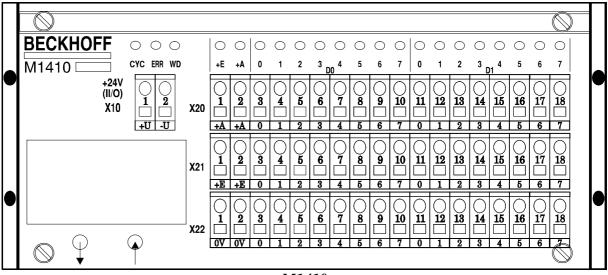
M1410 Parallel Ein-/Ausgabe

Technische Beschreibung

Eiserstraße 5 Telefon 05246/963-0 33415 Verl Telefax 05246/963-149


Datum : **5.10.93** Version : **2.0** Seite **1** von 13

Inhaltsverzeichnis

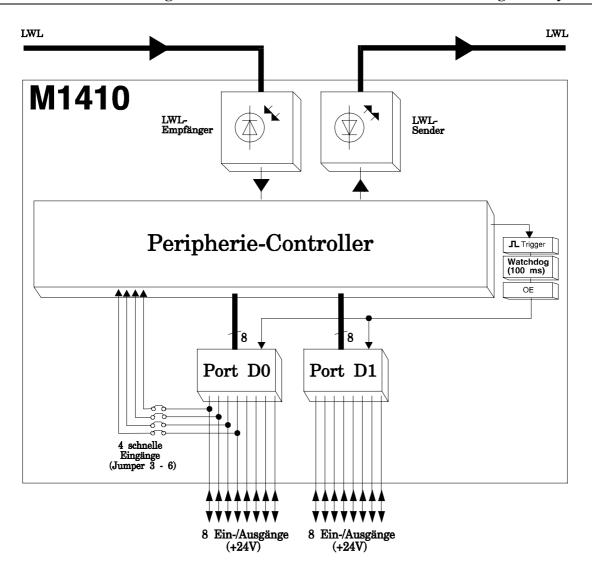
1. Funktionsbeschreibung Hardware	3
2. Funktionsbeschreibung Software	5
3. Technische Daten	6
4. Installationshinweise	7
5. Anschlußplan	11

Seite 2 von 13 Version : 2.0 Datum : 5.10.93

1. Funktionsbeschreibung Hardware

M1410

Allgemeines


Das Parallel Modul M1410 ist ein Ein-/Ausgabe Modul für den Betrieb im II/O-Lightbus System mit 16 Standard 24 V Ein-/Ausgängen, unterteilt in 2 Ports zu je 8 Bit. Die zwei Ports D0 und D1 entsprechen den Datenbytes im II/O-Lightbus-Übertragungsprotokoll, und sind je nach Anwendung als Ein- oder Ausgang konfigurierbar.

Jeder Ein-/Ausgang ist mit einer LED versehen, die den momentanen Signalzustand anzeigt. Des weiteren sind für den II/O-Lightbus-Ring drei Diagnose- LEDs angebracht :

- *LD1* Die grüne LED 'CYCLE' wird mit dem Startbit eines jeden Telegramms eingeschaltet und mit dem Stopbit eines jeden Telegramms wieder ausgeschaltet.
- LD2Die rote LED 'ERROR' wird nach dem Erkennen eines fehlerhaften Telegrammes eingeschaltet (Checksum. Frame) dem Durchlaufen drei und nach aufeinanderfolgender richtiger Telegramme Frame) wieder (Checksum, ausgeschaltet.
- LD3 Die grüne LED 'Watchdog' wird durch ein gültiges Schreibtelegramm mit übereinstimmender Adresse eingeschaltet. Wenn in den folgenden 100 ms kein weiteres Telegramm mit oben angegebenen Eigenschaften erkannt wird, schaltet ein selbstständiger Baustein auf dem Modul alle Ausgänge ab.

Im Fehlerfall werden aus Sicherheitsgründen alle Ausgänge ausgeschaltet.

