

Quickstart

Stratégies de

mise en service

et

d'optimisation du

AX2000

Edition 05.01

Catalogues déjà parus :

Edition	Remarque
05 / 01	Première édition

VGA est une marque déposée de l'International Business Machines Corp.

PC-AT est une marque déposée de l'International Business Machines Corp.

MS-DOS est une marque déposée de la Microsoft Corp.

WINDOWS est une marque déposée de la Microsoft Corp.

HIPERFACE est une marque déposée de la Max Stegmann GmbH.

EnDat est une marque déposée de la Dr. Johannes Heidenhain GmbH

Sommaire		Plan	Page	
I	Généralités		Plan Page	
11	Paramétrage			
	II.1 Condition			3
	II.2 Mise en circuit c	e la tension auxiliaire		3
	II.3 Paramétrage de	base		4
	I Optimisation			
	III.1 Condition			6
	III.2 Préparatifs			6
	III.3 Contrôle du rég	ulateur de courant		6
	III.4 Optimisation du	régulateur de vitesse		7
	III.5 Optimisation du	régulateur de position		8
	III.5.1 Préparati	s		8
	III.5.2 Optimisat	ion		9

Sous réserve de modifications techniques apportés en vue d'amélioration des appareils ! Imprimé en R.F.A. 05.01

Tous droits réservés. Sans autorisation écrite de l'entreprise BECKHOFF, aucune partie de cet ouvrage n'a le droit d'être ni reproduite par des moyens quelconques (impression, photocopie, microfilm ou autre procédure) ni traitée, polycopiée ou distribuée au moyen de systèmes électroniques.

I Généralités

Cette documentation offre des stratégies de mise en service du variateur numérique AX2000 ainsi que des mesures d'optimisation de ses circuits de régulation.

Etant donné que ces stratégies ne peuvent pas s'appliquer à tous les cas, il faut qu'en fonction des exigences de votre machine, vous devriez éventuellement développer une stratégie individuelle.

Toutefois, les déroulements décrits dans ce qui suit ont pour but de vous expliquer les principes fonctionnels.

II Paramétrage

II.1 Condition

Le constructeur de la machine doit réaliser une analyse des risques de la machine et il est responsable de la sécurité fonctionnelle, mécanique de la machine et de la sécurité du personnel. Ceci s'applique plus particulièrement au déclenchement de mouvements par l'intermédiaire des fonctions du logiciel de mise en service.

La mise en service du variaateur à l'aide des fonctions du logiciel correspondant n'est admise qu'avec l'emploi simultané d'un dispositif d'assentiment selon la norme EN292-1, celui-ci agissant directement sur le circuit d'entraînement.

- Le servoamplificateur doit être monté et toutes les liaisons électriques doivent être réalisées. Cf. manuel d'installation chapitre II.
- I'alimentation en tension auxiliaire 24V et l'alimentation en puissance 400V/480V doivent être hors circuit
- Un ordinateur individuel avec le logiciel de mise en service installé doit être raccordé.
- Le dispositif d'assentiment selon EN 292-1 doit être raccordé
- La commande émet un signal LOW pour l'entrée ENABLE (validation) du variateur (borne de connexion X3/15), c'est-à-dire que le variateur est dévalidé.

II.2 Mise en circuit de la tension auxiliaire

① ① ①

	Mettez en circuit l'alimentation en tension auxiliaire 24 V pour le variateur.		
•	Affichage à LED : Contact BTB :	X.XX ouvert	(version firmware)
	Au bout d'environ 5	5 secon	ides :
•	Affichage à LED : Contact BTB :	YY. fermé	(intensité de courant, point clignotant pour CPU OK)
•	Mettez l'ordinateur	individ	uel en marche
	Lancez le logiciel d	e mise	en service
•	Cliquez sur l'interfa munication avec le	ice (CO servoa	M1: ou COM2:) qui doit être utilisée pour la com- mplificateur.
	Les paramètres sont	transfé	rés au PC.
	Cliquez sur la case	de con	trôle Dévalidation VC en bas à droite.

