
Manual | EN

TF3500
TwinCAT 3 | Analytics Logger

2025-01-15 | Version: 1.2.2

Table of contents

TF3500 3Version: 1.2.2

Table of contents
1 Foreword.. 5

1.1 Notes on the documentation ... 5
1.2 For your safety .. 6
1.3 Notes on information security.. 7

2 Overview .. 8

3 Installation ... 9
3.1 System requirements .. 9
3.2 Licensing ... 9

4 Analytics Workflow - First Steps ... 12
4.1 Recording data from the machine ... 12
4.2 Communication ... 15
4.3 Historicize data.. 16
4.4 Analyse data ... 23
4.5 24h Analytics application... 28

5 Technical introduction.. 37
5.1 Basic Concepts ... 37
5.2 MQTT basics... 38
5.3 Data Compression .. 44

6 Configuration... 45
6.1 Basic settings .. 45

6.1.1 TLS... 47
6.1.2 Timestamp correction... 50
6.1.3 Device-specific information .. 52

6.2 Data Streams .. 53
6.2.1 Data Handling .. 56

7 API .. 59
7.1 PLC ... 59

7.1.1 Analytics Communication Library... 59
7.1.2 Obsolete... 82

7.2 Automation Interface ... 83

8 Samples ... 84

9 Appendix.. 85
9.1 FAQ - frequently asked questions and answers ... 85

Table of contents

TF35004 Version: 1.2.2

Foreword

TF3500 5Version: 1.2.2

1 Foreword

1.1 Notes on the documentation
This description is intended exclusively for trained specialists in control and automation technology who are
familiar with the applicable national standards.
It is absolutely necessary to comply with the documentation and the following notes and explanations when
installing and commissioning the components.
The trained specialists must always use the current valid documentation.

The trained specialists must ensure that the application and use of the products described is in line with all
safety requirements, including all relevant laws, regulations, guidelines, and standards.

Disclaimer

The documentation has been compiled with care. The products described are, however, constantly under
development.
We reserve the right to revise and change the documentation at any time and without notice.
Claims to modify products that have already been supplied may not be made on the basis of the data,
diagrams, and descriptions in this documentation.

Trademarks

Beckhoff®, TwinCAT®, TwinCAT/BSD®, TC/BSD®, EtherCAT®, EtherCAT G®, EtherCAT G10®, EtherCAT P®,
Safety over EtherCAT®, TwinSAFE®, XFC®, XTS®, and XPlanar® are registered and licensed trademarks of
Beckhoff Automation GmbH.
If third parties make use of the designations or trademarks contained in this publication for their own
purposes, this could infringe upon the rights of the owners of the said designations.

Patents

The EtherCAT Technology is covered by the following patent applications and patents, without this
constituting an exhaustive list:
EP1590927, EP1789857, EP1456722, EP2137893, DE102015105702
and similar applications and registrations in several other countries.

EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH,
Germany

Copyright

© Beckhoff Automation GmbH & Co. KG, Germany.
The distribution and reproduction of this document, as well as the use and communication of its contents
without express authorization, are prohibited.
Offenders will be held liable for the payment of damages. All rights reserved in the event that a patent, utility
model, or design are registered.

Third-party brands

Third-party trademarks and wordmarks are used in this documentation. The trademark endorsements can be
found at: https://www.beckhoff.com/trademarks

https://www.beckhoff.com/trademarks

Foreword

TF35006 Version: 1.2.2

1.2 For your safety
Safety regulations

Read the following explanations for your safety.
Always observe and follow product-specific safety instructions, which you may find at the appropriate places
in this document.

Exclusion of liability

All the components are supplied in particular hardware and software configurations which are appropriate for
the application. Modifications to hardware or software configurations other than those described in the
documentation are not permitted, and nullify the liability of Beckhoff Automation GmbH & Co. KG.

Personnel qualification

This description is only intended for trained specialists in control, automation, and drive technology who are
familiar with the applicable national standards.

Signal words

The signal words used in the documentation are classified below. In order to prevent injury and damage to
persons and property, read and follow the safety and warning notices.

Personal injury warnings

 DANGER
Hazard with high risk of death or serious injury.

 WARNING
Hazard with medium risk of death or serious injury.

 CAUTION
There is a low-risk hazard that could result in medium or minor injury.

Warning of damage to property or environment

NOTICE
The environment, equipment, or data may be damaged.

Information on handling the product

This information includes, for example:
recommendations for action, assistance or further information on the product.

Foreword

TF3500 7Version: 1.2.2

1.3 Notes on information security
The products of Beckhoff Automation GmbH & Co. KG (Beckhoff), insofar as they can be accessed online,
are equipped with security functions that support the secure operation of plants, systems, machines and
networks. Despite the security functions, the creation, implementation and constant updating of a holistic
security concept for the operation are necessary to protect the respective plant, system, machine and
networks against cyber threats. The products sold by Beckhoff are only part of the overall security concept.
The customer is responsible for preventing unauthorized access by third parties to its equipment, systems,
machines and networks. The latter should be connected to the corporate network or the Internet only if
appropriate protective measures have been set up.

In addition, the recommendations from Beckhoff regarding appropriate protective measures should be
observed. Further information regarding information security and industrial security can be found in our
https://www.beckhoff.com/secguide.

Beckhoff products and solutions undergo continuous further development. This also applies to security
functions. In light of this continuous further development, Beckhoff expressly recommends that the products
are kept up to date at all times and that updates are installed for the products once they have been made
available. Using outdated or unsupported product versions can increase the risk of cyber threats.

To stay informed about information security for Beckhoff products, subscribe to the RSS feed at https://
www.beckhoff.com/secinfo.

https://www.beckhoff.com/secguide
https://www.beckhoff.com/secinfo
https://www.beckhoff.com/secinfo

Overview

TF35008 Version: 1.2.2

2 Overview
The TwinCAT Analytics Logger records process and application data of the machine controller in
synchronization with task cycles. The logger is characterized by its high performance as it operates directly
in the real-time context of the TwinCAT controller.

The TwinCAT Analytics Logger may either act as an MQTT client and transmit the data to a MQTT message
broker on a regular basis (called MQTT-mode) or store the data locally in a file on the hard disk of the
machine controller (called file-mode). The configuration required is performed in Microsoft Visual Studio®. All
variables of the process image and the PLC application can be added easily to the configuration via check
boxes without the need for programming.

When used as an MQTT Client the Logger is able to bypass short disconnects to the Message Broker using
a ring buffer functionality to prevent loss of data temporarily. Used in file-mode, a ring buffer can also be
configured, which may be useful in case of limited storage capacity or if there is no need for data to be
recorded (henceforth referred to as logged) permanently, instead focusing on a fixed time interval.

The logged data may be used in various ways but its main intention is data analysis with TwinCAT Analytics
as wells as data visualization with TwinCAT Scope.

Components
• Configuration surface in TwinCAT project tree
• Description files TcAnalytics.tmc and TcIotBase.tmc
• Drivers TcAnayltics.sys and TcIotDrivers.sys

List of key features

Functionality TC3 Analytics Logger as MQTT Client TC3 Analytics Logger for local storage
Programable
record control

Yes Yes

Configuration
Interface

Yes Yes

RT Context Yes Yes
MQTT Yes No
Analytics Binary
Format

Yes Yes

JSON Format No No
File Storage No Yes
Ring Buffer Yes Yes
Authentication Yes No
Encryption Yes Yes
Compression Yes Yes

Installation

TF3500 9Version: 1.2.2

3 Installation
The TwinCAT Analytics Logger is installed with TwinCAT XAE and XAR. Therefore, the Logger should
always be available but in order to use it, one “TC3 Analytics Logger” license per target device is needed
which may either be a permanent or a 7-day trial license.

For general information about licensing, please refer to the licensing paragraph below.

3.1 System requirements
Technical Data TF3500 TC3 Analytics Logger
Operating System Windows 10, WinCE, TwinCAT/BSD

PC (x86, x64 and ARM)
Min. TwinCAT Version 3.1.4022.31
Min. TwinCAT Level TC1100 TC3 | I/O

3.2 Licensing
The TwinCAT 3 function can be activated as a full version or as a 7-day test version. Both license types can
be activated via the TwinCAT 3 development environment (XAE).

Licensing the full version of a TwinCAT 3 Function

A description of the procedure to license a full version can be found in the Beckhoff Information System in
the documentation "TwinCAT 3 Licensing".

Licensing the 7-day test version of a TwinCAT 3 Function

A 7-day test version cannot be enabled for a TwinCAT 3 license dongle.

1. Start the TwinCAT 3 development environment (XAE).
2. Open an existing TwinCAT 3 project or create a new project.
3. If you want to activate the license for a remote device, set the desired target system. To do this, select

the target system from the Choose Target System drop-down list in the toolbar.
ð The licensing settings always refer to the selected target system. When the project is activated on

the target system, the corresponding TwinCAT 3 licenses are automatically copied to this system.
4. In the Solution Explorer, double-click License in the SYSTEM subtree.

ð The TwinCAT 3 license manager opens.

https://infosys.beckhoff.com/content/1033/tc3_licensing/117093592658046731.html?id=5546616718344501207
https://infosys.beckhoff.com/content/1033/tc3_licensing/3511048971.html

Installation

TF350010 Version: 1.2.2

5. Open the Manage Licenses tab. In the Add License column, check the check box for the license you
want to add to your project (e.g. "TF4100 TC3 Controller Toolbox").

6. Open the Order Information (Runtime) tab.
ð In the tabular overview of licenses, the previously selected license is displayed with the status

“missing”.
7. Click 7-Day Trial License... to activate the 7-day trial license.

ð A dialog box opens, prompting you to enter the security code displayed in the dialog.

8. Enter the code exactly as it is displayed and confirm the entry.
9. Confirm the subsequent dialog, which indicates the successful activation.

ð In the tabular overview of licenses, the license status now indicates the expiry date of the license.

Installation

TF3500 11Version: 1.2.2

10. Restart the TwinCAT system.
ð The 7-day trial version is enabled.

Analytics Workflow - First Steps

TF350012 Version: 1.2.2

4 Analytics Workflow - First Steps
This step by step documentation presents the complete TwinCAT Analytics workflow. From the data
acquisition over the communication and historizing up to the evaluation and analysis of the data and to the
presentation of the data in web-based dashboard.

4.1 Recording data from the machine
On the machine side is the Analytics Logger the recorder of process data from the machine image, PLC, NC
and so on. The Logger is working in the real-time context of TwinCAT.

The TwinCAT Analytics Logger is installed with TwinCAT XAE and XAR. The Logger can act as MQTT Client
to communicate the recorded data to a native MQTT Message Broker or store the data in the same data
format in a local binary file. By the usage as MQTT Client the Logger is able to bypass short disconnects to
the Message Broker with a ring buffer functionality. You can configure a ring buffer as well for the local
binary file storage.

• To configure the Analytics Logger you have to navigate in your existing TwinCAT Project to the
Analytics tree node

Analytics Workflow - First Steps

TF3500 13Version: 1.2.2

• Right click on this node and click on “Add Data Logger” to add one new instance to your configuration

• For configuring the base settings, please double click on the new tree item

You can make your specific Analytics Logger settings

 -Data Format: Binary file or MQTT stream

 -FILE format: Analytics Logger stores the data in local binary files and all other settings are not
necessary anymore. The files will be stored in C:\TwinCAT\3.1\Boot\Analytics.

 -BINARY: Data will be sent to the configured MQTT Message Broker. You can have multiple Logger in
one TwinCAT project to communicate data to different MQTT Message Broker.

 -Data Compression: on (default) or off

Analytics Workflow - First Steps

TF350014 Version: 1.2.2

 -Max Compression: mode of the compression

 -MQTT host name

 -MQTT Tcp port

 -MQTT main topic for own hierarchical levels to keep the identification easy

 -MQTT Client ID should be unique in the network

 -MQTT username

 -MQTT password to make authentication at the message broker

 -At the TLS (Transport Layer Security) tab, security settings can be configured. TLS is a secure
communication channel between client and server. By the usage of certificates, the TCP port 8883 is
exclusively reserved for MQTT over TLS. Analytics Logger is supporting the modes CA Certificates, CA
Certificates & Client Certificate and Preshared Key (PSK) mode.

• If variables in your PLC application are marked in the declaration with the attribute {attribute
'TcAnalytics'} they will be shown automatically as a stream below the Data Logger tree node.

An additional device stream will be shown if your configuration provides an EtherCAT Process Image.

Analytics Workflow - First Steps

TF3500 15Version: 1.2.2

• In the stream a Selection tab is available to choose the variables that should be recorded

• Finally it is possible to change the package size for the frames or to configure the ring buffer for
disconnects and file in the Data Handling tab.

