BECKHOFF New Automation Technology

Dokumentation | DE EK1110-0043, EK1110-0044

EtherCAT-EJ-Koppler, CX- und EL-Klemmen-Anbindung

Inhaltsverzeichnis

1	Vorw	ort		5
	1.1	Hinweise	e zur Dokumentation	5
	1.2	Sicherhe	eitshinweise	6
	1.3	Ausgabe	estände der Dokumentation	7
	1.4	Versions	identifikation von EtherCAT-Geräten	7
		1.4.1	Allgemeine Hinweise zur Kennzeichnung	7
		1.4.2	Versionsidentifikation von EK Kopplern	8
		1.4.3	Beckhoff Identification Code (BIC)	8
		1.4.4	Elektronischer Zugriff auf den BIC (eBIC)	11
2	Syste	emübersi	cht	14
3	Prod	uktbesch	reibung	15
	3.1	Einführu	ng	15
	3.2	Techniso	che Daten	16
	3.3	Start		17
4	Grun	dlagen d	er Kommunikation	18
	4.1	EtherCA	T-Grundlagen	18
	4.2	EtherCA	T-Geräte - Verkabelung - Drahtgebunden	18
	4.3	Stromau	fnahme aus dem E-Bus	19
	4.4	EtherCA	T State Machine	20
	4.5	CoE-Inte	erface: Hinweis	21
	4.6	Distribut	ed Clock	21
5	Insta	llation		22
	5.1	Hinweise	e zum ESD-Schutz	22
	5.2	Einbaula	igen	23
	5.3	Montage	e auf der Tragschiene des Signal-Distribution-Boards	24
	5.4	Anschlus	SS	28
		5.4.1	Anschlusstechnik	
		5.4.2	Verdrahtung	31
		5.4.3	Schirmung.	32
	5.5	Positioni	erung von passiven Klemmen	
	5.0	Spannur	ngsversorgung und Signalubertragung auf dem Signal-Distribution-Board	
	5.7 5.9	EK1110-	-0043 - Steckerbelegung	
	5.0	EK1110-	-0044 - Diagnose-LEDs	
	5.10	Entsora		
6	Inhot	riobnahn	20	40
Ŭ	6.1	EK1110-	-0043 - Konfiguration. Online-Status	
7	Δnha	ina		10
'	7.1	EtherCA	T AL Status Codes	42
	7.2	Firmware	e Kompatibilität	
	7.3	Firmware	e Update EL/ES/ELM/EM/EPxxxx	
		7.3.1	Gerätebeschreibung ESI-File/XML	43
		7.3.2	Erläuterungen zur Firmware	46

	7.3.3	Update Controller-Firmware *.efw	47
	7.3.4	FPGA-Firmware *.rbf	49
	7.3.5	Gleichzeitiges Update mehrerer EtherCAT-Geräte	53
7.4	Support	und Service	54

1 Vorwort

1.1 Hinweise zur Dokumentation

Zielgruppe

Diese Beschreibung wendet sich ausschließlich an ausgebildetes Fachpersonal der Steuerungs- und Automatisierungstechnik, das mit den geltenden nationalen Normen vertraut ist.

Zur Installation und Inbetriebnahme der Komponenten ist die Beachtung der Dokumentation und der nachfolgenden Hinweise und Erklärungen unbedingt notwendig.

Das Fachpersonal ist verpflichtet, für jede Installation und Inbetriebnahme die zu dem betreffenden Zeitpunkt veröffentlichte Dokumentation zu verwenden.

Das Fachpersonal hat sicherzustellen, dass die Anwendung bzw. der Einsatz der beschriebenen Produkte alle Sicherheitsanforderungen, einschließlich sämtlicher anwendbaren Gesetze, Vorschriften, Bestimmungen und Normen erfüllt.

Disclaimer

Diese Dokumentation wurde sorgfältig erstellt. Die beschriebenen Produkte werden jedoch ständig weiter entwickelt.

Wir behalten uns das Recht vor, die Dokumentation jederzeit und ohne Ankündigung zu überarbeiten und zu ändern.

Aus den Angaben, Abbildungen und Beschreibungen in dieser Dokumentation können keine Ansprüche auf Änderung bereits gelieferter Produkte geltend gemacht werden.

Marken

Beckhoff[®], TwinCAT[®], TwinCAT/BSD[®], TC/BSD[®], EtherCAT[®], EtherCAT G[®], EtherCAT G10[®], EtherCAT P[®], Safety over EtherCAT[®], TwinSAFE[®], XFC[®], XTS[®] und XPlanar[®] sind eingetragene und lizenzierte Marken der Beckhoff Automation GmbH. Die Verwendung anderer in dieser Dokumentation enthaltenen Marken oder Kennzeichen durch Dritte kann zu einer Verletzung von Rechten der Inhaber der entsprechenden Bezeichnungen führen.

Patente

Die EtherCAT-Technologie ist patentrechtlich geschützt, insbesondere durch folgende Anmeldungen und Patente: EP1590927, EP1789857, EP1456722, EP2137893, DE102015105702 mit den entsprechenden Anmeldungen und Eintragungen in verschiedenen anderen Ländern.

EtherCAT[®] ist eine eingetragene Marke und patentierte Technologie lizenziert durch die Beckhoff Automation GmbH, Deutschland.

Copyright

© Beckhoff Automation GmbH & Co. KG, Deutschland.

Weitergabe sowie Vervielfältigung dieses Dokuments, Verwertung und Mitteilung seines Inhalts sind verboten, soweit nicht ausdrücklich gestattet.

Zuwiderhandlungen verpflichten zu Schadenersatz. Alle Rechte für den Fall der Patent-, Gebrauchsmusteroder Geschmacksmustereintragung vorbehalten.