Dans le bouton d'état AXE s'affiche alors **NO ENABLE**.

II.3 Paramétrage de base

Le servoamplificateur reste dévalidé et l'alimentation en puissance est hors circuit.

Û	Réglage des paramètres de base (adresse, ballast, tension secteur, etc.) : - cliquez sur le bouton REGLAGES au-dessus de l'image du moteur - modifiez les champs si nécessaire - cliquez sur REPRENDRE puis sur OK
① ① ①	 Sélection du moteur : cliquez sur le bouton MOTEUR en dessous de l'image du moteur ouvrez le tableau de sélection de moteurs en cliquant sur la flèche dans la liste NUMERO-NOM cliquez sur le moteur raccordé cliquez sur REPRENDRE répondez à la question concernant le frein répondez à la question concernant la "Sauvegarde dans EEPROM/Reset" par NON (les données sont dans la RAM et seront sauvegardées à demeure par la suite)
亡 ①	 Sélection du Feedback (résolveur, codeur) : cliquez sur le bouton FEEDBACK les valeurs indiquées correspondent aux données du bloc de données implicites du moteur que vous avez chargées modifiez les champs si nécessaire cliquez sur REPRENDRE puis sur OK
① ①	Réglages de l'émulation codeur (ROD, SSI) : - cliquez sur le bouton ENCODER CONNECTOR - sélectionnez l'émulation codeur souhaitée - réglez les paramètres appartenants dans la moitié droite de la fenêtre - cliquez sur REPRENDRE puis sur OK
Û Û	Configuration des entrées et sorties analogiques : - cliquez sur le bouton I/O ANALOG (E/S analogiques) - sélectionnez la FONCTION VC souhaitée - réglez la graduation pour l'entrée VC par rapport à 10 V. - réglez les signaux de sortie souhaités pour MONITEUR1 et MONITEUR2 - cliquez sur REPRENDRE puis sur OK
① ①	 Configuration des entrées/sorties numériques : cliquez sur le bouton I/O DIGITAL (E/S numériques) affectez aux entrées numériques (moitié gauche de la fenêtre) les fonctions souhaitées et entrez, si nécessaire la variable auxiliaire X. affectez aux sorties numériques (moitié droite de la fenêtre) les fonctions souhaitées et entrez, si nécessaire la variable auxiliaire X. Cliquez sur REPRENDRE puis sur OK
П	Sauvegarde des paramètres :
	- cliquez sur le bouton
∇	- répondez à la question RESET AMPLIFICATEUR par OUI
	Cliquez sur la case de contrôle Dévalidation VC en bas, à droite. Dans le champ d'état AXE s'affiche alors NO ENABLE.

 05.01
 Paramétrage

 Si vous désirez utiliser la régulation de position du servoamplificateur, entrez les paramètres spéci fiques à votre servosystème :