Datum: **5.10.93** Version: **2.0** Seite **3** von 13

Blockschaltbild

Seite 4 von 13 Version : 2.0 Datum : 5.10.93

2. Funktionsbeschreibung Software

Datum : **5.10.93** Version : **2.0** Seite **5** von 13

3. Technische Daten

Ein-/Ausgänge	32, portweise konfigurierbar; LED Statusanzeige aller Ein-/Ausgänge
Eingangsspezifikationen	24 V DC, 10 mA, digital gefiltert
Eingangsschaltschwelle	0 - 8V = LOW 15 - 24V = HIGH
Eingangsverzögerung	0,7 ms RC-Glied (0,15ms) 6,8 ms Eingangs-Latch
Ausgangsspezifikationen	24 V DC, max. 500 mA, kurzschlußfest
Ausgangsüberwachung	Watchdog Schaltung 100ms
Anschlüsse	steckbar für je 16 E/A; +,-,Signal
Datenanschluß	Lichtleiter, II/O-Lightbus System
Übertragungsrate	2,5 MBaud, 25 μs für 32 Bit
Versorgungsspannung	24 V DC (± 10%)
Stromaufnahme	0,1 A (ohne Last- und Eingangsströme)
Gehäuseform	geschlossen, aufschraubbar auf Gerätetrageschiene nach DIN EN 50022, 50035
Abmessungen (B * H * T)	170 * 76 * 68 mm
Gewicht	ca. 550 g
Betriebstemperatur	±0+55 ØC
Lagertemperatur	-20+70 ^Ø C

Seite 6 von 13 Version : 2.0 Datum : 5.10.93

4. Installationshinweise

Montage

Das M1410 wird mit Lichtleiter Steckverbindern (Beckhoff Z1000) an den II/O-Lightbus angeschlossen. Die maximale Lichtleiter-Kabellänge bis zu den Nachbarboxen sollte 45m bei Kunststofflichtleitern und 600m bei Glasfaser nicht übersteigen. Diese Werte gelten nur, wenn beim Verlegen der Lichtleiter-Kabel Biegeradien von min. 30 mm eingehalten werden. Bei Verwendung von Kunststofflichtleitern ist zur Montage der Stecker kein Spezialwerkzeug erforderlich.

An die Ein-/Ausgänge werden handelsübliche Aktoren und Sensoren direkt in Dreileitertechnik (+,-, Signal) angeschlossen.

Die Montage des M1410 erfolgt dezentral an der Maschine oder im Schaltschrank durch einfaches Aufschrauben auf eine Gerätetragschiene nach DIN EN 50022 oder DIN EN 50035.

Konfiguration

Jeder Port auf dem M1410 kann unabhängig von den anderen als Eingangsport oder als Ausgangsport konfiguriert werden. Hierzu dienen DIP-Schalter, die sich auf der Unterseite der XILINX-Platine des M1410 befinden. Zur Veränderung der Schaltereinstellung muß das Modulgehäuse geöffnet werden.

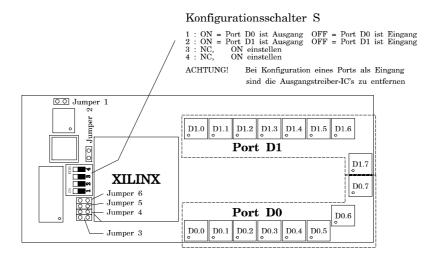
Die DIP-Schalter sind wie folgt zugeordnet:

Schalter 1 => Port D0 Schalter 2 => Port D1

Schalter 3 NC, 'ON' einstellen

Schalter 4 NC, 'ON' einstellen

Datum: **5.10.93** Version: **2.0** Seite **7** von 13


Ob ein Port Eingang oder Ausgang ist, hängt von der Schalterstellung ab:

Stellung 'ON' => Port ist Ausgang Stellung 'OFF'=> Port ist Eingang

ACHTUNG:

Für alle Ports gilt, daß bei Konfiguration des Ports als Eingang (Schalterstellung 'OFF') alle acht Ausgangstreiber ICs des jeweiligen Ports entfernt werden müssen.