1.2 Sicherheitshinweise

Sicherheitsbestimmungen

Beachten Sie die folgenden Sicherheitshinweise und Erklärungen! Produktspezifische Sicherheitshinweise finden Sie auf den folgenden Seiten oder in den Bereichen Montage, Verdrahtung, Inbetriebnahme usw.

Haftungsausschluss

Die gesamten Komponenten werden je nach Anwendungsbestimmungen in bestimmten Hard- und Software-Konfigurationen ausgeliefert. Änderungen der Hard- oder Software-Konfiguration, die über die dokumentierten Möglichkeiten hinausgehen, sind unzulässig und bewirken den Haftungsausschluss der Beckhoff Automation GmbH & Co. KG.

Qualifikation des Personals

Diese Beschreibung wendet sich ausschließlich an ausgebildetes Fachpersonal der Steuerungs-, Automatisierungs- und Antriebstechnik, das mit den geltenden Normen vertraut ist.

Erklärung der Hinweise

In der vorliegenden Dokumentation werden die folgenden Hinweise verwendet. Diese Hinweise sind aufmerksam zu lesen und unbedingt zu befolgen!

▲ GEFAHR

Akute Verletzungsgefahr!

Wenn dieser Sicherheitshinweis nicht beachtet wird, besteht unmittelbare Gefahr für Leben und Gesundheit von Personen!

WARNUNG

Verletzungsgefahr!

Wenn dieser Sicherheitshinweis nicht beachtet wird, besteht Gefahr für Leben und Gesundheit von Personen!

▲ VORSICHT

Schädigung von Personen!

Wenn dieser Sicherheitshinweis nicht beachtet wird, können Personen geschädigt werden!

HINWEIS

Schädigung von Umwelt/Geräten oder Datenverlust

Wenn dieser Hinweis nicht beachtet wird, können Umweltschäden, Gerätebeschädigungen oder Datenverlust entstehen.

Tipp oder Fingerzeig

Dieses Symbol kennzeichnet Informationen, die zum besseren Verständnis beitragen.

1.3 Ausgabestände der Dokumentation

Version	Änderungen
1.3	Update Kapitel Versionsidentifikation von EtherCAT-Geräten
	Update Technische Daten
	Update Kapitel Installation
1.2	Neue Titelseite
	Update Technische Daten
	Update Kapitel EK1110-004x - Steckerbelegung
	Update Struktur
1.1	EK1110-0044 hinzugefügt
	Update Struktur
1.0	1. Veröffentlichung EK1110-0043
	Update Technische Daten
	Update Kapitel Steckerbelegung
0.3	Update Kapitel Technische Daten
	Kapitel Beckhoff Identification Code (BIC) eingefügt
0.2	Korrekturen
0.1	Erste vorläufige Version

1.4 Versionsidentifikation von EtherCAT-Geräten

1.4.1 Allgemeine Hinweise zur Kennzeichnung

Bezeichnung

Ein Beckhoff EtherCAT-Gerät hat eine 14stellige technische Bezeichnung, die sich zusammensetzt aus

- Familienschlüssel
- Typ
- Version
- Revision

Beispiel	Familie	Тур	Version	Revision
EL3314-0000-0016	EL-Klemme (12 mm, nicht steckbare Anschlussebene)	3314 (4 kanalige Thermoelementklemme)	0000 (Grundtyp)	0016
ES3602-0010-0017	ES-Klemme (12 mm, steckbare Anschlussebene)	3602 (2 kanalige Spannungsmessung)	0010 (Hochpräzise Version)	0017
CU2008-0000-0000	CU-Gerät	2008 (8 Port FastEthernet Switch)	0000 (Grundtyp)	0000

Hinweise

- die oben genannten Elemente ergeben die **technische Bezeichnung**, im Folgenden wird das Beispiel EL3314-0000-0016 verwendet.
- Davon ist EL3314-0000 die Bestellbezeichnung, umgangssprachlich bei "-0000" dann oft nur EL3314 genannt. "-0016" ist die EtherCAT-Revision.

- Die **Bestellbezeichnung** setzt sich zusammen aus
 - Familienschlüssel (EL, EP, CU, ES, KL, CX, ...)
 - Typ (3314)
 - Version (-0000)
- Die **Revision** -0016 gibt den technischen Fortschritt wie z. B. Feature-Erweiterung in Bezug auf die EtherCAT Kommunikation wieder und wird von Beckhoff verwaltet.

Prinzipiell kann ein Gerät mit höherer Revision ein Gerät mit niedrigerer Revision ersetzen, wenn nicht anders z. B. in der Dokumentation angegeben.

Jeder Revision zugehörig und gleichbedeutend ist üblicherweise eine Beschreibung (ESI, EtherCAT Slave Information) in Form einer XML-Datei, die zum Download auf der Beckhoff Webseite bereitsteht. Die Revision wird seit 2014/01 außen auf den IP20-Klemmen aufgebracht, siehe Abb. "*EL5021 EL-Klemme, Standard IP20-IO-Gerät mit Chargennummer und Revisionskennzeichnung (seit 2014/01)"*.

• Typ, Version und Revision werden als dezimale Zahlen gelesen, auch wenn sie technisch hexadezimal gespeichert werden.

1.4.2 Versionsidentifikation von EK Kopplern

Als Seriennummer/Date Code bezeichnet Beckhoff im IO-Bereich im Allgemeinen die 8-stellige Nummer, die auf dem Gerät aufgedruckt oder auf einem Aufkleber angebracht ist. Diese Seriennummer gibt den Bauzustand im Auslieferungszustand an und kennzeichnet somit eine ganze Produktions-Charge, unterscheidet aber nicht die Module einer Charge.