_	Axis Type :
Л	- cliquez sur le bouton REGULATEUR DE POSITION
\checkmark	- cliquez sur le bouton DONNEES DE POSITIONNEMENT
П	- sélectionnez le type d'axe (linéaire ou rond)
\checkmark	Resolution :
Û	 - entrez le dénominateur et le compteur de la résolution. Ce faisant, adaptez le parcours de déplacement de la charge en unités de positionnement (unité de longueur pour les axes linéaires ou resp. °méc. pour les axes ronds) au nombre de rotations du moteur. Seuls des chiffres entiers sont admis
П	Exemple 1 : multiplication 3.333 mm / tour
\$	=> résolution = 10000/3 μm/tour (les entrées de parcours suivant. en μm)
$\overline{\Gamma}$	=> résolution = 10/3 mm/tour (les entrées de parcours suivantes en mm) Exemple 2: multiplication = 180 °méc./tour => résolution = 180/1 °méc./tour (les entrées suivant de parcours en °méc)
Л	
∇	vmax :
$\hat{\Gamma}$	vitesse nominale du moteur l'unité de mesure dépend de la résolution (°méc./s ou unité de longueur/s).
	Exemple 1: résolution = 10000/3 μ m/tour , n _{nom} = 3000 tour /min
$\frac{1}{2}$	$=> vmax = resolution * n_{nom} = 10000/3 * 3000 \mu m/min = 10 000 000 \mu m/min$
×	=> vmax = résolution * n _{err} = 10/3 * 3000 mm/min = 10 000 mm/min
П	Exemple 2: résolution = 180 °méc/tour , n_{nom} = 3000 tour /min
∇	=> vmax = résolution * n _{nom} = 180 * 3000 °méc/min = 9000 °méc/s
Ţ	t acc/dec min : - entrez en ms le temps exigé par le moteur à accélération mécanique maximale
$\mathbf{\vee}$	admissible afin de passer de la vitesse 0 à vmax
Π	InPosition :
\checkmark	- entrez la fenêtre "En position". Cette valeur sera utilisée pour le message
Û	"En position". L'unité de mesure résulte de la résolution (°méc. ou unité de longueur) valeur typique : p. ex. environ résolution * 1/100 tours
_	- Cliquez sur REPRENDRE puis sur OK
$\hat{\Gamma}$	(les données sont dans la RAM et seront sauvegardées à demeure par la suite)
Û	 max. Following Error : vous voyez dès lors la page d'écran REGULATEUR DE POSITION entrez la fenêtre "Défaut de poursuite". Cette valeur sera utilisée pour le message
Π	unité de longueur) valeur typique : p. ex. environ résolution * 1/10 tours
く	
	Sauvegarde des paramètres :
٦Ļ	
	- cliquez sur le bouton

Optimisation

III.1 Condition

Le paramétrage de base suivant la description au chapitre II est achevé.

III.2 Préparatifs

ļ	OPMODE : réglez l'OPMODE 1, vitesse analogique
~	Setp. function :
Y	Sauvegarde des paramètres :
J	- cliquez sur le bouton
-	- répondez à la question RESET AMPLIFICATEUR par OUI
ŀ	SW/SETP.1 : court-circuitez l'entrée de valeur de consigne 1 ou entrez 0 V
	OSZILLOSCOPE :
<u>ک</u>	Channel1 : n_act Channel2 : I_act
J	Reversing mode : réglez sur la page d'écran OSCILLOSCOPE/SERVICE/PARAMETERS les paramètres pour le régime réversible sur des valeurs qui ne menacent pas votre machine, même à circuit de régulation de position inactivé (env. 10 % de la vitesse finale).

Lors de la fonction de service Régime réversible (Reversing mode), l'entrée de VC analogique est inactivée ou le régulateur de position interne est mis hors fonction. Assurez-vous que le déplacement seul de l'axe sélectionné puisse être exécuté sans risque. Pour des raisons de sécurité, prévoyez le signal de validation de l'amplificateur d'un bouton-poussoir d'assentiment et assurez la fonction d'ARRET D'URGENCE pour cet axe.

III.3 Contrôle du régulateur de courant

A combinaison amplificateur - moteur adaptée, le régulateur de courant est déjà réglé de manière stable pour quasiment toutes les applications.

Ipeak :

- réduisez la valeur lpeak sur la valeur Inom du moteur (protection du moteur)

Mettez l'alimentation en puissance en circuit.

Définition de la valeur de consigne analogique :

- valeur de consigne1 = 0VValidez dès lors le variateur :

- signal high sur l'entrée ENABLE X3/15. Le bouton d'état AXIS visualise NO SW-EN - cliquez sur la case de contrôle Validation VC. Le bouton d'état AXIS visualise ENABLE.

Le moteur est dès lors arrêté, réglage de vitesse n=0 tr/mn. Au cas où le régulateur de courant ne travaillerait pas de manière stable (si le moteur vibre avec une fréquence nettement supérieure à 100 Hz), veuillez contacter notre département Application.