Werden die Treiber ICs nicht entfernt ist der Port nicht als Eingang funktionsfähig; eine Beschädigung des Moduls tritt allerdings nicht auf.

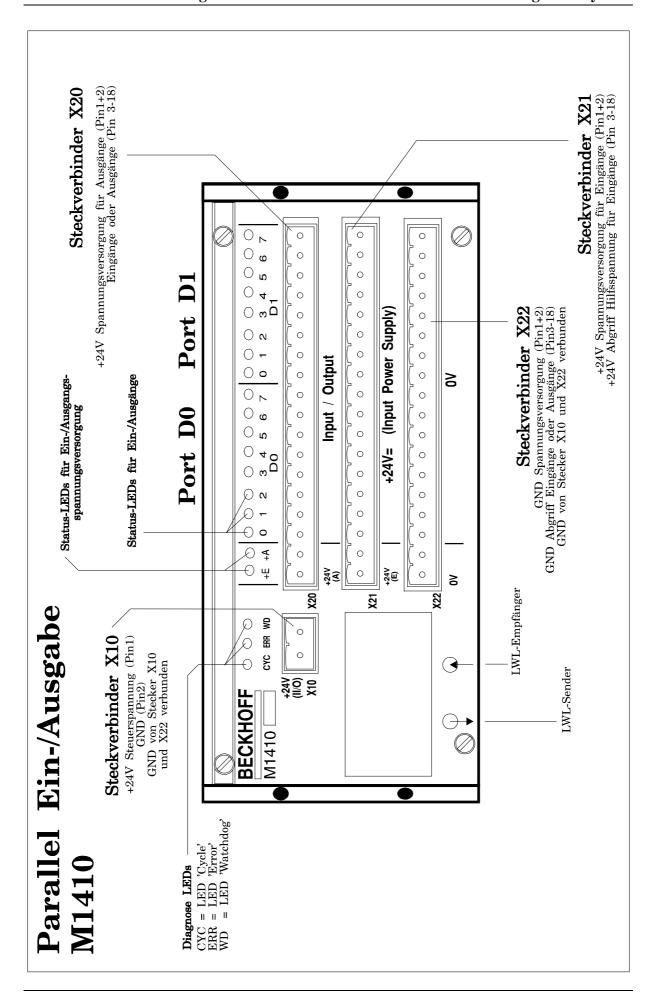
Ansicht der M1410-XILINX-Platine

Mit den Jumpern 1 und 2 sind folgende Modulkonfigurationen möglich :

Jumper 1	Watchdog Ein / Aus für Port D0 und D1
	Ist der Jumper gesteckt, ist die Sicherheitsfunktion 'Watchdog' ausgeschaltet. Das bedeutet, im Fehlerfall werden gesetzte Ausgänge von Port D0 und D1 nicht ausgeschaltet.
Jumper 2	Latch Ein / Aus
	In der Standardeinstellung ist der Jumper gesteckt. Das bedeutet, die Eingangssignale werden nur alle 6,8 msec eingelesen, sonst permanent.

Seite 8 von 13 Version : 2.0 Datum : 5.10.93

Mit dem 4-fach Jumperfeld sind folgende Modulkonfigurationen möglich :


	Schnelle Eingänge M1400 (Interrupteingänge)
Jumper 3	Schneller Eingang II3: Bei gestecktem Jumper Verbindung zwischen Port D0.3 und XILINX II3: schneller Eingang aktiv
Jumper 4	Schneller Eingang II2 : Bei gestecktem Jumper Verbindung zwischen Port D0.2 und XILINX II2: schneller Eingang aktiv
Jumper 5	Schneller Eingang II1: Bei gestecktem Jumper Verbindung zwischen Port D0.1 und XILINX II1: schneller Eingang aktiv
Jumper 6	Schneller Eingang II0 : Bei gestecktem Jumper Verbindung zwischen Port D0.0 und XILINX II0: schneller Eingang aktiv

