometryMLP.XML). Copy the XML file to the place defined in the PLC as the destination, or change the
string to a different path.

The ML model description file contains an MLP with an input and an output, cf. XML tag <Configuration> with
int64 numInputNeurons = 1 as well as the second (last) layer with int64 numNeurons = 1. Two
parameter tags exist, i.e. the file contains two MLPs that are trained differently but are identical in structure
(<Configuration>). One of them is an MLP that was trained to approximate a sine function, while the other is
an MLP that is intended to approximate a cosine function. In the <IODistributor> area it can be seen that one
engine is reachable with the reference "sin_engine" and the other with the reference "cos_engine". Some
metadata are stored in the <CustomAttributes> area, e.g. the name of the model, the version and the validity
range of the input variables.

As in the quick start sample, a simple state machine is run through in the PLC source code. It differs from the
quick start sample in the executability of the "Configure" state and the use of several engines.

The "Configure" state shows by way of example how flexibly you can handle the number of inputs and
outputs and how you can read as much information as possible from the description file and put it to use
directly in the PLC.

You can switch between the two engines manually in the online view by setting the Engineld to 0 or 1.

71.3 Parallel, non-blocking access to an inference module

This sample shows how an instance of FB_ M11Prediction can be accessed from two tasks running
concurrently.

The sample can be downloaded here: https://infosys.beckhoff.com/content/1033/
tf38x0_tc3_ML_NN_Inference_Engine/Resources/8775872011/.zip.

The instance fbpredict is declared in the GVL_ML. All programs in the PLC thus have access to the
instance. The following are created as programs:
« P_InitML: The step sequence for initializing/loading an ML model is described here.

» P_Predict_Task1: The Predict method of the fbpredict is called, wherein PRG is executed on Core
1.

» P_Predict Task2: The Predict method of the fbpredict is called, wherein PRG is executed on Core
2.

The essential components for the concurrent execution of 2 Predict calls are:
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» The maximum number of concurrent accesses must be specified with the Configure method:
GVL ML. fbpredict.stPredictionParameter.MaxConcurrency := nMaxConcurrency;
with nMaxConcurrency = 2.
The instance then keeps this number of independent inference machines available.

« A unique ID of the calling context must be specified when calling the Predict method. These are
declared as constants in P_Predict_Task1 and P_Predict_Task2, see nConcurrencyId.
The user must ensure that each calling context transfers a unique ID with the Predict call.

* The remainder of the source code is largely identical to the Quick start sample [P 93].
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8 Support and Service

Beckhoff and their partners around the world offer comprehensive support and service, making available fast
and competent assistance with all questions related to Beckhoff products and system solutions.

Download finder

Our download finder contains all the files that we offer you for downloading. You will find application reports,
technical documentation, technical drawings, configuration files and much more.

The downloads are available in various formats.

Beckhoff's branch offices and representatives

Please contact your Beckhoff branch office or representative for local support and service on Beckhoff
products!

The addresses of Beckhoff's branch offices and representatives round the world can be found on our internet
page: www.beckhoff.com

You will also find further documentation for Beckhoff components there.

Beckhoff Support

Support offers you comprehensive technical assistance, helping you not only with the application of
individual Beckhoff products, but also with other, wide-ranging services:
e support
 design, programming and commissioning of complex automation systems
+ and extensive training program for Beckhoff system components
Hotline: +49 5246 963-157
e-mail: support@beckhoff.com

Beckhoff Service

The Beckhoff Service Center supports you in all matters of after-sales service:
* on-site service
* repair service
* spare parts service
* hotline service

Hotline: +49 5246 963-460
e-mail: service@beckhoff.com
Beckhoff Headquarters

Beckhoff Automation GmbH & Co. KG

Huelshorstweg 20

33415 Verl

Germany

Phone: +49 5246 963-0
e-mail: info@beckhoff.com
web: www.beckhoff.com
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9 Appendix

9.1 Logfiles

The log files are important for Support. They can be found under <TwinCATInstallPath>\Functions\TF38xx-

Machine-Learning\Logs.

The files CycalLog.txt and ModelManagerLog.txt are created on the XAE system. These log the behavior
during the engineering of components. CycallLog.txt contains logs regarding the configuration of
TcMachineLearningModelCycal TcCOM. The TC3 Machine Learning Model Manager writes to the file

ModelManagerLog.txt.

On the runtime system, the file mllib.log is created for logging the behavior during the machine runtime.

You can access Report an Issue via the Visual Studio menu bar under TwinCAT > Machine Learning. This
dialog opens the Support Information Report, which assists you in sending a report to Beckhoff Support.

ta Support Infermation Report
Send Report  Save zip

-~ Information
Behaviour
Remote Systerm: v
Attachment Add Attachment

-~ Personal Data

— d >

MNarne:
Lastname:
Company:
Your Country:
City:

Street:
Phone:
e-Mail:

Beckhoff subsidiary

country:

Germany

Store personal data

TwinCAT3 Machine Learning | AML DataExchange | TwinCAT3 Scope
Include in report:

Attachments:

| Ci\TwinCAT\S. T\\.\Functions\TF3&x-Machine-LearningiLogs\millib.log

CATwinCAT\3. W\ \Functions\TF38xx-Machine-Learning'\Logs\ModelManagerlog. txt
CATwinCAT\. TV \Functions\TF38xx-Machine-Learning\Logs\CycalLog.txt
CATwinCAT\. TV \Functions\TF38:xx-Machine-Learning\confighconfig.xml

9.2 Third-party components

This software contains third-party components.
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Please refer to the license file provided in the following folder for further information:
<TwinCatlnstallPath>\Functions\TF38xx-Machine-Learning\Legal

9.3 XML Exporter

Classification of the XML Exporters

The XML Exporters provided by Beckhoff can be freely used and changed. They are open source and under
MIT license. This offers customers the option of adapting the XML Exporter according to their needs, for

example by adding company-specific or project-specific CustomAttributes, cf. XML Tag CustomAttributes
P73l

The XML exporters are provided after installation of the product in the folder
<TwinCATPath>\Functions\TF38xx-Machine-Learning\Utilities\exporter.