4.2 Communication
Currently, the Analytics workflow is fully mappable via MQTT. The engineering tools can also access the
data of the machines via ADS and carry out analyzes.

Analytics Workflow - First Steps

TF350016 Version: 1.2.2

If you choose for the IoT communication protocol MQTT you have to setup a native MQTT Message Broker
somewhere in the network (VM in a cloud system is also possible). This Message Broker provides a
decoupling of the different applications in the Analytics Workflow.

4.3 Historicize data
After the TwinCAT Analytics Storage Provider has been installed, the service running in the background can
be configured. You will find the TwinCAT Analytics.StorageProvider.Configurator application in the folder C:
\TwinCAT\Functions\TF3520-Analytics-StorageProvider\Tools.

Analytics Workflow - First Steps

TF3500 17Version: 1.2.2

The main part of the topic can be defined in the configuration as well as the comment, which is used for
identification if more than one Storage Provider is registered with the message broker.

You can make the message broker settings and decide on a storage type:

• Analytics File (binary file)
• CSV file
• Microsoft SQL (binary / plain text)
• InlfuxDB (plain text)
• Microsoft Azure Blob (Azure Cloud required)

At last you can save the configuration and start the service. The next step is to configure the specific
recording. For this you should select the Storage Provider Manager in your development environment.

Analytics Workflow - First Steps

TF350018 Version: 1.2.2

With the Storage Provider Recorder recording definitions can be created, started and managed. In addition,
it is possible to manage the data memories of individual Analytics Storage Providers. All important properties
of the found Analytics Storage Providers and historized data are clearly displayed.

Analytics Workflow - First Steps

TF3500 19Version: 1.2.2

Toolbar Manager window ("OVERVIEW")

1 Add new broker
2 Remove selected broker
3 Refresh display
4 Collapse all nodes
5 View switch between dark/light mode

Function Manager window ("OVERVIEW")

First assign a "RecorderAlias". This helps to group the started recordings and to find its self started ones
again.

After that, one or more brokers can be set up. This is done via the already known input mask for MQTT
connection properties.

Analytics Workflow - First Steps

TF350020 Version: 1.2.2

Once a connection to the broker could be established, all Analytics Storage Providers connected to it will be
listed.

"Storage" status

1 Storage Online
2 Storage Offline
3 Storage starts
4 Storage starts with error. Still trying to start it
5 Storage is shut down
6 Storage is in the error state

Toolbar Manager window ("CONFIGURATIONS")

Analytics Workflow - First Steps

TF3500 21Version: 1.2.2

1 Create a new pipeline
2 Create a new pipeline with Rule Engine
3 Open Target Browser for connecting simple pipelines
4 Edit a selected pipeline
5 Delete a selected pipeline
6 Start a selected pipeline

Function Manager window ("CONFIGURATIONS")

The window is divided into two tabs. Pipelines and Live Status. Under Pipelines you will find the
configurations of your pipelines. You can define new pipelines from here. Edit existing. Delete or start.

To create a new simple pipeline, click the "Create new pipeline" button. The following dialog opens.

You can now drag and drop the symbols you want to record from the Target Browser into the dialog. You
also assign a Recording Alias and a Record Name.

Various placeholders are available for the Record Name:

Analytics Workflow - First Steps

TF350022 Version: 1.2.2

"{AutoID}"
"{Topic}"
"{SystemID}"
"{Layout}"
"{CycleTime}"
"{SampleSize}"
"{RecordStart}"

You can also configure recording names and a duration (otherwise the recording will run endlessly until it is
stopped manually). A ring buffer can be set according to storage space or time.

The entries are confirmed with OK and a new local recording definition is created.

It is now possible to start this definition directly via the toolbar or the context menu.

However, it is also possible to make the definition globally accessible. This can be done via the context
menu with the entry "Publish Recording".

The following dialog then opens:

Here you can now select the desired Analytics Storage Provider via which the definition is to be published. In
addition, the definition is assigned a Storage and a Data Broker of the selected Analytics Storage Provider.
After the selection, the recording definition is confirmed with OK and published to the selected Analytics
Storage Provider. This means that it can be found by any Storage Provider Manager that is connected to the
MQTT Broker.

After starting a pipeline, the view automatically jumps to the second tab, the Live Status.

Analytics Workflow - First Steps

TF3500 23Version: 1.2.2

All active recordings from all users are listed here. The recordings can be ended in this tab and it is also
possible to jump to the resulting record.

Use historized data

After and also during recording, you can select the historical data as input for your analysis in Target
Browser. In the Target Browser, you will find a new control on the right side for the historical data. There you
can select the timespan for your data.

4.4 Analyse data
ü Open your TwinCAT Engineering environment to start the data analysis.
1. Open Visual Studio® > File > New > Project…

Analytics Workflow - First Steps

TF350024 Version: 1.2.2

2. Select the Analytics project template from TwinCAT Measurement.

ð The new project is displayed in the Solution Explorer. After clicking the Analytics Project tree node
element a start window opens where you can select your first action. From here you can add a
network, open the Toolbox, open the Target Browser or open the Analytics Storage Provider
Recorder. In the following steps you will perform all these actions.

Analytics Workflow - First Steps

TF3500 25Version: 1.2.2

3. It makes sense to open the Toolbox of Visual Studio® first. There you will find all the algorithms
supported by TwinCAT Analytics. Algorithms need to be grouped and organized into networks. Right-
click Analytics Project to add a new network, or add a network using the start page. The first network is
always generated by default.

4. When you click on the network, an editor opens. Now you can drag and drop the desired algorithm into
the editor interface.

5. After selecting the algorithm, you need to connect input variables to the modules (algorithm). To do this,
open the Target Browser.
TwinCAT > Target Browser > Target Browser

6. Now select the TcAnalytics or TcAnalyticsFile tab in the Target Browser. Continue with the tab
TcAnalytics (MQTT).

Analytics Workflow - First Steps

TF350026 Version: 1.2.2

7. Click the icon highlighted in green in the toolbar of this Analytics extension. A window opens in which you
can specify the connectivity data of your message broker.

8. Select your MQTT Analytics client (TwinCAT Analytics Logger, TwinCAT IoT Data Agent or Beckhoff
EK9160). There is a unique ID for each control. This ID is displayed in the Target Browser.

9. Clicking on the gear icon, you will get to the Machine Administration page. Here you can assign a
system alias name that will be displayed in the Target Browser instead of the ID.

10. In the next step, you can choose between live data and historical data for each MQTT Analytics client. In
this case, the historical data is provided by the TwinCAT Analytics Storage Provider.

Analytics Workflow - First Steps

TF3500 27Version: 1.2.2

11. You can drag and drop the variables into the inputs of the specific algorithm. In most algorithms,
conditions such as thresholds, time intervals, logical operators etc. can be specified. These settings are
made in the middle of each module.

ð Finally, your first Analytics Project is complete. To start the analysis, click Start Analytics. To stop
the analysis, click Stop Analytics.

ð Before starting the analysis or during runtime, you can click the Add Reference Scope button. This
will automatically create a Scope configuration that matches your Analytics project.

Analytics Workflow - First Steps

TF350028 Version: 1.2.2

ð The analysis results can be displayed in the Scope View graphs using drag-and-drop. For example, a
mean value can be displayed as a new channel in the view. Timestamps as markers on the X-axes show
significant values.

4.5 24h Analytics application
The last major step in the TwinCAT Analytics workflow is the continuous 24-hour machine analysis. It runs in
parallel with the machine applications in the field. To make this very easy, the TwinCAT Analytics Workbench
can automatically generate PLC code and an HTML5-based dashboard of your Analytics configuration. Both
can be downloaded into a TwinCAT Analytics Runtime (TC3 PLC and HMI Server) and provide the same
analysis results as the configurator tool in the engineering environment.

ü First, save your configuration and open the Analytics Deploy Runtime Wizard. This can be done from the
context menu in the Analytics Project tree item or from the start page.

1. When the wizard is open, you can click through some tabs. The first one is called Solution. Here you can
decide how your Analytics project should be used in the PLC code: As...
completely new solution.

Analytics Workflow - First Steps

TF3500 29Version: 1.2.2

part of an existing solution.
update of an existing Analytics solution.

Analytics Workflow - First Steps

TF350030 Version: 1.2.2

2. In the TwinCAT PLC Target tab you can select the ADS target system that runs the TwinCAT Analytics
Runtime (TF3550). The created project is immediately executable. For this purpose you can set the
Activate PLC Runtime option. In addition, it can be selected that a boot project is created directly.

3. Especially for virtual machines, it is important to run the project on isolated cores, which is also an option
in this tab. The next tab Results is needed only if you have selected the Stream Results option in the
algorithm properties. If you want to send results, you can decide here in which way (locally in a file/
through MQTT) and which format (binary/JSON) this should be done. This is also generated
automatically and executed immediately after activation.

Analytics Workflow - First Steps

TF3500 31Version: 1.2.2

Downsampling of the results is possible by specifying a cycle time. The next tab is for the HMI
Dashboard. A prerequisite for the automatic generation of the dashboard is the selection of HMI
Controls for the corresponding algorithms whose results are to be displayed in the dashboard.

Analytics Workflow - First Steps

TF350032 Version: 1.2.2

4. You can choose different options for your Analytics Dashboard, such as a start page with a map, layouts,
sorting algorithms, custom colors and logos. If you select multiple languages for the Analytics Controls, a
language switching menu will also be generated.

Analytics Workflow - First Steps

TF3500 33Version: 1.2.2

5. Select one of the installed versions of Visual Studio® and, whether the instance should start visibly or
just be set up and activated in the background.

Analytics Workflow - First Steps

TF350034 Version: 1.2.2

ð At last you can find an overview.

Analytics Workflow - First Steps

TF3500 35Version: 1.2.2

6. Now you can click the Deploy button to start the generation process. The PLC project and the HMI
dashboard are now generated.

Analytics Workflow - First Steps

TF350036 Version: 1.2.2

ð After the "Deploy Runtime succeeded" message, you will find a new Visual Studio®/XAE shell instance
on your desktop. The new Solution and both projects are created.

Technical introduction

TF3500 37Version: 1.2.2

5 Technical introduction

5.1 Basic Concepts
Variables and Datatypes

There are several types of variables that can be logged. Variables that are part of:

• PLC or NC process images
• PLC programs
• process images of devices e.g. an EtherCAT master and
• data areas of generic TcCom objects.

Moreover, they may be of any datatype defined in IEC 61131 or the C++ standard in case of generic TcCom-
objects.

Structured datatypes may recursively contain other structured datatypes and may be logged as a whole or
partially. For more information on this topic, refer to the Configuration section.

Modes of Operation

This documentation makes use of the terminology and concepts described in the MQTT-section. Please
refer to that section for general information about the protocol.

A key concept of TwinCAT Analytics are streams, which form the basic unit of transaction between a data
source and destination. One data logger can control several streams.

A stream may comprise four components:

• stream description
• stream Tx-description
• symbol info
• and stream data.

In MQTT-mode, Analytics participants coordinate by means of the first three components using an MQTT
broker and a specific MQTT topic for each component. The topics are generally structured as illustrated in
the following table, whereat <>-brackets indicate variables as opposed to the other parts that are fixed.

Component Topic Structure Format Purpose
Description <MainTopic>/<StreamTopic>/Desc JSON Informs if there is a stream source online

or offline. Includes timestamp of info.
Tx-
Description

<MainTopic>/<StreamTopic>/Bin/Tx/
Desc

JSON Informs about the transmission
parameters when a stream source is
active transmitting data.

Symbol Info <MainTopic>/<StreamTopic>/Bin/Tx/
Symbols

Binary Contains meta information about the
variables i.e. excluding the actual value.

Data <MainTopic>/<StreamTopic>/Bin/Tx/Data Binary Contains the plain variable values.

The main topic is the only subtopic that can freely be set by the user.

A stream can be started and stopped. The system manager configuration allows a stream to be started by
default as soon as TwinCAT starts in run-mode. Additionally, streams can be started and stopped from PLC
code.

When connected to a broker, the logger first sends the stream description followed by the Tx-description and
symbol info as soon as the stream starts. This enables recipients to take all measures that are needed
before data arrives. Finally, data is sent cyclically.

Technical introduction

TF350038 Version: 1.2.2

For the file-mode, the TwinCAT Boot directory on the target device is used as a base for a dedicated
Analytics directory, which in turn contains one subdirectory per stream as soon as the respective TwinCAT
project has been activated. Inside the stream’s directory, a dedicated .tas-file holds the symbol info
whereas .tay-files, which are created cyclically, contain the stream data.