Aufbau der Seriennummer: KK YY FF HH

KK - Produktionswoche (Kalenderwoche) YY - Produktionsjahr FF - Firmware-Stand

HH - Hardware-Stand

Beispiel mit Seriennummer 12 06 3A 02:

12 - Produktionswoche 12 06 - Produktionsjahr 2006 3A - Firmware-Stand 3A

02 - Hardware-Stand 02

BECKHOFF EK1101 Ser. Nr.: 41130206 Rev. Nr.: 0815 Beckhaff Automation GmbH& Co. KG Huetshorstwag 20 / D- 33415 Vert Made in Germany / www.beckhaff.com

Abb. 1: EK1101 EtherCAT Koppler mit Revision 0815 und Seriennummer 41130206

1.4.3 Beckhoff Identification Code (BIC)

Der Beckhoff Identification Code (BIC) wird vermehrt auf Beckhoff-Produkten zur eindeutigen Identitätsbestimmung des Produkts aufgebracht. Der BIC ist als Data Matrix Code (DMC, Code-Schema ECC200) dargestellt, der Inhalt orientiert sich am ANSI-Standard MH10.8.2-2016.

Abb. 2: BIC als Data Matrix Code (DMC, Code-Schema ECC200)

Die Einführung des BIC erfolgt schrittweise über alle Produktgruppen hinweg. Er ist je nach Produkt an folgenden Stellen zu finden:

- auf der Verpackungseinheit
- direkt auf dem Produkt (bei ausreichendem Platz)
- auf Verpackungseinheit und Produkt

Der BIC ist maschinenlesbar und enthält Informationen, die auch kundenseitig für Handling und Produktverwaltung genutzt werden können.

Jede Information ist anhand des so genannten Datenidentifikators (ANSI MH10.8.2-2016) eindeutig identifizierbar. Dem Datenidentifikator folgt eine Zeichenkette. Beide zusammen haben eine maximale Länge gemäß nachstehender Tabelle. Sind die Informationen kürzer, werden sie um Leerzeichen ergänzt.

Folgende Informationen sind möglich, die Positionen 1 bis 4 sind immer vorhanden, die weiteren je nach Produktfamilienbedarf:

Pos- Nr.	Art der Information	Erklärung	Dateniden- tifikator	Anzahl Stellen inkl. Datenidentifikator	Beispiel
1	Beckhoff- Artikelnummer	Beckhoff - Artikelnummer	1P	8	1P072222
2	Beckhoff Traceability Number (BTN)	Eindeutige Seriennummer, Hinweis s. u.	SBTN	12	SBTNk4p562d7
3	Artikelbezeichnung	Beckhoff Artikelbezeichnung, z. B. EL1008	1К	32	1KEL1809
4	Menge	Menge in Verpackungseinheit, z. B. 1, 10…	Q	6	Q1
5	Chargennummer	Optional: Produktionsjahr und -woche	2P	14	2P401503180016
6	ID-/Seriennummer	Optional: vorheriges Seriennummer-System, z. B. bei Safety-Produkten oder kalibrierten Klemmen	51S	12	<mark>51S</mark> 678294
7	Variante	Optional: Produktvarianten-Nummer auf Basis von Standardprodukten	30P	32	30PF971, 2*K183

Weitere Informationsarten und Datenidentifikatoren werden von Beckhoff verwendet und dienen internen Prozessen.

Aufbau des BIC

Beispiel einer zusammengesetzten Information aus den Positionen 1 bis 4 und dem o.a. Beispielwert in Position 6. Die Datenidentifikatoren sind in Fettschrift hervorgehoben:

1P072222SBTNk4p562d71KEL1809 Q1 51S678294

Entsprechend als DMC:

Abb. 3: Beispiel-DMC 1P072222SBTNk4p562d71KEL1809 Q1 51S678294

BTN

Ein wichtiger Bestandteil des BICs ist die Beckhoff Traceability Number (BTN, Pos.-Nr. 2). Die BTN ist eine eindeutige, aus acht Zeichen bestehende Seriennummer, die langfristig alle anderen Seriennummern-Systeme bei Beckhoff ersetzen wird (z. B. Chargenbezeichungen auf IO-Komponenten, bisheriger Seriennummernkreis für Safety-Produkte, etc.). Die BTN wird ebenfalls schrittweise eingeführt, somit kann es vorkommen, dass die BTN noch nicht im BIC codiert ist.

HINWEIS

Diese Information wurde sorgfältig erstellt. Das beschriebene Verfahren wird jedoch ständig weiterentwickelt. Wir behalten uns das Recht vor, Verfahren und Dokumentation jederzeit und ohne Ankündigung zu überarbeiten und zu ändern. Aus den Angaben, Abbildungen und Beschreibungen in dieser Information können keine Ansprüche auf Änderung geltend gemacht werden.

1.4.4 Elektronischer Zugriff auf den BIC (eBIC)

Elektronischer BIC (eBIC)

Der Beckhoff Identification Code (BIC) wird auf Beckhoff Produkten außen sichtbar aufgebracht. Er soll wo möglich, auch elektronisch auslesbar sein.

Für die elektronische Auslesung ist die Schnittstelle entscheidend, über die das Produkt elektronisch angesprochen werden kann.

K-Bus Geräte (IP20, IP67)

Für diese Geräte ist derzeit keine elektronische Speicherung und Auslesung geplant.

EtherCAT Geräte (P20, IP67)

Alle Beckhoff EtherCAT Geräte haben ein sogenanntes ESI-EEPROM, das die EtherCAT-Identität mit der Revision beinhaltet. Darin wird die EtherCAT-Slave-Information gespeichert, umgangssprachlich auch als ESI/XML-Konfigurationsdatei für den EtherCAT-Master bekannt. Zu den Zusammenhängen siehe die entsprechenden Kapitel im EtherCAT-Systemhandbuch (Link).