Spannungsversorgung

Es stehen folgende Anschlußklemmen für die Stromversorgung zur Verfügung :

- (1) zweipolige steckbare Anschlußklemme für die Steuerlogik (X10 Pin1+2)
- (2) zwei steckbare Anschlußklemmen für Ausgänge (X20 Pin1+2) (jeweils 16 Ausgänge)
- (3) zwei steckbare Anschlußklemmen für Eingänge (X21 Pin1+2) (jeweils 16 Eingänge)
- (4) zwei steckbare Anschlußklemmen für Masse (X22 Pin 1+2)

Datum : **5.10.93** Version : **2.0** Seite **9** von 13

Seite **10** von 13 Version : **2.0** Datum : **5.10.93**

5. Anschlußplan

Steckeranschlußbelegung mit Signalbeschreibung

STECKER X10

Stecker	Pin	Signal	Beschreibung
X10	1	+U	Steuerspannung +24V
X10	2	-U	Masse

STECKER X20

Stecker	Pin	Signal	Beschreibung
X20	1	+A	+24V Spannungsversorgung für Ausgänge
X20	2	+A	+24V Spannungsversorgung für Ausgänge
X20	3	D0.0	Bit 0 des Datenbyte 0 D0.0 ist Output, wenn DIL-Schalter S1 = ON D0.0 ist Input, wenn DIL-Schalter S1 = OFF
X20	4	D0.1	Bit 1 des Datenbyte 0 D0.1 ist Output, wenn DIL-Schalter S1 = ON D0.1 ist Input, wenn DIL-Schalter S1 = OFF
X20	5	D0.2	Bit 2 des Datenbyte 0 D0.2 ist Output, wenn DIL-Schalter S1 = ON D0.2 ist Input, wenn DIL-Schalter S1 = OFF
X20	6	D0.3	Bit 3 des Datenbyte 0 D0.3 ist Output, wenn DIL-Schalter S1 = ON D0.3 ist Input, wenn DIL-Schalter S1 = OFF
X20	7	D0.4	Bit 4 des Datenbyte 0 D0.4 ist Output, wenn DIL-Schalter S1 = ON D0.4 ist Input, wenn DIL-Schalter S1 = OFF
X20	8	D0.5	Bit 5 des Datenbyte 0 D0.5 ist Output, wenn DIL-Schalter S1 = ON D0.5 ist Input, wenn DIL-Schalter S1 = OFF

Datum: **5.10.93** Version: **2.0** Seite **11** von 13

Fortsetzung Stecker X20:

Stecker	Pin	Signal	Beschreibung
X20	9	D0.6	Bit 6 des Datenbyte 0
1120		20.0	D0.6 ist Output,
			wenn DIL-Schalter S1 = ON
			D0.6 ist Input,
			wenn DIL-Schalter S1 = OFF
X20	10	D0.7	Bit 7 des Datenbyte 0
1120		2 017	D0.7 ist Output,
			wenn DIL-Schalter S1 = ON
			D0.7 ist Input,
			wenn DIL-Schalter S1 = OFF
X20	11	D1.0	Bit 0 des Datenbyte 1
1120	11	21.0	D1.0 ist Output,
			wenn DIL-Schalter S1 = ON
			D1.0 ist Input,
			wenn DIL-Schalter S1 = OFF
X20	12	D1.1	Bit 1 des Datenbyte 1
1120	12	D 1.1	D1.1 ist Output,
			wenn DIL-Schalter S1 = ON
			D1.1 ist Input,
			wenn DIL-Schalter S1 = OFF
X20	13	D1.2	Bit 2 des Datenbyte 1
1120	10	21.2	D1.2 ist Output,
			wenn DIL-Schalter S1 = ON
			D1.2 ist Input,
			wenn DIL-Schalter S1 = OFF
X20	14	D1.3	Bit 3 des Datenbyte 1
1120		21.0	D1.3 ist Output,
			wenn DIL-Schalter S1 = ON
			D1.3 ist Input,
			wenn DIL-Schalter S1 = OFF
X20	15	D1.4	Bit 4 des Datenbyte 1
			D1.4 ist Output,
			wenn DIL-Schalter S1 = ON
			D1.4 ist Input,
			wenn DIL-Schalter S1 = OFF
X20	16	D1.5	Bit 5 des Datenbyte 1
			D1.5 ist Output,
			wenn DIL-Schalter S1 = ON
			D1.5 ist Input,
			wenn DIL-Schalter S1 = OFF
X20	17	D1.6	Bit 6 des Datenbyte 1
			D1.6 ist Output,
			wenn DIL-Schalter S1 = ON
			D1.6 ist Input,
			wenn DIL-Schalter S1 = OFF
X20	18	D1.7	Bit 7 des Datenbyte 1
			D1.7 ist Output,
			wenn DIL-Schalter S1 = ON
			D1.7 ist Input,
			wenn DIL-Schalter S1 = OFF