III.4

Optimisation du régulateur de vitesse

SETP. OFFSET:

Laissez l'amplificateur validé. Si l'axe dérive, modifiez le paramètre Offset VC jusqu'à ce qu'il se stabilise (ou utilisez la fonction AUTO-OFFSET).

SETP. RAMP +/-:

Les rampes de valeur de consigne sont utilisées afin de lisser la valeur de consigne prédéfinie (effet filtre). Réglez la constante de temps mécanique du système global, c'est-à-dire le temps de montée de la vitesse de 0 jusqu'à n_{cmd}. Tant que les rampes réglées sont plus courtes que les temps de réaction mécanique du système global, la vitesse de réaction n'est pas influencée.

LIMIT SPEED:

réglez la vitesse finale souhaitée.

KP/Tn :

Ŷ

Ŷ

Û

Û

Û

Û

Ŷ

Û

① ①

Û

augmentez KP jusqu'à ce que le moteur commence à vibrer (visible sur l'oscilloscope et audible) et diminuez la valeur KP de nouveau jusqu'à ce que la vibration s'arrête avec fiabilité et la stabilité soit assurée.

Pour Tn, veuillez utiliser la valeur implicite pour le moteur.

Start reversing mode :

démarrez le régime réversible (F8, v1/v2 env. +/-10% de n_{nom} du moteur). Observez l'allure de la vitesse sur l'oscilloscope. A réglage correct, une réponse indicielle stable dans les deux sens doit se produire.

Figure : réponse indicielle

= vitesse

n

t

1

2

- nsoll = vitesse de consigne
- SW = valeur de comsigne
 - = temps
 - = optimum
 - = KPtrop élevé

KP :

L'augmentation de KP effectuée avec précaution permet d'optimiser de manière précise l'allure de la vitesse de rotation. Objectif : suroscillation minimisée au maximum tout en assurant encore un bon amortissement. Des couples d'inertie totale plus grands permettent une valeur KP plus importante.

PID-T2 :

Vous pouvez atténuer des influences parasites telles que faible jeu de transmission ou semblable en augmentant PID-T2 à environ 1/3 de la valeur de Tn.

FEEDBACK :

Plus particulièrement en présence de petits moteurs à faible couple, FEEDBACK permet d'améliorer encore plus la souplesse de marche.

Stop reversing mode :

Quittez le régime réversible (F9).

Réglez de nouveau la valeur Ipeak correcte rapportée au moteur (régulateur de courant). Relancez le régime réversible et observez la réponse indicielle. Réduisez quelque peu la tendance éventuelle aux vibrations KP du régulateur de courant.

Mémorisez le bloc de paramètres actuel dans l'EEPROM. Cliquez sur le bouton

III.5 Optimisation du régulateur de position

Ш

Û

Ŷ

III.5.1 Préparatifs

OPMODE :
Sélectionnez OPMODE 8

Placez la charge sur la position médiane :

l'objectif est de déplacer la charge par la fonction CONSTANT SPEED approximativement sur la position médiane du parcours de déplacement.

- cliquez sur le bouton POSITION
- cliquez sur le bouton SETUP MODE
- contrôlez si le paramètre v (CONSTANT SPEED) est positionné sur 1/10 de la limite de vitesse vmax réglée. Modifiez la valeur si nécessaire et cliquez sur APPLY.
- Démarrez la fonction CONSTANT SPEED par la touche de fonction F4.
 Déplacez la charge par F4 approx. sur le centre du parcours de déplacement.
 ATTENTION :

si le moteur se déplace dans le mauvais sens, relâchez la touche de fonction F4 et modifiez la signe du paramètre v. Cliquez sur APPLY et déplacez la charge approximativement sur la position médiane par actionnement de F4.