In das ESI-EEPROM wird auch die eBIC gespeichert. Die Einführung des eBIC in die Beckhoff IO Produktion (Klemmen, Boxen) erfolgt ab 2020; mit einer weitgehenden Umsetzung ist in 2021 zu rechnen.

Anwenderseitig ist die eBIC (wenn vorhanden) wie folgt elektronisch zugänglich:

- Bei allen EtherCAT Geräten kann der EtherCAT Master (TwinCAT) den eBIC aus dem ESI-EEPROM auslesen
 - Ab TwinCAT 4024.11 kann der eBIC im Online-View angezeigt werden.
 - Dazu unter EtherCAT → Erweiterte Einstellungen → Diagnose das Kontrollkästchen "Show Beckhoff Identification Code (BIC)" aktivieren:

Twi	TwinCAT Project30 🔹 🗙											
	ieneral	Adapter	EtherCAT Online	CoE - O	Online							
	NetId:	[169.254.124.140.2.1			Advanced S Export Configu Sync Unit Ass Topolo	iettings ration File signment		Advanced Settings	Online View 0000 ESC Per/Type' 0002 ESC Per/Type' 0002 ESC Per/Type' 0003 Features' 0003 Features' 0003 Peatures' 0003 Peatures 0003 Peature	^	0000 Add Show Change Counters (State Changes / Not Preent)
	Frame 0 0	Cmd LWR BRD	Addr 0x01000000 0x0000 0x0130	Len 1 2	WC 1 2	Sync Unit <default></default>	Cycle (ms) 4.000 4.000	Utilizatio 0.17 0.17	- Diagnosis - Online View	0012 Configured Station Alas' 0020 People Protect' 0020 Access Protect' 0020 Sec Rest' 0100 ESC Cert' 01012 ESC Cert' 01012 ESC Cert' 01012 ESC Cert' 01013 Phys. RW Offset' 01013 Phys. RW Offset' 01013 Phys. RW Offset' 01013 Phys. RW Offset' 01014 Phys. RW Offset' 01014 Phys. RW Offset'		Show Production Info

• Die BTN und Inhalte daraus werden dann angezeigt:

G	Seneral Adapter EtherCAT Online CoE-Online													
	No	Addr	Name	State	CRC	Fw	Hw	Production Data	ItemNo	BTN	Description	Quantity	BatchNo	SerialNo
	1	1001	Tem 1 (EK1100)	OP	0.0	0	0							
	2	1002	Term 2 (EL1018)	OP	0.0	0	0	2020 KW36 Fr	072222	k4p562d7	EL1809	1		678294
	3	1003	Term 3 (EL3204)	OP	0.0	7	6	2012 KW24 Sa						
	- 4	1004	Term 4 (EL2004)	OP	0.0	0	0		072223	k4p562d7	EL2004	1		678295
	- 5	1005	Term 5 (EL1008)	OP	0.0	0	0							
	- 6	1006	Term 6 (EL2008)	OP	0.0	0	12	2014 KW14 Mo						
	-].7	1007	Term 7 (EK1110)	OP	0	1	8	2012 KW25 Mo						

- Hinweis: ebenso können wie in der Abbildung zu sehen die seit 2012 programmierten Produktionsdaten HW-Stand, FW-Stand und Produktionsdatum per "Show Production Info" angezeigt werden.
- Bei EtherCAT Geräten mit CoE-Verzeichnis kann zusätzlich das Objekt 0x10E2:01 zur Anzeige der eigenen eBIC genutzt werden, hier kann auch die PLC einfach auf die Information zugreifen:

• Das Gerät muss zum Zugriff in SAFEOP/OP sein:

Index	Name	Flags	Value		
1000	Device type	RO	0x015E1389 (22942601)		
1008	Device name	RO	ELM3704-0000		
1009	Hardware version	RO	00		
100A	Software version	RO	01		
100B	Bootloader version	RO	J0.1.27.0		
1011:0	Restore default parameters	RO	>1<		
1018:0	Identity	RO	>4<		
10E2:0	Manufacturer-specific Identification C	RO	>1<		
10E2:01	SubIndex 001	RO	1P158442SBTN0008jekp1KELM3704	Q1	2P482001000016
• 10F0:0	Backup parameter handling	RO	>1<		
+ 10F3:0	Diagnosis History	RO	>21 <		
10F8	Actual Time Stamp	RO	0x170bfb277e		

- Das Objekt 0x10E2 wird in Bestandsprodukten vorrangig im Zuge einer notwendigen Firmware-Überarbeitung eingeführt.
- Hinweis: bei elektronischer Weiterverarbeitung ist die BTN als String(8) zu behandeln, der Identifier "SBTN" ist nicht Teil der BTN.
- Technischer Hintergrund

Die neue BIC Information wird als Category zusätzlich bei der Geräteproduktion ins ESI-EEPROM geschrieben. Die Struktur des ESI-Inhalts ist durch ETG Spezifikationen weitgehend vorgegeben, demzufolge wird der zusätzliche herstellerspezifische Inhalt mithilfe einer Category nach ETG.2010 abgelegt. Durch die ID 03 ist für alle EtherCAT Master vorgegeben, dass sie im Updatefall diese Daten nicht überschreiben bzw. nach einem ESI-Update die Daten wiederherstellen sollen. Die Struktur folgt dem Inhalt des BIC, siehe dort. Damit ergibt sich ein Speicherbedarf von ca. 50..200 Byte im EEPROM.

- Sonderfälle
 - Sind mehrere ESC in einem Gerät verbaut die hierarchisch angeordnet sind, trägt nur der TopLevel ESC die eBIC Information.
 - Sind mehrere ESC in einem Gerät verbaut die nicht hierarchisch angeordnet sind, tragen alle ESC die eBIC Information gleich.
 - Besteht das Gerät aus mehreren Sub-Geräten mit eigener Identität, aber nur das TopLevel-Gerät ist über EtherCAT zugänglich, steht im CoE-Objekt-Verzeichnis 0x10E2:01 die eBIC des TopLevel-Geräts, in 0x10E2:nn folgen die eBIC der Sub-Geräte.