Seite 12 von 13 Version : 2.0 Datum : 5.10.93

STECKER X21

Stecker	Pin	Signal	Beschreibung
X21	1	+E	+24V Spannungsversorgung für Eingänge
X21	2	+E	+24V Spannungsversorgung für Eingänge
X21	3	+24V	+24V Abgriff Hilfsspannung für Eingang 0.0
X21	4	+24V	+24V Abgriff Hilfsspannung für Eingang 0.1
X21	5	+24V	+24V Abgriff Hilfsspannung für Eingang 0.2
X21	6	+24V	+24V Abgriff Hilfsspannung für Eingang 0.3
X21	7	+24V	+24V Abgriff Hilfsspannung für Eingang 0.4
X21	8	+24V	+24V Abgriff Hilfsspannung für Eingang 0.5
X21	9	+24V	+24V Abgriff Hilfsspannung für Eingang 0.6
X21	10	+24V	+24V Abgriff Hilfsspannung für Eingang 0.7
X21	11	+24V	+24V Abgriff Hilfsspannung für Eingang 1.0
X21	12	+24V	+24V Abgriff Hilfsspannung für Eingang 1.1
X21	13	+24V	+24V Abgriff Hilfsspannung für Eingang 1.2
X21	14	+24V	+24V Abgriff Hilfsspannung für Eingang 1.3
X21	15	+24V	+24V Abgriff Hilfsspannung für Eingang 1.4
X21	16	+24V	+24V Abgriff Hilfsspannung für Eingang 1.5
X21	17	+24V	+24V Abgriff Hilfsspannung für Eingang 1.6
X21	18	+24V	+24V Abgriff Hilfsspannung für Eingang 1.7

STECKER X22

Stecker	Pin	Signal	Beschreibung
X22	1	0V	GND Spannungsversorgung für Ein/Ausgänge
X22	2	0V	GND Spannungsversorgung für Ein/Ausgänge
X22	3	0V	GND Abgriff Ein/Ausgang D0.0
X22	4	0V	GND Abgriff Ein/Ausgang D0.1
X22	5	0V	GND Abgriff Ein/Ausgang D0.2
X22	6	0V	GND Abgriff Ein/Ausgang D0.3
X22	7	0V	GND Abgriff Ein/Ausgang D0.4
X22	8	0V	GND Abgriff Ein/Ausgang D0.5
X22	9	0V	GND Abgriff Ein/Ausgang D0.6
X22	10	0V	GND Abgriff Ein/Ausgang D0.7
X22	11	0V	GND Abgriff Ein/Ausgang D1.0
X22	12	0V	GND Abgriff Ein/Ausgang D1.1
X22	13	0V	GND Abgriff Ein/Ausgang D1.2
X22	14	0V	GND Abgriff Ein/Ausgang D1.3
X22	15	0V	GND Abgriff Ein/Ausgang D1.4
X22	16	0V	GND Abgriff Ein/Ausgang D1.5
X22	17	0V	GND Abgriff Ein/Ausgang D1.6
X22	18	0V	GND Abgriff Ein/Ausgang D1.7

Datum : **5.10.93** Version : **2.0** Seite **13** von 13