Relation of Logger and Streams

One data logger can control several streams. As will be described more detailed in the Configuration section
a user can add one or more data loggers to the Analytics configuration. Streams then are added
automatically, depending on what variables are available to be logged. To understand how streams are
assigned to a logger it is useful to understand that every stream has specific characteristics. One
characteristic, the cycle time, comes from the fact that every variable that is acted upon cyclically is subject
to a cyclic task; therefore, cycle times that underlie different variables can vary. Since a stream has a fixed
cycle time by definition and to decouple tasks with the same cycle time, one stream is created for every task
that drives relevant variables. Additionally, it is purposeful to further divide streams depending on the stream
source, meaning the origin PLC instance or TcCom object. This enables users to send variables of different
sources to different MQTT topics and start/stop the transmission independently. Eventually it all comes down
to the following scheme:

For every stream source and every task that drives variables of that source, a stream is created.

When configuring the data logger, there are configuration parameters that all streams have in common and
those that are stream specific. The logger specifies the destination, the compression method, MQTT
credentials etc. whereas e.g. the data size and start/stop-functionality are stream specific.

In most cases it might not be necessary to send or write data every task cycle, so the data of a stream
recorded in a cycle, a so-called sample, can be buffered before sending it to the broker or writing it to file.
The number of samples in a buffer and thus the cycle time of a buffer being sent/written can be configured.
Moreover, the number of buffers in a file and thus the file size can be configured.

5.2 MQTT basics
MQTT (Message Queueing Telemetry Transport) is a publisher/subscriber-based communication protocol
which enables message-based transfer between applications. The message broker is a central component
of this transfer type. It distributes messages between the individual applications or the sender and receiver of
a message. The message broker decouples the sender and receiver, so that it is not necessary for the
sender and receiver to know and exchange each other's address information. During sending and receiving,
all communication devices contact the message broker, which handles the distribution of the messages.

Technical introduction

TF3500 39Version: 1.2.2

ClientID

When establishing a connection with the message broker, the client transmits a ClientID, which is used to
uniquely identify the client on the message broker. The MQTT communication driver from TwinCAT 3
automatically generates its own ClientID, which is based on the following naming scheme:

PlcProjectName-TcMqttClient%n

%n is an incremental counter for the number of the respective MQTT client instance. Each instance of the
FB_IotMqttClient function block increments this counter. In most cases, using this ClientID format is
sufficient. In special cases, e.g. depending on the message broker or also due to the own MQTT application,
an application-specific ClientID must be assigned. This can be done via a corresponding input at the
FB_IotMqttClient and FB_IotMqtt5Client function blocks.

If a unique ClientID is to be generated automatically at the start of the PLC project, the use of a GUID is
recommended, which can be generated via the FB_CreateGuid function block from the Tc2_System library.
The following sample code illustrates the use of this function block.
PROGRAM MAIN
VAR
 fbGuid : FB_CreateGUID;
 objGuid : GUID;
 sGuid : STRING;
 nState : UINT;
 bStart : BOOL; // set to TRUE to start this sample
END_VAR

CASE nState OF
 0 :
 IF bStart THEN
 bStart := FALSE;
 nState := nState + 1;
 END_IF

 1 : // create GUID using FB_CreateGuid from Tc2_System library
 fbGuid(bExecute := TRUE, pGuidBuffer := ADR(objGuid), nGuidBufferSize := SIZEOF(objGuid));
 IF NOT fbGuid.bBusy THEN
 fbGuid(bExecute := FALSE);

Technical introduction

TF350040 Version: 1.2.2

 IF NOT fbGuid.bError THEN
 nState := nState + 1;
 ELSE
 nState := 255; // go to error state
 END_IF
 END_IF

 2: // GUID has been created, now convert to STRING
 sGuid := GUID_TO_STRING(objGuid);
 nState := nState + 1;

 3: // done

255: // error state

END_CASE

After execution of this State Machine, the variable sGuid contains the generated GUID as STRING. This can
then be used at the FB_IotMqttClient and FB_IotMqtt5Client function blocks as ClientID.

Payload

The content of an MQTT message is referred to as payload. Data of any type can be transferred, e.g. text,
individual numerical values or a whole information structure.

Message payload formatting
Note that the data type and the formatting of the content must be known to the sender and receiver
side, particularly when binary information (alignment) or strings (with or without zero termination)
are sent.

Topics

If a message broker is used that is based on the MQTT protocol, sending (publish mode) and subscribing
(subscribe mode) of messages is organized with the aid of so-called topics. The message broker filters
incoming messages based on these topics for each connected client. A topic may consist of several levels;
the individual levels are separated by “/”.

Example: Campus / Building1 / Floor2 / Room3 / Temperature

When a publisher sends a message, it always specifies for which topic it is intended. A subscriber indicates
which topic it is interested in. The message broker forwards the message accordingly.

Technical introduction

TF3500 41Version: 1.2.2

Communication example 1 from the diagram above:

• An application subscribes to “topic1”.
• A controller publishes a message to “topic1”.
• The message broker forwards the message to the application accordingly.

Communication example 2 from the diagram above:

• A controller subscribes to “topic2”.
• An application publishes a message to “topic2”.
• The message broker forwards the message to the controller accordingly.

Wildcards

It is possible to use wildcards in conjunction with topics. A wildcard is used to represent part of the topic. In
this case a subscriber may receive messages from several topics. A distinction is made between two types
of wildcards:

• Single-level wildcards
• Multi-level wildcards

Example for single-level wildcard:

The + symbol describes a single-level wildcard. If it is used by the subscriber as described below, for
example, corresponding messages to the topics are either received by the subscriber or not.

• The receiver subscribes to Campus/Building1/Floor2/+/Temperature
• The publisher sends to Campus/Building1/Floor2/Room1/Temperature - OK
• The publisher sends to Campus/Building1/Floor2/Room2/Temperature - OK
• The publisher sends to Campus/Building42/Floor1/Room1/Temperature - NOK
• The publisher sends to Campus/Building1/Floor2/Room1/Fridge/Temperature - NOK

Example for multi-level wildcard:

Technical introduction

TF350042 Version: 1.2.2

The # symbol describes a multi-level wildcard. If it is used by the subscriber as described below, for
example, corresponding messages to the topics are either received by the subscriber or not. The # symbol
must always be the last symbol in a topic string.

• The receiver subscribes to Campus/Building1/Floor2/#
• The publisher sends to Campus/Building1/Floor2/Room1/Temperature - OK
• The publisher sends to Campus/Building1/Floor2/Room2/Temperature - OK
• The publisher sends to Campus/Building42/Floor1/Room1/Temperature - NOK
• The publisher sends to Campus/Building1/Floor2/Room1/Fridge/Temperature - OK
• The publisher sends to Campus/Building1/Floor2/Room1/Humidity - OK

QoS (Quality of Service)

QoS is an arrangement between the sender and receiver of a message with regard to guaranteeing of the
message transfer. MQTT features three different levels:

• 0 – not more than once
• 1 – at least once
• 2 – exactly once

Both types of communication (publish/subscribe) with the message broker must be taken into account and
considered separately. The QoS level that a client uses for publishing a message is set by the respective
client. When the broker forwards the message to client that has subscribed to the topic, the subscriber uses
the QoS level that was specified when the subscription was established. This means that a QoS level that
may have been specified as 2 by the publisher can be “overwritten” with 0 by the subscriber.

QoS-Level 0

At this QoS level the receiver does not acknowledge receipt. The message is not sent a second time.

QoS-Level 1

At this QoS level the system guarantees that the message arrives at the receiver at least once, although the
message may arrive more than once. The sender stores the message internally until it has received an
acknowledgement from the receiver in the form of a PUBACK message. If the PUBACK message fails to
arrive within a certain time, the message is resent.

Technical introduction

TF3500 43Version: 1.2.2

QoS-Level 2

At this QoS level the system guarantees that the message arrives at the receiver no more than once. On the
MQTT side this is realized through a handshake mechanism. QoS level 2 is the safest level (from a message
transfer perspective), but also the slowest. When a receiver receives a message with QoS level 2, it
acknowledges the message with a PUBREC. The sender of the message remembers it internally until it has
received a PUBCOMP. This additional handshake (compared with QoS 1) is important for avoiding duplicate
transfer of the message. Once the sender of the message receives a PUBREC, it can discard the initial
publish information, since it knows that the message was received once by the receiver. In other words, it
remembers the PUBREC internally and sends a PUBREL. Once the receiver has received a PUBREL, it can
discard the previously remembered states and respond with a PUBCOMP, and vice versa. Whenever a
package is lost, the respective communication device is responsible for resending the last message after a
certain time.

The LastWill is a message sent by the broker to all clients subscribed to the matching topic in the event of an
abnormal connection failure. If the MQTT client in the PLC loses the connection to the broker and a LastWill
was stored when the connection was established, this LastWill is communicated by the broker without the
client having to do it.

In the event of a planned disconnect, the LastWill is not necessarily transmitted according to the
specification. From the PLC programmer's point of view, he can decide whether he wants to publish the
LastWill before calling the disconnect. To this end, the LastWill message is published again on the LastWill
topic. This is necessary because the broker would not publish the LastWill message due to the regular
disconnection.

In the event of a TwinCAT context change and a resulting restart of the MQTT communication, the IoT driver
sends the previously specified LastWill to the broker, because at this point, doing this from the PLC is not an
option. If no LastWill was defined when the connection was established, no message will be transmitted
before the disconnect.

Safety

When a connection to the message broker is established, security mechanisms such as TLS can be used to
encrypt the communication connection or to execute authentication between client and message broker.

Technical introduction

TF350044 Version: 1.2.2

Sources

For further and more detailed information about MQTT, we recommend the following sites:

HiveMq Blog: http://www.hivemq.com/blog/mqtt-essentials/ (the main basis for this article)

5.3 Data Compression
In order to reduce the amount of data to be sent without reducing the amount of information and thus
enhance the performance, a compression method derived from the Run Length Encoding method can be
used. It utilizes the fact, that data of two consecutive samples in a buffer may not vary in parts. Thus knowing
what parts of a previously sent buffer are equal in conjunction with the varying data, a recipient can
reconstruct the next buffer without the need to receive the whole buffer. After sending the first buffer
uncompressed, the logger constructs the compressed buffer by comparing user-specified units of data (e.g.
every byte, every 8 byte etc.) one after another. The logger counts the amount of data units (called
Compression Compare Width) that are equal and places this information in the buffer instead of the data.
Dependent on the kind of data this can lead to a data saving or overhead. To decide whether a compression
is purposeful or not the user is provided with a data compression saving value, which can be found on the
Online-tab of every stream dialog window. A positive value indicates saving and a negative value indicates
overhead.

http://www.hivemq.com/blog/mqtt-essentials/

Configuration

TF3500 45Version: 1.2.2

6 Configuration

6.1 Basic settings
To configure the TwinCAT Analytics Logger the user is provided with a dedicated Analytics configuration
inside of a XAE project.

To add a data logger choose the respective item in the context menu of this configuration node.

Configuration

TF350046 Version: 1.2.2

This may either result in the additional Data Logger node alone or subordinate stream nodes in case there
already are variables that can be logged.

By double clicking the new Data Logger node the editor window will be open. In the Parameter tab you can
make your specific Analytics Logger settings.

Configuration

TF3500 47Version: 1.2.2

• Data Format: Here the user can choose between IOT_FORMAT_FILE and IOT_FORMAT_BINARY.
By using the FILE format the Analytics Logger stores the data in local binary files. The files will be
stored in C:\TwinCAT\3.1\Boot\Analytics. By using MQTT_BINARY the data will send to the configured
MQTT Message Broker.

• Data Compression: Data compression can be switched on and off here.
• Max. Compression Compare Width: Sets the compression mode.
• MQTT Host Name: Provide here the host name or IP address of your native MQTT Message Broker.
• MQTT Tcp Port: Set the Tcp port for the communication here. Default MQTT port: 1883
• MQTT Main Topic: It is possible to provide an own and individual main topic. Sample: Beckhoff/Verl/

Production/Drives/Machine5 – the Analytics Logger will add automatically his own specific subtopics:
Beckhoff/Verl/Production/Drives/Machine5/Bin/Tx/Data

• MQTT Client ID: The client identifier is an identifier of each MQTT client connecting to a native MQTT
Message Broker. It should be unique per Broker.

• MQTT User Name: MQTT allows to send a username for authenticating the client.
• MQTT Password: MQTT also allows to send a password for authenticating the client and

authorization.

It is possible to have multiple Logger in one TwinCAT project to communicate data to different MQTT
Message Broker or to have partly a storage in a local binary file.