Profibus/Profinet/DeviceNet... Geräte

Für diese Geräte ist derzeit keine elektronische Speicherung und Auslesung geplant.

2 Systemübersicht

Die EtherCAT-Steckmodule EJxxxx basieren elektronisch auf dem EtherCAT-I/O-System. Das EJ-System besteht aus dem Signal-Distribution-Board und EtherCAT-Steckmodulen. Auch die Anbindung eines IPCs im EJ-System ist möglich.

Die Anwendung des EJ-Systems eignet sich für die Produktion von Großserien, Applikationen mit geringem Platzbedarf und Applikationen, die ein geringes Gesamtgewicht fordern.

Eine Erweiterung der Maschinenkomplexität kann folgende Maßnahmen erreicht werden:

- die Auslegung von Reserve-Slots,
- den Einsatz von Platzhaltermodulen,
- die Verknüpfung von EtherCAT-Klemmen und EtherCAT-Boxen über eine EtherCAT-Verbindung.

Die folgende Abbildung zeigt beispielhaft ein EJ-System. Die abgebildeten Komponenten dienen ausschließlich der funktionell-schematischen Darstellung.

Abb. 4: EJ-System Beispiel

Signal-Distribution-Board

Das Signal-Distribution-Board verteilt die Signale und die Spannungsversorgung auf einzelne applikationsspezifische Steckverbinder, um die Steuerung mit weiteren Maschinenmodulen zu verbinden. Durch das Anstecken von vorkonfektionierten Kabelbäumen entfällt die aufwändige Einzeladerverdrahtung. Die Stückkosten und das Risiko der Fehlverdrahtung werden durch kodierte Bauteile reduziert. Die Entwicklung des Signal-Distribution-Boards kann als Engineering-Dienstleistung durch Beckhoff erfolgen. Es besteht ebenfalls die Möglichkeit, dass der Kunde auf Basis des Design-Guides das Signal-Distribution-Board selbst entwickelt.

EtherCAT - Steckmodule

Analog zum EtherCAT-Klemmensystem besteht ein Modulstrang aus einem Buskoppler und I/O-Modulen. Nahezu alle EtherCAT-Klemmen lassen sich auch in der EJ-Bauform als EtherCAT-Steckmodul realisieren. Die EJ-Module werden direkt auf das Signal-Distribution-Board aufgesteckt. Die Kommunikation, Signalverteilung und Versorgung erfolgt über die Kontakt-Pins auf der Rückseite des Moduls und die Leiterbahnen des Signal-Distribution-Boards. Die Kodierstifte auf der Rückseite dienen als mechanischer Fehlsteckschutz. Zur besseren Unterscheidung der Module ist das Gehäuse mit einer Farbkodierung versehen.

3 Produktbeschreibung

3.1 Einführung

EtherCAT-EJ-Koppler, CX- und EL-Klemmen-Anbindung

Abb. 5: EK1110-0043, EK1110-0044

Die EtherCAT-EJ-Koppler EK1110-0043 und EK1110-0044 verbinden die kompakten Hutschienen-PCs der Serie CX und angereihte EtherCAT-Klemmen (ELxxxx) mit den EJ-Modulen auf einer applikationsspezifischen Leiterkarte (Signal-Distribution-Board).

Die Spannungsversorgung des EK1110-004x erfolgt aus dem Netzteil des Embedded-PCs. Der 24-polige Stecker auf der Rückseite der EtherCAT-EJ-Koppler überträgt die Versorgungsspannungen der Feldseite U_P (24 V), des E-Bus (3,3 V) sowie die E-Bus Signale direkt auf die Leiterkarte.

- Durch die direkte Ankopplung des Embedded-PCs und der EL-Klemmen mit den EJ-Modulen auf der Leiterkarte können eine EtherCAT-Verlängerung (EK1110) und ein EtherCAT-Koppler (EJ1100) entfallen.
- Der Embedded-PC ist mit EtherCAT-Klemmen erweiterbar, die z. B. noch nicht im EJ-System zur Verfügung stehen.
- · Das vormontierte Teilsystem, bestehend aus
 - einer Leiterkarte mit montierter Hutschiene,
 - Embedded-PC und
 - EtherCAT-Steckmodulen,

kann vorab getestet werden und zu einem späteren Zeitpunkt als gesamte Einheit in die Montage der Maschine einfließen.

Über die Diagnose-LEDs wird die Spannungsversorgung der E-Bus-Signale (U_{E-Bus}) und der Versorgungsspannung der Feldseite (U_P) signalisiert.

 Am Abzweig-Port des EK1110-0044 können einzelne Geräte oder auch ganze EtherCAT-Stränge angeschlossen werden. Der Anschluss der EtherCAT-Abzweige erfolgt über RJ45-Buchsen, an denen direkt Link- und Activity-Status angezeigt werden.