Set reference point :

- réglez le type traverse de référence sur : "0,Set reference point"
 démarrez le traverse de référence. La position actuelle est ajustée en tant que point de référence.
 - Stop le traverse
- cliquez sur la case de contrôle SW-Disable dans la fenêtre de variateur

Définition de blocs de marche test :

- cliquez sur le bouton POSITION
- cliquez sur le bouton POSITION DATA
- cliquez sur la liste de sélection des instructions de déplacement et sélectionnez Ordre 1. Entrez les valeurs du tableau en bas, ensuite, sélectionnez l'ordre 2 et entrez les valeurs correspondantes.

	Task 1	Task 2
units	SI	SI
type	REL cmd	REL cmd
s_cmd	+10% du parcours total	-10% du parcours total
v_cmd_source	digital	digital
v_cmd	10% de vmax	10% de vmax
t_accel_total	10 * t_acc/dec_min	10 * t_acc/dec_min
t_dec_total	10 * t_acc/decmin	10 * t_acc/dec_min
ramp	Trapeze	Trapeze
next motion task	with	with
next number	2	1
acc./dec.	to target position	to target position
Start Condition	immediately	immediately
APPLY/OK	Cliquez	Cliquez

Sauveo

Sauvegarde des paramètres :

- cliquez sur le bouton

III.5.2 Optimisation

Ŷ

Le démarrage d'instructions de déplacement à l'aide des fonctions du logiciel de mise en service n'est admis qu'en liaison avec l'emploi d'un dispositif d'assentiment selon EN292-1, agissant directement sur le circuit d'entraînement.

Start motion task :

- cliquez sur le bouton POSITION
- cliquez sur le bouton **POSITION DATA**
- cliquez sur START, l'instruction de déplacement 1 est lancée et, du fait de la définition de la suite des instructions de déplacement, le moteur tourne en régime réversible réglé en position

Optimisation des paramètres

PID-T2, Feedback :

pour les OPMODES 4, 5 et 8, le régulateur de vitesse n'est pas utilisé. Le régulateur de position dispose d'un propre régulateur de vitesse intégré qui, toutefois, reprend les paramètres PID-T2 et FEEDBACK réglés de la page d'écran Régulateur de vitesse.

KP, Tn :

si KP est réglé sur une valeur trop petite, le régulateur de position a tendance à vibrer. Ajustez pour KP la valeur du régulateur de vitesse optimisé. Tn devrait avoir 2 à 3 fois la valeur de Tn dans le régulateur de vitesse optimisé.

KV :

le comportement à l'accélération du moteur devrait être bien atténué (absence de tendance à vibrer) à défaut de poursuite minimal. Lors de l'augmentation de KV, la tendance aux vibrations augmente elle aussi, lors de la diminution, le défaut de poursuite augmente, le moteur devient trop souple. Corrigez KV jusqu'à ce que le comportement souhaité soit atteint.

FF :

la part d'intégrale de la régulation est dans le régulateur de position et non pas dans le régulateur de vitesse. C'est pourquoi aucun défaut de poursuite ne se produit à vitesse constante (pure régulation proportionnelle). Le défaut de poursuite apparaissant lors de l'accélération est influencé par le paramètre FF. Le défaut de poursuite lors de l'accélération devient plus petit lorsque le paramètre FF est augmenté. Si l'augmentation de FF n'apporte pas d'amélioration, vous pouvez augmenter KP quelque peu afin de rendre la régulation de la vitesse plus rigide.

Si le moteur ne tourne pas de manière satisfaisante réglé en position, veuillez tout d'abord vérifier la présence éventuelle de causes extérieures comme par exemple :

- jeu mécanique dans le transfert (limite KP)
- effets de blocage ou Slip-Stick
- fréquence propre trop petite du système mécanique

mauvais amortissement, dimensionnement du servosystème trop faible avant que vous

n'optimisiez de nouveau les circuits de régulation.

Cette page a été intentionellement laissée vide

Cette page a été intentionellement laissée vide