6.1.1 TLS
TLS (Transport Layer Security) provide a secure communication channel between a client and a server. At
its core, TLS is cryptographic protocols which use a handshake mechanism to negotiate various parameters
to create a secure connection between the client and the server. The TwinCAT Analytics Logger is
supporting TLS version 1.2.

MQTT communication with TLS
By the usage of certificates the TCP port 8883 is exclusively reserved for MQTT over TLS!

On the TLS tab of the Data Logger your first choice is the TLS Mode in a drop down box. Depending on the
Message Broker it is possible to use different TLS mechanism/modes. The Analytics Logger is supporting
the modes CA Certificates, CA Certificates & Client Certificate and the Preshared Key (PSK) mode.

Configuration

TF350048 Version: 1.2.2

CA Certificate

Encryption and authentication via TLS can also be accomplished through a certificate authority (CA). The CA
provides a signature via the public key for all communication clients. In this case an MQTT client connect to
a Message Broker without a dedicated client certificate.

Configuration

TF3500 49Version: 1.2.2

CA Certificate & Client Certificate

Encryption and authentication via TLS can also be accomplished through a certificate authority (CA). The CA
provides a signature via the public key for the message broker (the so-called server key) and usually also for
all connecting clients. All communication devices can then trust each other, because the issuing certificate
authority is trusted.

Preshared Key (PSK)

The TLS PreSharedKey (PSK) method offers a simple option for realizing encryption between client and
message broker. Client and broker recognize a common password, which is used to encrypt and decrypt the
packages.

Configuration

TF350050 Version: 1.2.2

6.1.2 Timestamp correction
The TwinCAT time, which is used by default for timestamps in the Data Logger, deviates more and more
from the actual system time the longer a controller is in run mode. This is due to the fact that different
hardware counters are used as clock generators. With the concept of timestamp correction, which TwinCAT
offers, it is possible to append corrected timestamps to the recorded samples. The correction using the
External Time Provider, which TwinCAT provides, can be made both in relation to an external time source
via NTP (Network Time Protocol) and in relation to the EtherCAT Distributed Clock via PTP (Precision Time
Protocol).

The settings for timestamp correction can be found under the Data Logger project node in the tab Time
Source.
If the desired Precision Category is selected, any External Time Provider is displayed. If none exists yet, a
provider can be created via the button Create.

https://infosys.beckhoff.com/index.php?content=../content/1033/tc3_grundlagen/10696056971.html

Configuration

TF3500 51Version: 1.2.2

This then appears in the project under the TcCom-Objects node, which you can access via the button
Config.

Here you should ensure that the Task that controls the Time Provider object is selected in the Context tab.

Configuration

TF350052 Version: 1.2.2

In addition, the cycle time of the provider's synchronization with the NTP server and the server host name
can be set via the Init parameter.

This creates timestamp corrections that the Logger uses to correct an offset resulting from the difference
between the TwinCAT time and the NTP-synchronous time.

6.1.3 Device-specific information
You can enter information about the control device under the Analytics project node in the tab Device Info.
This includes the address, coordinates and a system-ID alias, which makes it easier for the user to identify
the device in the analytics workflow.

Configuration

TF3500 53Version: 1.2.2

This information is sent as part of the Stream Description on the corresponding MQTT topic and is the same
for all Data Loggers and Streams.

6.2 Data Streams
If variables are available for recording they will be shown automatically as a so called Stream. At the moment
it is possible to record data directly from the EtherCAT process image or from the PLC application.

PLC Application:

If variables from PLC should recorded by the Analytics Logger, the user must set an attribute in front of each
variable in the variable declaration.

The attribute syntax is: {attribute 'TcAnalytics'}

Configuration

TF350054 Version: 1.2.2

As already described a new stream is automatically add to the Analytics Logger configuration after rebuild
of the PLC project. In the stream a Selection tab is available to choose finally the variables by checkboxes
who should be recorded.

Process Image:

If an EtherCAT process image is available in the given configuration, an additional stream will be shown
under the Data Logger tree node.

Configuration

TF3500 55Version: 1.2.2

On the Selection tab the user can choose again the values who should be recorded by the Analytics Logger.

Configuration

TF350056 Version: 1.2.2

Start Record

With the activation of the TwinCAT configuration the Analytics Logger starts logging. Depending on the basic
settings to a MQTT Message Broker or into a local binary file. By the given format there are different settings
possibilities on the Data Handling tab of each Stream. See therefore the following chapter.

6.2.1 Data Handling
You can set general settings for the package size for the recorded data in the Handling Data tab. Additional
settings may be present, dependent on the given data format.

Autostart Stream: Sets whether the stream should start automatically as soon as TwinCAT switches to Run
mode. If this option is not chosen, the stream can be started via a PLC program.

Data size: This is a write-protected, automatically determined value that states the size of the given variable
selection for this stream, i.e. the sample size.

Configuration

TF3500 57Version: 1.2.2

Max ADS Buffer: You can set the number of buffered samples before writing to file or sending to Message
Broker here. With a sample rate of 1 ms and 32 samples per buffer, the Analytics Logger needs 32 ms
before it sends the buffer via MQTT or writes it to a file. This is an individual setting that is dependent on the
system resources.

Sampling divider: This allows you to reduce the sampling rate, which can be determined by dividing the
inverses of the task cycle time by the value specified here.

Data format: MQTT

If the data format is IOT_FORMAT_BINARY, an additional checkbox can be activated for queuing messages
when the connection is broken.

File Store: If this option is activated the queued messages will stored in a temporary file on the hard disk.
Otherwise the data will be stored in the RAM when connection to the Message Broker is broken.

Queue Size: This is the number of the configured ADS Buffer which should be stored in the event of a lost
connection.

Data format: File

If the IOT_FORMAT_FILE data format is selected, a number of other setting options are available.

Configuration

TF350058 Version: 1.2.2

Max File Size: The maximum number of buffers that can be written to a file before a new file is started can
be specified here. This results in a maximum file size. The files will be stored under C:
\TwinCAT\3.1\Boot\Analytics.

File Directory: An Analytics subfolder is created by default in C:\TwinCAT\3.1\Boot\
(%TC_BOOTPRJPATH%) for each stream. A subfolder containing a .tas file (symbols) and the .tay files
(data) is created for each stream. The path to the folder that the Analytics directory should be stored in can
be defined here.

Max. unconfirmed: Specifies how many ADS requests may accumulate while writing files that do not have a
corresponding ADS confirmation. This parameter enables flow control to prevent an overflow of the ADS
router queues. It can usually remain at the pre-set value. However, if a large number of write operations
occur in a short period of time and the router is also under further load at the same time, this can lead to
overfilled queues, which is indicated by error messages.

Ring Buffer: Activates a ring buffer where the binary files are buffered. Each time TwinCAT is restarted, the
current content is transferred to a backup folder and a new ring buffer is started, which overwrites the
content of the backup folder.

File Count: The File Count parameter is used to state a number of files that should be part of the ring buffer.
The ring buffer time depends on the given Max File Size.

API

TF3500 59Version: 1.2.2

7 API

7.1 PLC

7.1.1 Analytics Communication Library

7.1.1.1 Overview
The TwinCAT Analytics Communication Library is a PLC library that provides the user with an interface to
the Analytics Logger and its counterpart, the Analytics Stream Helper. This enables you to start, stop and
reconfigure an Analytics Stream from the PLC code during runtime. For example, you can change the
endpoint, a directory or a message broker from within the application. This opens up many new application
possibilities for your Analytics application.

Product components
• Driver TcAnalytics.sys
• PLC library Tc3AnalyticsCommunication.compiled-library

7.1.1.2 Installation
The TwinCAT Analytics Communication Library is installed with TwinCAT XAE and XAR version >= 4024.47.
It should therefore always be available. No separate license is required to use it, but the Analytics Logger
requires a TF3500 TwinCAT 3 Analytics Logger license, either perpetual or as a 7-day license.

7.1.1.3 PLC API

7.1.1.3.1 Function blocks

7.1.1.3.1.1 FB_ALYC_MqttStream
This function block represents an Analytics MQTT stream. The connection to a stream can be established
using the ObjectId as an input variable. The requirement is an existing stream, e.g. created in the System
Manager under the Data Logger node in the project tree. The stream can be controlled using the Start/Stop
methods and reconfigured using Reconfigure. A structure of the type ST_ALYC_MqttStreamConfig
containing the new configuration parameters is transferred to the method for this purpose. During
reconfiguration, starting from the OP state, the TcCom states SAFEOP, PREOP, SAFEOP, OP are run
through in this order. Since all states below SAFEOP no longer run in real-time mode, but the remaining
TwinCAT runtime does, the reconfiguration must take place asynchronously to the task cycle, whereby the
Reconfig method should be called cyclically as long as the OP state is not reached again. The properties
bConnected, bStarted etc. provide information about the current state of the stream. Errors can be recorded
via the bError output and the corresponding ipResultMessage.

Definition:
FUNCTION_BLOCK FB_ALYC_MqttStream
VAR_INPUT
 {attribute 'tcinitsymbol'}
 nObjectID : OTCID := 0;
END_VAR
VAR_OUTPUT
 bInitialized : BOOL := FALSE;
 bError : BOOL := FALSE;
 ipResultMessage : I_TcMessage := fbResult;
 eReconfigState : E_ALYC_ReconfigState := E_ALYC_ReconfigState.DONE;
END_VAR

API

TF350060 Version: 1.2.2

 Inputs

Name Type Description
nObjectID OTCID TcCom-Object ID of the referenced stream. This can be

initialized under the 'Init symbols' tab of the corresponding
PLC instance node in the System Manager project tree.

Outputs

Name Type Description
bInitialized BOOL TRUE if the function block is initialized and can be used.

Initialization takes place automatically after TwinCAT is set
to run mode.

bError BOOL TRUE if an error has occurred.
ipResultMessage I_TcMessage Message EventLogger
eReconfigState E_ALYC_ReconfigState The state of the state machine during reconfiguration.

Methods

Name Return type Description
Reconfigure BOOL Reconfigure the stream. Parameter:

ST_ALYC_MqttStreamConfig. TRUE if successful.
Start BOOL Start the stream. TRUE if successful.
Stop BOOL Stop the stream. TRUE if successful.

Properties

Name Type Direction Description
bConnected BOOL get TRUE if MQTT connection exists.
bStarted BOOL get TRUE if stream started.
nDataSize UDINT get Sample data size
nSamplesIssued ULINT get Number of samples that have been written.
nSamplesLost ULINT get Number of discarded samples.
tCycleTime LTIME get Cycle time in ns
nCompDataSaving DINT get Percentage of data volume saved compared to the

uncompressed alternative. If negative, there is additional
work instead of data savings.

7.1.1.3.1.2 FB_ALYC_FileStream
This function block represents an Analytics Stream in file mode. The connection to a stream can be
established using the ObjectId as an input variable. The requirement is an existing stream that is in file
mode, e.g. created in the System Manager under the Data Logger node in the project tree. The symbols that
are to be logged must also be configured via the System Manager.

The stream can be controlled using the Start/Stop methods and reconfigured using Reconfigure. A structure
of the type ST_ALYC_FileStreamConfig containing the new configuration parameters is transferred to the
method for this purpose. During reconfiguration, starting from the OP state, the TcCom states SAFEOP,
PREOP, SAFEOP, OP are run through in this order. Since all states below SAFEOP no longer operate in
real-time mode, but the remaining TwinCAT runtime does, the reconfiguration must take place
asynchronously to the task cycle, whereby the Reconfigure method should be called cyclically as long as the
OP state is not reached again. The properties bStarted, nSampleIssued etc. provide information about the
current state of the stream. Errors can be recorded via the bError output and the corresponding
ipResultMessage.

API

TF3500 61Version: 1.2.2

Definition:
FUNCTION_BLOCK FB_ALYC_FileStream
VAR_INPUT
 {attribute 'tcinitsymbol'}
 nObjectID : OTCID := 0;
END_VAR
VAR_OUTPUT
 bInitialized : BOOL := FALSE;
 bError : BOOL := FALSE;
 ipResultMessage : I_TcMessage := fbResult;
 eReconfigState : E_ALYC_ReconfigState := E_ALYC_ReconfigState.DONE;
END_VAR

 Inputs

Name Type Description
nObjectID OTCID TcCom-Object ID of the referenced stream. This can be

initialized under the 'Init symbols' tab of the corresponding
PLC instance node in the System Manager project tree.

Outputs

Name Type Description
bInitialized BOOL TRUE if the function block is initialized and can be used.