Quick-Links

EK1110-004x - Steckerbelegung [36]

<u>EK1110-0043 - Diagnose LEDs</u> [▶ <u>37]</u> <u>EK1110-0044 - Diagnose LEDs</u> [▶ <u>38]</u>

3.2 Technische Daten

Technische Daten	EK1110-0043	EK1110-0044			
Aufgabe im EtherCAT-System	Weiterleitung der E-Bus-Signale a (EJ-Board)	auf das Signal-Distribution-Board			
Übertragungsmedium	Leiterbahnen auf dem Signal- Distribution-Board	X1: Ethernet/EtherCAT-Kabel (min. Kat. 5), geschirmt			
		X2: Leiterbahnen auf dem Signal-Distribution-Board			
Businterface	Steckverbinder auf der	X1: 1 x RJ45			
	Rückseite des EtherCAT-EJ- Kopplers	X2: Steckverbinder auf der Rückseite des EtherCAT-EJ- Kopplers			
Protokolle	sämtliche EtherCAT-Protokolle				
Übertragungsrate	100 MBit/s				
Durchlaufverzögerung	ca. 1 µs				
Konfiguration	keine Adress- und Konfigurations	einstellung erforderlich			
Spannungsversorgung	aus E-Bus, Netzteil Embedded-PC				
Stromaufnahme	typ. 50 mA 140 mA typ.				
Spannungsfestigkeit	500 V (Versorgungsspannung/Ethernet)				
Leiterplatten-Verbinder	Samtec SSQ-112-21-L-D-K-TR				
Abmessungen (B x H x T)	ca. 44 mm x 100 mm x 68 mm				
Gewicht	ca. 50 g				
zulässiger Umgebungstemperaturbereich im Betrieb	-25°C +60°C (erweiterter Temp	eraturbereich)			
zulässiger Umgebungstemperaturbereich bei Lagerung	-40°C + 85°C				
zulässige relative Luftfeuchtigkeit	95%, keine Betauung				
Montage [24]	auf 35 mm Tragschiene nach EN	60715			
Vibrations- / Schockfestigkeit	gemäß EN 60068-2-6/EN 60068- Signal-Distribution-Board)	2-27 (mit entsprechendem			
EMV-Festigkeit / Aussendung	gemäß EN 61000-6-2 / EN 61000-6-4 (mit entsprechendem Signal-Distribution-Board)				
Schutzart	IP20				
Einbaulage	beliebig				
Zulassung	CE, EAC, UKCA				

CE-Zulassung

Die CE-Kennzeichnung bezieht sich auf den genannten EtherCAT-EJ-Koppler. Bei Einbau des EtherCAT-EJ-Kopplers zur Herstellung eines verwendungsfertigen Endprodukts (Leiterkarte in Verbindung mit einem Gehäuse) sind die Richtlinienkonformität und die CE-Zertifizierung des Gesamtsystems durch den Hersteller des Endprodukts zu prüfen. Für den Betrieb der EtherCAT-Steckmodule ist der Einbau in ein Gehäuse vorgeschrieben.

3.3 Start

Zur Inbetriebsetzung:

- montieren Sie den EK1110-004x wie im Kapitel Montage und Verdrahtung [> 22] beschrieben
- konfigurieren Sie den EK1110-004x in TwinCAT wie im Kapitel Parametrierung und Inbetriebnahme
 [▶ 40] beschrieben.

4 Grundlagen der Kommunikation

4.1 EtherCAT-Grundlagen

Grundlagen zum Feldbus EtherCAT entnehmen Sie bitte der EtherCAT System-Dokumentation.

4.2 EtherCAT-Geräte - Verkabelung - Drahtgebunden

Die zulässige Leitungslänge zwischen zwei EtherCAT-Geräten darf maximal 100 Meter betragen. Dies resultiert aus der FastEthernet-Technologie, die vor allem aus Gründen der Signaldämpfung über die Leitungslänge eine maximale Linklänge von 5 + 90 + 5 m erlaubt, wenn Leitungen mit entsprechenden Eigenschaften verwendet werden. Siehe dazu auch die <u>Auslegungsempfehlungen zur Infrastruktur für EtherCAT/Ethernet</u>.

Kabel und Steckverbinder

Verwenden Sie zur Verbindung von EtherCAT-Geräten nur Ethernet-Verbindungen (Kabel + Stecker), die mindestens der Kategorie 5 (CAT5) nach EN 50173 bzw. ISO/IEC 11801 entsprechen. EtherCAT nutzt 4 Adern des Kabels für die Signalübertragung.

EtherCAT verwendet beispielsweise RJ45-Steckverbinder. Die Kontaktbelegung ist zum Ethernet-Standard (ISO/IEC 8802-3) kompatibel.

Pin	Aderfarbe	Signal	Beschreibung
1	gelb	TD+	Transmission Data +
2	orange	TD-	Transmission Data -
3	weiß	RD+	Receiver Data +
6	blau	RD-	Receiver Data -

Aufgrund der automatischen Kabelerkennung (Auto-Crossing) können Sie zwischen EtherCAT-Geräten von Beckhoff sowohl symmetrisch (1:1) belegte als auch Cross-Over-Kabel verwenden.

Empfohlene Kabel

- Es wird empfohlen die entsprechenden Beckhoff Komponenten zu verwenden, z. B. Kabelsätze ZK1090-9191-xxxx bzw.
- feldkonfektionierbare RJ45 Stecker ZS1090-0005
- feldkonfektionierbare Ethernet Leitung ZB9010, ZB9020

Geeignete Kabel zur Verbindung von EtherCAT-Geräten finden Sie auf der Beckhoff Website!

4.3 Stromaufnahme aus dem E-Bus

Alle EtherCAT-Geräte, die aktiv am Datenaustausch teilnehmen benötigen einen bestimmten Strom vom E-Bus (siehe technischen Daten: "Stromaufnahme E-Bus").

Die Information, wie viel Strom aus der E-Bus-Versorgung benötigt wird, ist für jede Klemme und jedes Modul online und im Katalog verfügbar.

Im TwinCAT System Manager wird der vorberechnete theoretische maximale E-Bus-Strom angezeigt. Eine Unterschreitung wird durch negativen Summenbetrag und Ausrufezeichen markiert.