® The XML Exporters are based on special versions of the libraries

1 It is recommended to export created ML models via the ONNX format as well as to convert
correspondingly to XML or BML. In the early phase of TwinCAT Machine Learning, the XML
Exporters were intended as a transitional solution until all relevant libraries offered comprehensive
ONNX support. This is the case today, so XML Exporters are no longer tested and updated with
newer libraries.

Direct XML export of an MLP

Only network architectures that have a sequential structure in the following sense are supported: each
neuron of one layer is exclusively linked to each neuron of the following layer. It is possible to export layers
without bias.

Export from Keras / Tensor Flow

+ File: KerasMlp2Xml.py

« Sample call: hitps://infosys.beckhoff.com/content/1033/tf38x0_tc3_ML_NN_Inference_Engine/
Resources/8746685963/.zip

* Requirements for the Python environment:
o Keras with TensorFlow backend (Tensor Flow Version 1.15.0)
o Numpy (Version 1.17.4)
o Matplotlib
» Supported activation functions: tanh, sigmoid, softmax, relu, linear/identity, exp, softplus, softsign

* Only sequential models can be exported with the XML Exporter, no functional models. The model is
to be generated accordingly with:

from tensorflow.keras.models import Sequential
model = Sequential ()

» Dropout layers are supported (only relevant for training, ignored when exporting)
» Dense layers are supported. The activation functions must be transferred to the layer as an argument
and not as a discrete activation layer.

from keras.layers import Activation, Dense
# this will not work !!!

model.add (Dense (64))

model .add (Activation (‘tanh’))

# this will work

model .add (Dense (64, activation='tanh’))

» The APl is described in detail in the header of the file KerasMIp2Xml.py.
net2xml (net, output scaling bias=None,output scaling scal=None)

° net, obligatory, class of the trained model
° output scaling bias, optional, list (in case of several features), otherwise float or int
° output scaling scal, optional, list (in case of several features), otherwise float or int

o A string document is returned that can be saved as an XML.
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Export from MATLAB®

+ File: MatlabMIp2Xml.m

» Sample call: https://infosys.beckhoff.com/content/1033/tf38x0_tc3_ML_NN_Inference_Engine/
Resources/8746880267/.zip

» Requirements for the MATLAB® environment:
o MATLAB®
o Deep Learning Toolbox
» Supported activation functions: tanh, sigmoid, softmax, relu, linear/identity

» Supported models of the Deep Learning Toolbox: fitnet, patternnet

* ProcessFcns are supported by the types mapminmax and mapstd

* The use of ProcessFcns is optional

 If a ProcessFcn is used in the output layer, its activation function must be purelin

» The APl is described in detail in the header of the file MatlabMIp2Xml.m
MatlabMlp2Xml (net, fnstr, wvarargin)

* net, obligatory, class of the trained model

« fnstr, obligatory, string with path and file name
« output_scaling_bias, optional, vector

« output_scaling_scal, optional, vector

Direct XML export of an SVM

Export from Scikit-learn
* File: SciKitLearnSvm2Xml.py

« Sample call: https://infosys.beckhoff.com/content/1033/tf38x0_tc3_ML_NN_Inference_Engine/
Resources/8746882571/.zip

* Requirements for the Python environment:
o Python Interpreter: 3.6 or higher
o Scikit-learn: Version 0.22.0 or higher
o Matplotlib
o Numpy
» Only numerical class labels can be exported.
» Supported classes or models: SVC, NuSVC, OneClassSVM, SVR, NuSVR

o LinearSVR and LinearSVC are not supported by the Exporter, but can alternatively be
implemented via the classes SVR and SVC, each with a linear kernel.

» Supported kernel functions: linear, rbf, sigmoid, polynomial

o Neither individual kernel functions nor precomputed functions are supported
* Remarks about model parameters:

o Gamma = scale is not supported

o Gamma = auto_deprecated: it is exported gamma = 0.0

o Gamma = auto: it is exported gamma = 1/n_features.

o C =infis not supported

o decision_function_shape = ovr is not supported. decision_function_shape = ovo must be used.
Default in Scikit-learn is ovr!

o break_ties is ignored because decision_function_shape = ovr is not supported.

* The API is described in detail in the header of the file SciKitLearnSvm2Xml.py.
svm2xml (svm, input scaling bias=None, input scaling scal=None)

° net, obligatory, class of the trained model
° input scaling bias, optional, list (in case of several features), otherwise float or int
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° input scaling scal, optional, list (in case of several features), otherwise float or int

o A string document is returned that can be saved as an XML.

9.3.1 XML Exporter - samples

Small samples of the use of the XML Exporter [P 97] provided by Beckhoff can be downloaded here.

» Export of an MLP from Keras/TensorFlow: https://infosys.beckhoff.com/content/1033/
tf38x0_tc3_ML_NN_Inference_Engine/Resources/8746685963/.zip

 Export of an MLP from MATLAB®: https://infosys.beckhoff.com/content/1033/
tf38x0_tc3_ML_NN_Inference_Engine/Resources/8746880267/.zip

» Export of an SVM from Scikit-learn: https://infosys.beckhoff.com/content/1033/
tf38x0_tc3_ML_NN_Inference_Engine/Resources/8746882571/.zip
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