Initialization takes place automatically after TwinCAT is set
to run mode.

bError BOOL TRUE if an error has occurred.
ipResultMessage I_TcMessage Message EventLogger
eReconfigState E_ALYC_ReconfigState The state of the state machine during reconfiguration.

Methods

Name Return type Description
Reconfigure BOOL Reconfigure the stream. Parameter:

ST_ALYC_FileStreamConfig. TRUE if successful.
Start BOOL Start the stream. TRUE if successful.
Stop BOOL Stop the stream. TRUE if successful.

Properties

Name Type Direction Description
bStarted BOOL get TRUE if stream started.
nDataSize UDINT get Sample data size
nSamplesIssued ULINT get Number of samples that have been written.
nSamplesLost ULINT get Number of discarded samples.
tCycleTime LTIME get Cycle time in ns
nCompDataSaving DINT get Percentage of data volume saved compared to the

uncompressed alternative. If negative, there is additional
work instead of data savings.

nUnconfFileWrites ULINT get Number of file write requests that have not yet been
confirmed by the AMS router. Can prevent an overflow of
the router message queue.

API

TF350062 Version: 1.2.2

7.1.1.3.1.3 FB_ALYC_MqttStreamHelper
This function block represents an Analytics Stream Helper in MQTT mode. The connection to an existing
Stream Helper can be established via the ObjectId as an input variable. This must be configured in MQTT
mode. The stream can be controlled using the Start/Stop methods and reconfigured using Reconfigure. For
this purpose, a structure of the type ST_ALYC_MqttStreamHelperConfig is transferred to the method, which
contains the new configuration parameters. During reconfiguration, starting from the OP state, the TcCom
states SAFEOP, PREOP, SAFEOP, OP are run through in this order. Since all states below SAFEOP no
longer run in real-time mode, but the remaining TwinCAT runtime does, the reconfiguration must take place
asynchronously to the task cycle, whereby the Reconfigure method should be called cyclically as long as the
OP state is not reached again. The properties bConnected, bStarted etc. provide information about the
current state of the Stream Helper. Errors can be recorded via the bError output and the corresponding
ipResultMessage.

Definition:
FUNCTION_BLOCK FB_ALYC_MqttStreamHelper
VAR_INPUT
 {attribute 'tcinitsymbol'}
 nObjectID : OTCID := 0;
 nNumInputBuffer : UDINT := 20;
END_VAR
VAR_OUTPUT
 ipResultMessage : I_TcMessage := fbResult;
 bError : BOOL := FALSE;
 bNewResult : BOOL := FALSE;
 bInitialized : BOOL := FALSE;
 nNumElements : UDINT;
 eReconfigState : E_ALYC_ReconfigState := E_ALYC_ReconfigState.DONE;
END_VAR

 Inputs

Name Type Description
nObjectID OTCID TcCom-Object ID of the referenced StreamHelper. This

can be initialized under the 'Init symbols' tab of the
corresponding PLC instance node in the System Manager
project tree.

nNumInputBuffer UDINT Maximum number of buffered symbol values (samples) in
the symbol queues.

Outputs

Name Type Description
bInitialized BOOL TRUE if the function block is initialized and can be used.

Initialization takes place automatically after TwinCAT is set
to run mode.

bError BOOL TRUE if an error has occurred.
ipResultMessage I_TcMessage Message EventLogger
eReconfigState E_ALYC_ReconfigState The state of the state machine during reconfiguration.
bNewResult BOOL TRUE if new values have been read into the symbol

queues.
nNumElements UDINT Number of new values in the symbol queues

API

TF3500 63Version: 1.2.2

Methods

Name Return type Description
Reconfigure BOOL Reconfigure the Stream Helper with a

ST_ALYC_MqttStreamHelperConfig as parameter.
Returns TRUE if successful.

Call BOOL Main method that should always be called cyclically. TRUE
if successful.

AddIotSymbol BOOL Add a symbol of type I_ALYC_IotSymbol to the internal
symbol list whose values are to be received. TRUE if
successful.

ReleaseIotSymbol BOOL Remove a symbol of type I_ALYC_IotSymbol from the
internal symbol list. TRUE if successful.

ReleaseAllIotSymbol
s

BOOL TRUE if successful.

ContainsIotSymbol BOOL TRUE if symbol of type I_ALYC_IotSymbol is in the
internal symbol list.

Properties

Name Type Direction Description
bConnected BOOL get TRUE if an MQTT connection exists.
bReconnect BOOL get/set If TRUE, interrupt the MQTT connection, if FALSE, renew

the MQTT connection.
sStream STRING(25

5)
get/set MQTT receive topic in the format <MainTopic>/

<StreamTopic>
nNumIotSymbolsRe
gistered

UDINT get/set Number of Iot symbols added.

7.1.1.3.1.4 FB_ALYC_FileStreamHelper
This function block represents an Analytics Stream Helper in file mode. The connection to an existing Stream
Helper can be established via the ObjectId as an input variable. This must be configured in file mode. The
stream can be controlled using the Start/Stop methods and reconfigured using Reconfigure. For this
purpose, a structure of the type ST_ALYC_FileStreamHelperConfig is transferred to the method, which
contains the new configuration parameters. During reconfiguration, starting from the OP state, the TcCom
states SAFEOP, PREOP, SAFEOP, OP are run through in this order. Since all states below SAFEOP no
longer run in real-time mode, but the remaining TwinCAT runtime does, the reconfiguration must take place
asynchronously to the task cycle, whereby the Reconfigure method should be called cyclically as long as the
OP state is not reached again. The properties bStarted etc. provide information about the current state of the
Stream Helper. Errors can be recorded via the bError output and the corresponding ipResultMessage.

Definition:
FUNCTION_BLOCK FB_ALYC_MqttStreamHelper
VAR_INPUT
 {attribute 'tcinitsymbol'}
 nObjectID : OTCID := 0;
 nNumInputBuffer : UDINT := 20;
END_VAR
VAR_OUTPUT
 ipResultMessage : I_TcMessage := fbResult;
 bError : BOOL := FALSE;
 bNewResult : BOOL := FALSE;
 bInitialized : BOOL := FALSE;
 nNumElements : UDINT;
 eReconfigState : E_ALYC_ReconfigState := E_ALYC_ReconfigState.DONE;
END_VAR

API

TF350064 Version: 1.2.2

 Inputs

Name Type Description
nObjectID OTCID TcCom-Object ID of the referenced StreamHelper. This

can be initialized under the 'Init symbols' tab of the
corresponding PLC instance node in the System Manager
project tree.

nNumInputBuffer UDINT Maximum number of buffered symbol values (samples) in
the symbol queues.

Outputs

Name Type Description
bInitialized BOOL TRUE if the function block is initialized and can be used.

Initialization takes place automatically after TwinCAT is set
to run mode.

bError BOOL TRUE if an error has occurred.
ipResultMessage I_TcMessage Message EventLogger
eReconfigState E_ALYC_ReconfigState The state of the state machine during reconfiguration.
bNewResult BOOL TRUE if new values have been read into the symbol

queues.
nNumElements UDINT Number of new values in the symbol queues
stCurrentConfig ST_ALYC_FileStreamHelper

Config [} 81]
stCurrentState ST_ALYC_FileStreamHel

perState
Current state information on the Stream Helper.

Methods

Name Return type Description
Reconfigure BOOL Reconfigure the Stream Helper with a

ST_ALYC_MqttStreamHelperConfig as parameter.
Returns TRUE if successful.

Call BOOL Main method that should always be called cyclically. TRUE
if successful.

AddIotSymbol BOOL Add a symbol of type I_ALYC_IotSymbol to the internal
symbol list whose values are to be received. TRUE if
successful.

ReleaseIotSymbol BOOL Remove a symbol of type I_ALYC_IotSymbol from the
internal symbol list. TRUE if successful.

ReleaseAllIotSymbols BOOL TRUE if successful.
ContainsIotSymbol BOOL TRUE if symbol of type I_ALYC_IotSymbol is in the

internal symbol list.

Properties

Name Type Direction Description
nNumIotSymbolsRe
gistered

UDINT get/set Number of Iot symbols added.

API

TF3500 65Version: 1.2.2

7.1.1.3.1.5 IoT symbol

7.1.1.3.1.5.1 FB_ALYC_IotSymbol_BOOL

Syntax

Definition:
FUNCTION_BLOCK FB_ALYC_IotSymbol_BOOL
VAR_INPUT
 stConfig : ST_ALYC_IotSymbol_Config;
END_VAR
VAR_OUTPUT
 ipResultMessage: I_TcMessage;
 bError: BOOL;
 bNewResult: BOOL;
 bConfigured: BOOL;
 bSymbolHandlerAssigned: BOOL;
 bVariableFound: BOOL;
 sSymbolPath: STRING(255);
 tCycleTime: LTIME;
 nMaxNumElements: UDINT;
 nNumElements: UDINT;
END_VAR

 Inputs

Name Type Description
stConfig ST_ALYC_IotSymbol_Co

nfig
Structure for the configuration of the FB.

Outputs

Name Type Description
ipResultMessage I_TcMessage EventLogger
bError BOOL TRUE if an error has occurred.
bNewResult BOOL TRUE if a new result has been calculated.
bConfigured BOOL TRUE if the FB is successfully configured.
bSymbolHandlerAssi
gned

BOOL TRUE if the symbol handler has been assigned.

bVariableFound BOOL TRUE if a variable was found in the stream.
sSymbolPath STRING(255) Theam/Stream.Symbol
tCycleTime LTIME Cycle time of the publishing system.
nMaxNumElements UDINT Maximum number of saved symbols influenced by

StreamHelper.

Methods

Name Definition location Description
GetValue Local Get the value of the specified element.
GetOversamplingVal
ues

Local Get the oversampling values of the specified element.

GetArrayValues Local Get the array values of the specified element.

Requirements

Development environment Target platform Plc libraries to include
TwinCAT v3.1.4024.0 PC or CX (x64, x86) Tc3_Analytics

API

TF350066 Version: 1.2.2

7.1.1.3.1.5.2 FB_ALYC_IotSymbol_BYTE

Syntax

Definition:
FUNCTION_BLOCK FB_ALYC_IotSymbol_BYTE
VAR_INPUT
 stConfig : ST_ALYC_IotSymbol_Config;
END_VAR
VAR_OUTPUT
 ipResultMessage: I_TcMessage;
 bError: BOOL;
 bNewResult: BOOL;
 bConfigured: BOOL;
 bSymbolHandlerAssigned: BOOL;
 bVariableFound: BOOL;
 sSymbolPath: STRING(255);
 tCycleTime: LTIME;
 nMaxNumElements: UDINT;
 nNumElements: UDINT;
END_VAR

 Inputs

Name Type Description
stConfig ST_ALYC_IotSymbol_Co

nfig
Structure for the configuration of the FB.

Outputs

Name Type Description
ipResultMessage I_TcMessage EventLogger
bError BOOL TRUE if an error has occurred.
bNewResult BOOL TRUE if a new result has been calculated.
bConfigured BOOL TRUE if the FB is successfully configured.
bSymbolHandlerAssi
gned

BOOL TRUE if the symbol handler has been assigned.

bVariableFound BOOL TRUE if a variable was found in the stream.
sSymbolPath STRING(255) Theam/Stream.Symbol
tCycleTime LTIME Cycle time of the publishing system.
nMaxNumElements UDINT Maximum number of saved symbols influenced by

StreamHelper.

Methods

Name Definition location Description
GetValue Local Get the value of the specified element.
GetOversamplingVal
ues

Local Get the oversampling values of the specified element.

GetArrayValues Local Get the array values of the specified element.

Requirements

Development environment Target platform Plc libraries to include
TwinCAT v3.1.4024.0 PC or CX (x64, x86) Tc3_Analytics

API

TF3500 67Version: 1.2.2

7.1.1.3.1.5.3 FB_ALYC_IotSymbol_DINT

Syntax

Definition:
FUNCTION_BLOCK FB_ALYC_IotSymbol_DINT
VAR_INPUT
 stConfig : ST_ALYC_IotSymbol_Config;
END_VAR
VAR_OUTPUT
 ipResultMessage: I_TcMessage;
 bError: BOOL;
 bNewResult: BOOL;
 bConfigured: BOOL;
 bSymbolHandlerAssigned: BOOL;
 bVariableFound: BOOL;
 sSymbolPath: STRING(255);
 tCycleTime: LTIME;
 nMaxNumElements: UDINT;
 nNumElements: UDINT;
END_VAR

 Inputs

Name Type Description
stConfig ST_ALYC_IotSymbol_Co

nfig
Structure for the configuration of the FB.