General	Adapter EtherCAT	Online CoE	E - Online			
NetId:	NetId: 172.17.40.73.4.1			Advanc	ed Settings	s
Number	Box Name	Address	Туре	In Size	Out S	E-Bus (mA)
9	Term 9 (EJ1100)	1007	EJ1100			
10	Term 10 (EJ1809)	1008	EJ1809	2.0		2120
11	Term 11 (EJ1809)	1009	EJ1809	2.0		2040
12	Term 12 (EJ1809)	1010	EJ1809	.809 2.0		1960
40		1011	EJ2502		4.0	1850
24	Term 24 (EJ3202)	1022			2.0	(74)
25	Term 25 (EJ3202)	1023	EJ3202	8.0		325
26	Term 26 (EJ4002)	1024	EJ4002		4.0	235
+ 27	Term 27 (EJ7342)	1025	EJ7342	16.0	16.0	75
+ 28	Term 28 (EJ7342)	1026	EJ7342	16.0	16.0	-85 !

Abb. 6: System Manager Stromberechnung

Die E-Bus-Systemspannung wird von Buskopplern und Netzteilen zur Verfügung gestellt (s. Kapitel <u>Spannungsversorgung [▶_34]</u>).

4.4 EtherCAT State Machine

Über die EtherCAT State Machine (ESM) wird der Zustand des EtherCAT-Slaves gesteuert. Je nach Zustand sind unterschiedliche Funktionen im EtherCAT-Slave zugänglich bzw. ausführbar. Insbesondere während des Hochlaufs des Slaves müssen in jedem State spezifische Kommandos vom EtherCAT Master zum Gerät gesendet werden.

Es werden folgende Zustände unterschieden:

- Init
- Pre-Operational
- · Safe-Operational und
- Operational
- Boot

Regulärer Zustand eines jeden EtherCAT Slaves nach dem Hochlauf ist der Status OP.

Abb. 7: Zustände der EtherCAT State Machine

Init

Nach dem Einschalten befindet sich der EtherCAT-Slave im Zustand Init. Dort ist weder Mailbox- noch Prozessdatenkommunikation möglich. Der EtherCAT-Master initialisiert die Sync-Manager-Kanäle 0 und 1 für die Mailbox-Kommunikation.

Pre-Operational (Pre-Op)

Beim Übergang von *Init* nach *Pre-Op* prüft der EtherCAT-Slave, ob die Mailbox korrekt initialisiert wurde.

Im Zustand *Pre-Op* ist Mailbox-Kommunikation aber keine Prozessdaten-Kommunikation möglich. Der EtherCAT-Master initialisiert die Sync-Manager-Kanäle für Prozessdaten (ab Sync-Manager-Kanal 2), die FMMU-Kanäle und falls der Slave ein konfigurierbares Mapping unterstützt das PDO-Mapping oder das Sync-Manager-PDO-Assignement. Weiterhin werden in diesem Zustand die Einstellungen für die Prozessdatenübertragung sowie ggf. noch klemmenspezifische Parameter übertragen, die von den Defaulteinstellungen abweichen.

Safe-Operational (Safe-Op)

Beim Übergang von *Pre-Op* nach *Safe-Op* prüft der EtherCAT-Slave, ob die Sync-Manager-Kanäle für die Prozessdatenkommunikation sowie ggf. ob die Einstellungen für die Distributed-Clocks korrekt sind. Bevor er den Zustandswechsel quittiert, kopiert der EtherCAT-Slave aktuelle Inputdaten in die entsprechenden DP-RAM-Bereiche des EtherCAT-Slave-Controllers (ECSC).

Im Zustand *Safe-Op* ist Mailbox- und Prozessdaten-Kommunikation möglich, allerdings hält der Slave seine Ausgänge im sicheren Zustand und gibt sie noch nicht aus. Die Inputdaten werden aber bereits zyklisch aktualisiert.

Ausgänge im SAFEOP

Die standardmäßig aktivierte Watchdogüberwachung bringt die Ausgänge im Modul in Abhängigkeit von den Einstellungen im SAFEOP und OP in einen sicheren Zustand - je nach Gerät und Einstellung z. B. auf AUS. Wird dies durch Deaktivieren der Watchdogüberwachung im Modul unterbunden, können auch im Geräte-Zustand SAFEOP Ausgänge geschaltet werden bzw. gesetzt bleiben.

Operational (Op)

Bevor der EtherCAT-Master den EtherCAT-Slave von *Safe-Op* nach *Op* schaltet, muss er bereits gültige Outputdaten übertragen.

Im Zustand *Op* kopiert der Slave die Ausgangsdaten des Masters auf seine Ausgänge. Es ist Prozessdatenund Mailbox-Kommunikation möglich.

Boot

Im Zustand *Boot* kann ein Update der Slave-Firmware vorgenommen werden. Der Zustand *Boot* ist nur über den Zustand *Init* zu erreichen.

Im Zustand *Boot* ist Mailbox-Kommunikation über das Protokoll *File-Access over EtherCAT (FoE)* möglich, aber keine andere Mailbox-Kommunikation und keine Prozessdaten-Kommunikation.

4.5 CoE-Interface: Hinweis

Dieses Gerät hat kein CoE.

Ausführliche Hinweise zum CoE-Interface finden Sie in der <u>EtherCAT-Systemdokumentation</u> auf der Beckhoff Website.

4.6 Distributed Clock

Die Distributed Clock stellt eine lokale Uhr im EtherCAT Slave Controller (ESC) dar mit den Eigenschaften:

- Einheit 1 ns
- Nullpunkt 1.1.2000 00:00
- Umfang 64 Bit (ausreichend für die nächsten 584 Jahre); manche EtherCAT-Slaves unterstützen jedoch nur einen Umfang von 32 Bit, d.h. nach ca. 4,2 Sekunden läuft die Variable über
- Diese lokale Uhr wird vom EtherCAT Master automatisch mit der Master Clock im EtherCAT Bus mit einer Genauigkeit < 100 ns synchronisiert.