Outputs

Name Type Description
ipResultMessage I_TcMessage EventLogger
bError BOOL TRUE if an error has occurred.
bNewResult BOOL TRUE if a new result has been calculated.
bConfigured BOOL TRUE if the FB is successfully configured.
bSymbolHandlerAssi
gned

BOOL TRUE if the symbol handler has been assigned.

bVariableFound BOOL TRUE if a variable was found in the stream.
sSymbolPath STRING(255) Theam/Stream.Symbol
tCycleTime LTIME Cycle time of the publishing system.
nMaxNumElements UDINT Maximum number of saved symbols influenced by

StreamHelper.

Methods

Name Definition location Description
GetValue Local Get the value of the specified element.
GetOversamplingVal
ues

Local Get the oversampling values of the specified element.

GetArrayValues Local Get the array values of the specified element.

Requirements

Development environment Target platform Plc libraries to include
TwinCAT v3.1.4024.0 PC or CX (x64, x86) Tc3_Analytics

API

TF350068 Version: 1.2.2

7.1.1.3.1.5.4 FB_ALYC_IotSymbol_DWORD

Syntax

Definition:
FUNCTION_BLOCK FB_ALYC_IotSymbol_DWORD
VAR_INPUT
 stConfig : ST_ALYC_IotSymbol_Config;
END_VAR
VAR_OUTPUT
 ipResultMessage: I_TcMessage;
 bError: BOOL;
 bNewResult: BOOL;
 bConfigured: BOOL;
 bSymbolHandlerAssigned: BOOL;
 bVariableFound: BOOL;
 sSymbolPath: STRING(255);
 tCycleTime: LTIME;
 nMaxNumElements: UDINT;
 nNumElements: UDINT;
END_VAR

 Inputs

Name Type Description
stConfig ST_ALYC_IotSymbol_Co

nfig
Structure for the configuration of the FB.

Outputs

Name Type Description
ipResultMessage I_TcMessage EventLogger
bError BOOL TRUE if an error has occurred.
bNewResult BOOL TRUE if a new result has been calculated.
bConfigured BOOL TRUE if the FB is successfully configured.
bSymbolHandlerAssi
gned

BOOL TRUE if the symbol handler has been assigned.

bVariableFound BOOL TRUE if a variable was found in the stream.
sSymbolPath STRING(255) Theam/Stream.Symbol
tCycleTime LTIME Cycle time of the publishing system.
nMaxNumElements UDINT Maximum number of saved symbols influenced by

StreamHelper.

Methods

Name Definition location Description
GetValue Local Get the value of the specified element.
GetOversamplingVal
ues

Local Get the oversampling values of the specified element.

GetArrayValues Local Get the array values of the specified element.

Requirements

Development environment Target platform Plc libraries to include
TwinCAT v3.1.4024.0 PC or CX (x64, x86) Tc3_Analytics

API

TF3500 69Version: 1.2.2

7.1.1.3.1.5.5 FB_ALYC_IotSymbol_INT

Syntax

Definition:
FUNCTION_BLOCK FB_ALYC_IotSymbol_INT
VAR_INPUT
 stConfig : ST_ALYC_IotSymbol_Config;
END_VAR
VAR_OUTPUT
 ipResultMessage: I_TcMessage;
 bError: BOOL;
 bNewResult: BOOL;
 bConfigured: BOOL;
 bSymbolHandlerAssigned: BOOL;
 bVariableFound: BOOL;
 sSymbolPath: STRING(255);
 tCycleTime: LTIME;
 nMaxNumElements: UDINT;
 nNumElements: UDINT;
END_VAR

 Inputs

Name Type Description
stConfig ST_ALYC_IotSymbol_Co

nfig
Structure for the configuration of the FB.

Outputs

Name Type Description
ipResultMessage I_TcMessage EventLogger
bError BOOL TRUE if an error has occurred.
bNewResult BOOL TRUE if a new result has been calculated.
bConfigured BOOL TRUE if the FB is successfully configured.
bSymbolHandlerAssi
gned

BOOL TRUE if the symbol handler has been assigned.

bVariableFound BOOL TRUE if a variable was found in the stream.
sSymbolPath STRING(255) Theam/Stream.Symbol
tCycleTime LTIME Cycle time of the publishing system.
nMaxNumElements UDINT Maximum number of saved symbols influenced by

StreamHelper.

Methods

Name Definition location Description
GetValue Local Get the value of the specified element.
GetOversamplingVal
ues

Local Get the oversampling values of the specified element.

GetArrayValues Local Get the array values of the specified element.

Requirements

Development environment Target platform Plc libraries to include
TwinCAT v3.1.4024.0 PC or CX (x64, x86) Tc3_Analytics

API

TF350070 Version: 1.2.2

7.1.1.3.1.5.6 FB_ALYC_IotSymbol_LINT

Syntax

Definition:
FUNCTION_BLOCK FB_ALYC_IotSymbol_LINT
VAR_INPUT
 stConfig : ST_ALYC_IotSymbol_Config;
END_VAR
VAR_OUTPUT
 ipResultMessage: I_TcMessage;
 bError: BOOL;
 bNewResult: BOOL;
 bConfigured: BOOL;
 bSymbolHandlerAssigned: BOOL;
 bVariableFound: BOOL;
 sSymbolPath: STRING(255);
 tCycleTime: LTIME;
 nMaxNumElements: UDINT;
 nNumElements: UDINT;
END_VAR

 Inputs

Name Type Description
stConfig ST_ALYC_IotSymbol_Co

nfig
Structure for the configuration of the FB.

Outputs

Name Type Description
ipResultMessage I_TcMessage EventLogger
bError BOOL TRUE if an error has occurred.
bNewResult BOOL TRUE if a new result has been calculated.
bConfigured BOOL TRUE if the FB is successfully configured.
bSymbolHandlerAssi
gned

BOOL TRUE if the symbol handler has been assigned.

bVariableFound BOOL TRUE if a variable was found in the stream.
sSymbolPath STRING(255) Theam/Stream.Symbol
tCycleTime LTIME Cycle time of the publishing system.
nMaxNumElements UDINT Maximum number of saved symbols influenced by

StreamHelper.

Methods

Name Definition location Description
GetValue Local Get the value of the specified element.
GetOversamplingVal
ues

Local Get the oversampling values of the specified element.

GetArrayValues Local Get the array values of the specified element.

Requirements

Development environment Target platform Plc libraries to include
TwinCAT v3.1.4024.0 PC or CX (x64, x86) Tc3_Analytics

API

TF3500 71Version: 1.2.2

7.1.1.3.1.5.7 FB_ALYC_IotSymbol_LREAL

Syntax

Definition:
FUNCTION_BLOCK FB_ALYC_IotSymbol_LREAL
VAR_INPUT
 stConfig : ST_ALYC_IotSymbol_Config;
END_VAR
VAR_OUTPUT
 ipResultMessage: I_TcMessage;
 bError: BOOL;
 bNewResult: BOOL;
 bConfigured: BOOL;
 bSymbolHandlerAssigned: BOOL;
 bVariableFound: BOOL;
 sSymbolPath: STRING(255);
 tCycleTime: LTIME;
 nMaxNumElements: UDINT;
 nNumElements: UDINT;
END_VAR

 Inputs

Name Type Description
stConfig ST_ALYC_IotSymbol_Co

nfig
Structure for the configuration of the FB.

Outputs

Name Type Description
ipResultMessage I_TcMessage EventLogger
bError BOOL TRUE if an error has occurred.
bNewResult BOOL TRUE if a new result has been calculated.
bConfigured BOOL TRUE if the FB is successfully configured.
bSymbolHandlerAssi
gned

BOOL TRUE if the symbol handler has been assigned.

bVariableFound BOOL TRUE if a variable was found in the stream.
sSymbolPath STRING(255) Theam/Stream.Symbol
tCycleTime LTIME Cycle time of the publishing system.
nMaxNumElements UDINT Maximum number of saved symbols influenced by

StreamHelper.

Methods

Name Definition location Description
GetValue Local Get the value of the specified element.
GetOversamplingVal
ues

Local Get the oversampling values of the specified element.

GetArrayValues Local Get the array values of the specified element.

Requirements

Development environment Target platform Plc libraries to include
TwinCAT v3.1.4024.0 PC or CX (x64, x86) Tc3_Analytics

API

TF350072 Version: 1.2.2

7.1.1.3.1.5.8 FB_ALYC_IotSymbol_LWORD

Syntax

Definition:
FUNCTION_BLOCK FB_ALYC_IotSymbol_LWORD
VAR_INPUT
 stConfig : ST_ALYC_IotSymbol_Config;
END_VAR
VAR_OUTPUT
 ipResultMessage: I_TcMessage;
 bError: BOOL;
 bNewResult: BOOL;
 bConfigured: BOOL;
 bSymbolHandlerAssigned: BOOL;
 bVariableFound: BOOL;
 sSymbolPath: STRING(255);
 tCycleTime: LTIME;
 nMaxNumElements: UDINT;
 nNumElements: UDINT;
END_VAR

 Inputs

Name Type Description
stConfig ST_ALYC_IotSymbol_Co

nfig
Structure for the configuration of the FB.

Outputs

Name Type Description
ipResultMessage I_TcMessage EventLogger
bError BOOL TRUE if an error has occurred.
bNewResult BOOL TRUE if a new result has been calculated.
bConfigured BOOL TRUE if the FB is successfully configured.
bSymbolHandlerAssi
gned

BOOL TRUE if the symbol handler has been assigned.

bVariableFound BOOL TRUE if a variable was found in the stream.
sSymbolPath STRING(255) Theam/Stream.Symbol
tCycleTime LTIME Cycle time of the publishing system.
nMaxNumElements UDINT Maximum number of saved symbols influenced by

StreamHelper.

Methods

Name Definition location Description
GetValue Local Get the value of the specified element.
GetOversamplingVal
ues

Local Get the oversampling values of the specified element.

GetArrayValues Local Get the array values of the specified element.

Requirements

Development environment Target platform Plc libraries to include
TwinCAT v3.1.4024.0 PC or CX (x64, x86) Tc3_Analytics

API

TF3500 73Version: 1.2.2

7.1.1.3.1.5.9 FB_ALYC_IotSymbol_REAL

Syntax

Definition:
FUNCTION_BLOCK FB_ALYC_IotSymbol_REAL
VAR_INPUT
 stConfig : ST_ALYC_IotSymbol_Config;
END_VAR
VAR_OUTPUT
 ipResultMessage: I_TcMessage;
 bError: BOOL;
 bNewResult: BOOL;
 bConfigured: BOOL;
 bSymbolHandlerAssigned: BOOL;
 bVariableFound: BOOL;
 sSymbolPath: STRING(255);
 tCycleTime: LTIME;
 nMaxNumElements: UDINT;
 nNumElements: UDINT;
END_VAR

 Inputs

Name Type Description
stConfig ST_ALYC_IotSymbol_Co

nfig
Structure for the configuration of the FB.

Outputs

Name Type Description
ipResultMessage I_TcMessage EventLogger
bError BOOL TRUE if an error has occurred.
bNewResult BOOL TRUE if a new result has been calculated.
bConfigured BOOL TRUE if the FB is successfully configured.
bSymbolHandlerAssi
gned

BOOL TRUE if the symbol handler has been assigned.

bVariableFound BOOL TRUE if a variable was found in the stream.
sSymbolPath STRING(255) Theam/Stream.Symbol
tCycleTime LTIME Cycle time of the publishing system.
nMaxNumElements UDINT Maximum number of saved symbols influenced by

StreamHelper.

Methods

Name Definition location Description
GetValue Local Get the value of the specified element.
GetOversamplingVal
ues

Local Get the oversampling values of the specified element.

GetArrayValues Local Get the array values of the specified element.

Requirements

Development environment Target platform Plc libraries to include
TwinCAT v3.1.4024.0 PC or CX (x64, x86) Tc3_Analytics

API

TF350074 Version: 1.2.2

7.1.1.3.1.5.10 FB_ALYC_IotSymbol_SINT

Syntax

Definition:
FUNCTION_BLOCK FB_ALYC_IotSymbol_SINT
VAR_INPUT
 stConfig : ST_ALYC_IotSymbol_Config;
END_VAR
VAR_OUTPUT
 ipResultMessage: I_TcMessage;
 bError: BOOL;
 bNewResult: BOOL;
 bConfigured: BOOL;
 bSymbolHandlerAssigned: BOOL;
 bVariableFound: BOOL;
 sSymbolPath: STRING(255);
 tCycleTime: LTIME;
 nMaxNumElements: UDINT;
 nNumElements: UDINT;
END_VAR

 Inputs

Name Type Description
stConfig ST_ALYC_IotSymbol_Co

nfig
Structure for the configuration of the FB.

Outputs

Name Type Description
ipResultMessage I_TcMessage EventLogger
bError BOOL TRUE if an error has occurred.
bNewResult BOOL TRUE if a new result has been calculated.
bConfigured BOOL TRUE if the FB is successfully configured.
bSymbolHandlerAssi
gned

BOOL TRUE if the symbol handler has been assigned.

bVariableFound BOOL TRUE if a variable was found in the stream.
sSymbolPath STRING(255) Theam/Stream.Symbol
tCycleTime LTIME Cycle time of the publishing system.
nMaxNumElements UDINT Maximum number of saved symbols influenced by

StreamHelper.

Methods

Name Definition location Description
GetValue Local Get the value of the specified element.
GetOversamplingVal
ues

Local Get the oversampling values of the specified element.

GetArrayValues Local Get the array values of the specified element.

Requirements

Development environment Target platform Plc libraries to include
TwinCAT v3.1.4024.0 PC or CX (x64, x86) Tc3_Analytics

API

TF3500 75Version: 1.2.2

7.1.1.3.1.5.11 FB_ALYC_IotSymbol_STRING

Syntax

Definition:
FUNCTION_BLOCK FB_ALYC_IotSymbol_STRING
VAR_INPUT
 stConfig : ST_ALYC_IotSymbol_Config;
END_VAR
VAR_OUTPUT
 ipResultMessage: I_TcMessage;
 bError: BOOL;
 bNewResult: BOOL;
 bConfigured: BOOL;
 bSymbolHandlerAssigned: BOOL;
 bVariableFound: BOOL;
 sSymbolPath: STRING(255);
 tCycleTime: LTIME;
 nMaxNumElements: UDINT;
 nNumElements: UDINT;
END_VAR

 Inputs

Name Type Description
stConfig ST_ALYC_IotSymbol_Co

nfig
Structure for the configuration of the FB.

Outputs

Name Type Description
ipResultMessage I_TcMessage EventLogger
bError BOOL TRUE if an error has occurred.
bNewResult BOOL TRUE if a new result has been calculated.
bConfigured BOOL TRUE if the FB is successfully configured.
bSymbolHandlerAssi
gned

BOOL TRUE if the symbol handler has been assigned.

bVariableFound BOOL TRUE if a variable was found in the stream.
sSymbolPath STRING(255) Theam/Stream.Symbol
tCycleTime LTIME Cycle time of the publishing system.
nMaxNumElements UDINT Maximum number of saved symbols influenced by

StreamHelper.

Methods

Name Definition location Description
GetValue Local Get the value of the specified element.
GetOversamplingVal
ues

Local Get the oversampling values of the specified element.

GetArrayValues Local Get the array values of the specified element.

Requirements

Development environment Target platform Plc libraries to include
TwinCAT v3.1.4024.0 PC or CX (x64, x86) Tc3_Analytics

API

TF350076 Version: 1.2.2

7.1.1.3.1.5.12 FB_ALYC_IotSymbol_UDINT

Syntax

Definition:
FUNCTION_BLOCK FB_ALYC_IotSymbol_UDINT
VAR_INPUT
 stConfig : ST_ALYC_IotSymbol_Config;
END_VAR
VAR_OUTPUT
 ipResultMessage: I_TcMessage;
 bError: BOOL;
 bNewResult: BOOL;
 bConfigured: BOOL;
 bSymbolHandlerAssigned: BOOL;
 bVariableFound: BOOL;
 sSymbolPath: STRING(255);
 tCycleTime: LTIME;
 nMaxNumElements: UDINT;
 nNumElements: UDINT;
END_VAR

 Inputs

Name Type Description
stConfig ST_ALYC_IotSymbol_Co

nfig
Structure for the configuration of the FB.

Outputs

Name Type Description
ipResultMessage I_TcMessage EventLogger
bError BOOL TRUE if an error has occurred.
bNewResult BOOL TRUE if a new result has been calculated.
bConfigured BOOL TRUE if the FB is successfully configured.
bSymbolHandlerAssi
gned

BOOL TRUE if the symbol handler has been assigned.

bVariableFound BOOL TRUE if a variable was found in the stream.
sSymbolPath STRING(255) Theam/Stream.Symbol
tCycleTime LTIME Cycle time of the publishing system.
nMaxNumElements UDINT Maximum number of saved symbols influenced by

StreamHelper.

Methods

Name Definition location Description
GetValue Local Get the value of the specified element.
GetOversamplingVal
ues

Local Get the oversampling values of the specified element.

GetArrayValues Local Get the array values of the specified element.

Requirements

Development environment Target platform Plc libraries to include
TwinCAT v3.1.4024.0 PC or CX (x64, x86) Tc3_Analytics

API

TF3500 77Version: 1.2.2

7.1.1.3.1.5.13 FB_ALYC_IotSymbol_UINT

Syntax

Definition:
FUNCTION_BLOCK FB_ALYC_IotSymbol_UINT
VAR_INPUT
 stConfig : ST_ALYC_IotSymbol_Config;
END_VAR
VAR_OUTPUT
 ipResultMessage: I_TcMessage;
 bError: BOOL;
 bNewResult: BOOL;
 bConfigured: BOOL;
 bSymbolHandlerAssigned: BOOL;
 bVariableFound: BOOL;
 sSymbolPath: STRING(255);
 tCycleTime: LTIME;
 nMaxNumElements: UDINT;
 nNumElements: UDINT;
END_VAR

 Inputs

Name Type Description
stConfig ST_ALYC_IotSymbol_Co

nfig
Structure for the configuration of the FB.

Outputs

Name Type Description
ipResultMessage I_TcMessage EventLogger
bError BOOL TRUE if an error has occurred.
bNewResult BOOL TRUE if a new result has been calculated.
bConfigured BOOL TRUE if the FB is successfully configured.
bSymbolHandlerAssi
gned

BOOL TRUE if the symbol handler has been assigned.

bVariableFound BOOL TRUE if a variable was found in the stream.
sSymbolPath STRING(255) Theam/Stream.Symbol
tCycleTime LTIME Cycle time of the publishing system.
nMaxNumElements UDINT Maximum number of saved symbols influenced by

StreamHelper.

Methods

Name Definition location Description
GetValue Local Get the value of the specified element.
GetOversamplingVal
ues

Local Get the oversampling values of the specified element.

GetArrayValues Local Get the array values of the specified element.

Requirements

Development environment Target platform Plc libraries to include
TwinCAT v3.1.4024.0 PC or CX (x64, x86) Tc3_Analytics

API

TF350078 Version: 1.2.2

7.1.1.3.1.5.14 FB_ALYC_IotSymbol_ULINT

Syntax

Definition:
FUNCTION_BLOCK FB_ALYC_IotSymbol_ULINT
VAR_INPUT
 stConfig : ST_ALYC_IotSymbol_Config;
END_VAR
VAR_OUTPUT
 ipResultMessage: I_TcMessage;
 bError: BOOL;
 bNewResult: BOOL;
 bConfigured: BOOL;
 bSymbolHandlerAssigned: BOOL;
 bVariableFound: BOOL;
 sSymbolPath: STRING(255);
 tCycleTime: LTIME;
 nMaxNumElements: UDINT;
 nNumElements: UDINT;
END_VAR

 Inputs

Name Type Description
stConfig ST_ALYC_IotSymbol_Co

nfig
Structure for the configuration of the FB.

Outputs

Name Type Description
ipResultMessage I_TcMessage EventLogger
bError BOOL TRUE if an error has occurred.
bNewResult BOOL TRUE if a new result has been calculated.
bConfigured BOOL TRUE if the FB is successfully configured.
bSymbolHandlerAssi
gned

BOOL TRUE if the symbol handler has been assigned.

bVariableFound BOOL TRUE if a variable was found in the stream.
sSymbolPath STRING(255) Theam/Stream.Symbol
tCycleTime LTIME Cycle time of the publishing system.
nMaxNumElements UDINT Maximum number of saved symbols influenced by

StreamHelper.

Methods

Name Definition location Description
GetValue Local Get the value of the specified element.
GetOversamplingVal
ues

Local Get the oversampling values of the specified element.

GetArrayValues Local Get the array values of the specified element.

Requirements

Development environment Target platform Plc libraries to include
TwinCAT v3.1.4024.0 PC or CX (x64, x86) Tc3_Analytics

API

TF3500 79Version: 1.2.2

7.1.1.3.1.5.15 FB_ALYC_IotSymbol_USINT

Syntax

Definition:
FUNCTION_BLOCK FB_ALYC_IotSymbol_USINT
VAR_INPUT
 stConfig : ST_ALYC_IotSymbol_Config;
END_VAR
VAR_OUTPUT
 ipResultMessage: I_TcMessage;
 bError: BOOL;
 bNewResult: BOOL;
 bConfigured: BOOL;
 bSymbolHandlerAssigned: BOOL;
 bVariableFound: BOOL;
 sSymbolPath: STRING(255);
 tCycleTime: LTIME;
 nMaxNumElements: UDINT;
 nNumElements: UDINT;
END_VAR

 Inputs

Name Type Description
stConfig ST_ALYC_IotSymbol_Co

nfig
Structure for the configuration of the FB.

Outputs

Name Type Description
ipResultMessage I_TcMessage EventLogger
bError BOOL TRUE if an error has occurred.
bNewResult BOOL TRUE if a new result has been calculated.
bConfigured BOOL TRUE if the FB is successfully configured.
bSymbolHandlerAssi
gned

BOOL TRUE if the symbol handler has been assigned.

bVariableFound BOOL TRUE if a variable was found in the stream.
sSymbolPath STRING(255) Theam/Stream.Symbol
tCycleTime LTIME Cycle time of the publishing system.
nMaxNumElements UDINT Maximum number of saved symbols influenced by

StreamHelper.

Methods

Name Definition location Description
GetValue Local Get the value of the specified element.
GetOversamplingVal
ues

Local Get the oversampling values of the specified element.

GetArrayValues Local Get the array values of the specified element.

Requirements

Development environment Target platform Plc libraries to include
TwinCAT v3.1.4024.0 PC or CX (x64, x86) Tc3_Analytics

API

TF350080 Version: 1.2.2

7.1.1.3.1.5.16 FB_ALYC_IotSymbol_WORD

Syntax

Definition:
FUNCTION_BLOCK FB_ALYC_IotSymbol_WORD
VAR_INPUT
 stConfig : ST_ALYC_IotSymbol_Config;
END_VAR
VAR_OUTPUT
 ipResultMessage: I_TcMessage;
 bError: BOOL;
 bNewResult: BOOL;
 bConfigured: BOOL;
 bSymbolHandlerAssigned: BOOL;
 bVariableFound: BOOL;
 sSymbolPath: STRING(255);
 tCycleTime: LTIME;
 nMaxNumElements: UDINT;
 nNumElements: UDINT;
END_VAR

 Inputs

Name Type Description
stConfig ST_ALYC_IotSymbol_Co

nfig
Structure for the configuration of the FB.

Outputs

Name Type Description
ipResultMessage I_TcMessage EventLogger
bError BOOL TRUE if an error has occurred.
bNewResult BOOL TRUE if a new result has been calculated.
bConfigured BOOL TRUE if the FB is successfully configured.
bSymbolHandlerAssi
gned

BOOL TRUE if the symbol handler has been assigned.

bVariableFound BOOL TRUE if a variable was found in the stream.
sSymbolPath STRING(255) Theam/Stream.Symbol
tCycleTime LTIME Cycle time of the publishing system.
nMaxNumElements UDINT Maximum number of saved symbols influenced by

StreamHelper.

Methods

Name Definition location Description
GetValue Local Get the value of the specified element.
GetOversamplingVal
ues

Local Get the oversampling values of the specified element.

GetArrayValues Local Get the array values of the specified element.

Requirements

Development environment Target platform Plc libraries to include
TwinCAT v3.1.4024.0 PC or CX (x64, x86) Tc3_Analytics

API

TF3500 81Version: 1.2.2

7.1.1.3.2 Data types

7.1.1.3.2.1 ST_ALYC_MqttStreamConfig
TYPE ST_ALYC_MqttStreamConfig :
STRUCT
 bAutoStartStream : BOOL := TRUE;
 nAdsBuffer : DINT := 32; // Samples in buffer
 nSamplingDivider : UDINT := 1;
 eCompressionMethod : ANALYTICS_COMPRESSION := ANALYTICS_COMPRESSION.ANALYTICS_COMPRESSION_RL;
 eCompressionWidth : ANALYTICS_COMPRESSION_WIDTH := ANALYTICS_COMPRESSION_WIDTH.ANALYTICS_COMP_W
IDTH_8;
 eExternalTimeType : ETcExternalTimeType := ETcExternalTimeType.SystemTime;
 stDeviceLocation: ST_ALYC_Address := (sAddress := '', sLongitude := '', sLatitude := '');
 sSystemIdAlias : STRING;
 stConnection : ST_ALYC_MqttConnectionSettings;
 nQueueSize : UDINT := 0;
 sMqttTopic : STRING(255) := ''; // Combination of main topic and stream topic: MainTopic/
StreamTopic
 bQueueWhenDisconnected : BOOL := FALSE;
 bQueueInFile : BOOL := FALSE;
END_STRUCT
END_TYPE

7.1.1.3.2.2 ST_ALYC_FileStreamConfig
TYPE ST_ALYC_FileStreamConfig :
STRUCT
 bAutoStartStream : BOOL := TRUE;
 nAdsBuffer : DINT := 32; // Samples in buffer
 nSamplingDivider : UDINT := 1;
 eCompressionMethod : ANALYTICS_COMPRESSION := ANALYTICS_COMPRESSION.ANALYTICS_COMPRESSION_RL;
 eCompressionWidth : ANALYTICS_COMPRESSION_WIDTH := ANALYTICS_COMPRESSION_WIDTH.ANALYTICS_COMP_W
IDTH_8;
 eExternalTimeType : ETcExternalTimeType := ETcExternalTimeType.SystemTime;
 stDeviceLocation : ST_ALYC_Address := (sAddress := '', sLongitude := '', sLatitude := '');
 sSystemIdAlias : STRING;
 nMaxFileSize : UDINT := 16;
 nFilesInRingBuffer : UDINT := 2; // Number of files in ring buffer
 sFileDir : STRING(255) := ''; // Optional, Default: %TC_BOOTPRJPATH%
 bEnableRingBuffer : BOOL := TRUE;
 nMaxUnconfWrites: UDINT := 1000; // Number of file writes
without a confirmation from ADS router
END_STRUCT
END_TYPE

7.1.1.3.2.3 ST_ALYC_MqttStreamHelperConfig
TYPE ST_ALYC_MqttStreamHelperConfig :
STRUCT
 stConnection : ST_ALYC_MqttConnectionSettings;
 sMqttTopic : STRING(255); // Combination of main topic and stream topic
 bAutostartReceive : BOOL := TRUE;
END_STRUCT
END_TYPE

7.1.1.3.2.4 ST_ALYC_FileStreamHelperConfig
TYPE ST_ALYC_FileStreamHelperConfig :
STRUCT
 nSamplesInReadBuf : UINT := 32; //How many samples to read from file every cycle
 nReadBufsInStreamBuf : UINT := 32; //How many read
 buffers to put into a stream buffer (treated as ring buffer)
 sFileDir : STRING(255) := ''; //Directory in which to find the Analytics data files
 bReadFilesCyclically : BOOL := TRUE; //If all files have been read, start over reading them
from the beginning
END_STRUCT
END_TYPE

API

TF350082 Version: 1.2.2

7.1.1.4 Samples

7.1.1.4.1 Analytics Streams and MQTT Stream Helper.
The sample shows how an MQTT stream and a stream in File mode can be configured. At the same time, a
Stream Helper is configured to receive the data from the MQTT stream. The next sample shows how the file
stream data can be analyzed. The most important function blocks of the type FB_ALYC_MqttStream [} 59],
FB_ALYC_FileStream [} 60] and FB_ALYC_MqttStreamHelper [} 62] are used.

The sample is available for download here:

https://infosys.beckhoff.com/content/1033/tf3500_tc3_analytics_logger/Resources/14831744651.zip

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4024.47 PC or CX (x64, x86) Tc3_AnalyticsCommunication

7.1.1.4.2 File Stream Helper
The sample shows how a File-StreamHelper can be used to read Analytics Files and integrate them into the
PLC program. The function block FB_ALYC_FileStreamHelper [} 63] is used. The Analytics Files from the
previous sample can be used here.

The sample is available for download here:

https://infosys.beckhoff.com/content/1033/tf3500_tc3_analytics_logger/Resources/14831745163.zip

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4024.47 PC or CX (x64, x86) Tc3_AnalyticsCommunication

7.1.2 Obsolete

7.1.2.1 Using the Programming Interface
As described in the Technical Introduction a stream can be started and stopped from PLC code using
Structured Text. For that, the streams of a data logger, themselves being TcCom-objects provide an
interface called ITcAnalyticsStream comprising two methods, StartAnalyticsStream() and
StopAnalyticsStream(). Follow the following steps to use the interface, the code samples may be useful, too:

Declare a variable of the type ITcAnalyticsStream and another one of the type OTCID for the object ID of the
correspondent stream. For diagnostic purposes, an HRESULT variable is advisable.
HR : HRESULT := S_OK;
{attribute 'tcinitsymbol'}
oidPlcStream1 : OTCID;
ipPlcStream1 : ITcAnalyticsStream;

Next, add the attribute ‘tcinitsymbol’ above the OTCID variable. This way, it doesn’t need to be initialized
statically in the source code, instead it be initialized at configuration time by double clicking the PLC instance
node in the project tree and selecting the relevant stream in the combo box as illustrated in the following
picture.

https://infosys.beckhoff.com/content/1033/tf3500_tc3_analytics_logger/Resources/14831744651.zip
https://infosys.beckhoff.com/content/1033/tf3500_tc3_analytics_logger/Resources/14831745163.zip

API

TF3500 83Version: 1.2.2

Fig. 1:

After that, get an interface pointer using following the TcCom-object server method and the interface’s IID.
IF ipPlcStream1 = 0 AND oidPlcStream1 <> 0 THEN
 HR := FW_ObjMgr_GetObjectInstance(oidPlcStream1, IID_ITcAnalyticsStream, ADR(ipPlcStream1));
END_IF

Now you can use the interface pointer to call interface’s methods. As shown in the following example:
IF ipPlcStream1 <> 0 THEN
 IF bStartPlcStream1 THEN
 ipPlcStream1.StartAnalyticsStream();
 bStartPlcStream1 := FALSE;
 END_IF
 IF bStopPlcStream1 THEN
 ipPlcStream1.StopAnalyticsStream();
 bStopPlcStream1 := FALSE;
 END_IF
END_IF

The stream is started in the same cycle StartAnalyticsStream() is called and will include the logged variable
values. The stream is stopped in the same cycle StopAnalyticsStream() is called but will not include the
variable values of this cycle.

In the Samples section of this documentation you can find a sample program that includes the here
presented code snippets.

7.2 Automation Interface
Please refer to the Automation Interface documentation:
Creating and using the Data Logger and Stream Helper

https://infosys.beckhoff.com/content/1033/tc3_automationinterface/12562699019.html

Samples

TF350084 Version: 1.2.2

8 Samples
Data Logger Start/Stop stream from PLC code sample:

https://infosys.beckhoff.com/content/1033/tf3500_tc3_analytics_logger/Resources/6904617099.zip

https://infosys.beckhoff.com/content/1033/tf3500_tc3_analytics_logger/Resources/6904617099.zip

Appendix

TF3500 85Version: 1.2.2

9 Appendix

9.1 FAQ - frequently asked questions and answers
In this section frequently asked questions are answered in order to make your work with TwinCAT Analytics
Logger easier. If you have further questions, please contact our support team support@beckhoff.com.

Should I always use TLS with MQTT? [} 85]

Is it possible to have multiple connections? [} 85]

Is it possible to control the Analytics Logger by a PLC function block? [} 85]

?Should I always use TLS with MQTT?

!Yes, you should if you can. If you can afford the overhead in CPU and bandwidth, then a secure
communication channel is invaluable. Depending on the general CPU performance it could be possible to
have a noticeable reduction of communication performance.

?Is it possible to have multiple connections?

!Yes, you can connect the Analytics Logger at the same time to different Message Broker just by adding a
new instance of the Logger. Also it is possible to have one instance of the Logger for an MQTT
communication to a Message Broker and at the same time one instance for writing data into Analytics File to
the local system.

?Is it possible to control the Analytics Logger by a PLC function block?

!There is no special function block to control the Analytics Logger. But you can use an interface of the
Analytics Logger to control him with easy commands like start and stop from the PLC. How to do see this
[} 82] cheapter.

mailto:support@beckhoff.com

Trademark statements

Beckhoff®, TwinCAT®, TwinCAT/BSD®, TC/BSD®, EtherCAT®, EtherCAT G®, EtherCAT G10®, EtherCAT P®, Safety over EtherCAT®,
TwinSAFE®, XFC®, XTS® and XPlanar® are registered trademarks of and licensed by Beckhoff Automation GmbH.

Third-party trademark statements

Microsoft, Microsoft Azure, Microsoft Edge, PowerShell, Visual Studio, Windows and Xbox are trademarks of the Microsoft group of companies.

Beckhoff Automation GmbH & Co. KG
Hülshorstweg 20
33415 Verl
Germany
Phone: +49 5246 9630
info@beckhoff.com
www.beckhoff.com

More Information:
www.beckhoff.com/tf3500

mailto:info@beckhoff.com?subject=TF3500
https://www.beckhoff.com
https://www.beckhoff.com/tf3500

	 Table of contents
	1 Foreword
	1.1 Notes on the documentation
	1.2 For your safety
	1.3 Notes on information security

	2 Overview
	3 Installation
	3.1 System requirements
	3.2 Licensing

	4 Analytics Workflow - First Steps
	4.1 Recording data from the machine
	4.2 Communication
	4.3 Historicize data
	4.4 Analyse data
	4.5 24h Analytics application

	5 Technical introduction
	5.1 Basic Concepts
	5.2 MQTT basics
	5.3 Data Compression

	6 Configuration
	6.1 Basic settings
	6.1.1 TLS
	6.1.2 Timestamp correction
	6.1.3 Device-specific information

	6.2 Data Streams
	6.2.1 Data Handling

	7 API
	7.1 PLC
	7.1.1 Analytics Communication Library
	7.1.1.1 Overview
	7.1.1.2 Installation
	7.1.1.3 PLC API
	7.1.1.3.1 Function blocks
	7.1.1.3.1.1 FB_ALYC_MqttStream
	7.1.1.3.1.2 FB_ALYC_FileStream
	7.1.1.3.1.3 FB_ALYC_MqttStreamHelper
	7.1.1.3.1.4 FB_ALYC_FileStreamHelper
	7.1.1.3.1.5 IoT symbol
	7.1.1.3.1.5.1 FB_ALYC_IotSymbol_BOOL
	7.1.1.3.1.5.2 FB_ALYC_IotSymbol_BYTE
	7.1.1.3.1.5.3 FB_ALYC_IotSymbol_DINT
	7.1.1.3.1.5.4 FB_ALYC_IotSymbol_DWORD
	7.1.1.3.1.5.5 FB_ALYC_IotSymbol_INT
	7.1.1.3.1.5.6 FB_ALYC_IotSymbol_LINT
	7.1.1.3.1.5.7 FB_ALYC_IotSymbol_LREAL
	7.1.1.3.1.5.8 FB_ALYC_IotSymbol_LWORD
	7.1.1.3.1.5.9 FB_ALYC_IotSymbol_REAL
	7.1.1.3.1.5.10 FB_ALYC_IotSymbol_SINT
	7.1.1.3.1.5.11 FB_ALYC_IotSymbol_STRING
	7.1.1.3.1.5.12 FB_ALYC_IotSymbol_UDINT
	7.1.1.3.1.5.13 FB_ALYC_IotSymbol_UINT
	7.1.1.3.1.5.14 FB_ALYC_IotSymbol_ULINT
	7.1.1.3.1.5.15 FB_ALYC_IotSymbol_USINT
	7.1.1.3.1.5.16 FB_ALYC_IotSymbol_WORD

	7.1.1.3.2 Data types
	7.1.1.3.2.1 ST_ALYC_MqttStreamConfig
	7.1.1.3.2.2 ST_ALYC_FileStreamConfig
	7.1.1.3.2.3 ST_ALYC_MqttStreamHelperConfig
	7.1.1.3.2.4 ST_ALYC_FileStreamHelperConfig

	7.1.1.4 Samples
	7.1.1.4.1 Analytics Streams and MQTT Stream Helper.
	7.1.1.4.2 File Stream Helper

	7.1.2 Obsolete
	7.1.2.1 Using the Programming Interface

	7.2 Automation Interface

	8 Samples
	9 Appendix
	9.1 FAQ - frequently asked questions and answers

		documentation@beckhoff.com
	2025-01-30T14:31:40+0100
	Beckhoff Automation, Verl
	Documentation Publishing