Detaillierte Informationen entnehmen Sie bitte der vollständigen EtherCAT-Systembeschreibung.

5 Installation

5.1 Hinweise zum ESD-Schutz

HINWEIS

Zerstörung der Geräte durch elektrostatische Aufladung möglich!

Die Geräte enthalten elektrostatisch gefährdete Bauelemente, die durch unsachgemäße Behandlung beschädigt werden können.

- Sie müssen beim Umgang mit den Komponenten elektrostatisch entladen sein; vermeiden Sie außerdem die Federkontakte (s. Abb.) direkt zu berühren.
- Vermeiden Sie den Kontakt mit hoch isolierenden Stoffen (Kunstfaser, Kunststofffolien etc.)
- Beim Umgang mit den Komponenten ist auf gute Erdung der Umgebung zu achten (Arbeitsplatz, Verpackung und Personen)
- Jede Busstation muss auf der rechten Seite mit der Endkappe <u>EL9011</u> oder <u>EL9012</u> abgeschlossen werden, um Schutzart und ESD-Schutz sicher zu stellen.

Abb. 8: Federkontakte der Beckhoff I/O-Komponenten

5.2 Einbaulagen

HINWEIS

Einschränkung von Einbaulage und Betriebstemperaturbereich

- Entnehmen Sie den technischen Daten der EtherCAT-Geräte, ob es Einschränkungen bei Einbaulage und/oder Betriebstemperaturbereich gibt.
- Sorgen Sie bei der Montage von Komponenten mit erhöhter thermischer Verlustleistung dafür, dass im Betrieb oberhalb und unterhalb der Klemmen ausreichend Abstand zu anderen Komponenten eingehalten wird, so dass die Klemmen ausreichend belüftet werden!
- Die Verwendung der Standard Einbaulage wird empfohlen. Wird eine andere Einbaulage verwendet, prüfen Sie, ob zusätzliche Maßnahmen zur Belüftung erforderlich sind!
- Stellen Sie sicher, dass die spezifischen Umgebungsbedingungen (siehe technische Daten) eingehalten werden!

Optimale Einbaulage (Standard)

Für die optimale Einbaulage wird die Tragschiene waagerecht montiert und die Anschlussflächen der EL/KL-Klemmen weisen nach vorne (siehe Abb. *Empfohlene Abstände bei Standard-Einbaulage*). Die Klemmen werden dabei von unten nach oben durchlüftet, was eine optimale Kühlung der Elektronik durch Konvektionslüftung ermöglicht. Bezugsrichtung "unten" ist hier die Erdbeschleunigung.

Abb. 9: Empfohlene Abstände bei Standard-Einbaulage

Die Einhaltung der Abstände nach Abb. Empfohlene Abstände bei Standard-Einbaulage wird empfohlen.

Weitere Einbaulagen

Alle anderen Einbaulagen zeichnen sich durch davon abweichende räumliche Lage der Tragschiene aus, siehe Abb. *Weitere Einbaulagen.*

Auch in diesen Einbaulagen empfiehlt sich die Anwendung der oben angegebenen Mindestabstände zur Umgebung.

Abb. 10: Weitere Einbaulagen

5.3 Montage auf der Tragschiene des Signal-Distribution-Boards

Der EtherCAT-EJ-Koppler EK1110-0043 wird mit dem Embedded PC (CXxxxx) und den EtherCAT-Klemmen (ELxxxx) auf Tragschiene des Singal-Distribution-Boards montiert.

WARNUNG

Verletzungsgefahr durch Stromschlag und Beschädigung des Gerätes möglich!

Setzen Sie das Modul-System in einen sicheren, spannungslosen Zustand, bevor Sie mit der Montage, Demontage oder Verdrahtung der Module beginnen!

HINWEIS

Beschädigung von Komponenten durch Elektrostatische Entladung möglich!

Beachten Sie die Vorschriften zum ESD-Schutz!

HINWEIS

Beschädigung der Leiterkarte möglich!

Stellen Sie sicher, dass Signal-Distribution-Board vor der Montage und Demontage fest mit der Montagefläche verbunden ist. Die Montage auf/ Demontage vom unbefestigten Signal-Distribution-Board kann zu Beschädigungen des Boards führen.

Montage des EtherCAT-EJ-Kopplers

Abb. 11: Montage des EtherCAT-EJ-Kopplers auf der Tragschiene des Signal-Distribution-Board

- ✓ Die EtherCAT-EJ-Koppler können aufgrund des rückseitigen Steckers nur auf Tragschienen TH35-7.5 (nach EN 60715) aufgerastet werden.
- 1. Stecken Sie zuerst den EtherCAT-EJ-Koppler auf die Tragschiene.
 - ⇒ Positionieren Sie den rückwärtigen Stecker des EtherCAT-EJ-Kopplers so, dass er mit dem zugehörigen Stecksockel auf dem Signal-Distribution-Board verbunden wird.
 - Drücken Sie den EtherCAT-EJ-Koppler mit leichtem Druck auf vormontierte Tragschiene auf dem Signal-Distribution-Board bis die Verriegelung hörbar auf der Tragschiene einrastet. Nur wenn der EtherCAT-EJ-Koppler fest auf der Tragschiene eingerastet ist, wird der benötigte Kontaktdruck aufgebaut und somit eine sichere Verbindung zum Signal-Distribution-Board hergestellt.
- 2. Drücken Sie mit einem Schraubendreher die Arretierung auf der rechten Seite nach unten wodurch sich die Arretierung dreht und ebenfalls hörbar einrastet.

HINWEIS

Auf sicheren Steckkontakt achten!

- ✓ Achten Sie bei der Montage auf sichere Verrastung des Kopplers mit der Tragschiene des Signal-Distribution-Boards! Die Folgen mangelnden Kontaktdrucks sind:
- a) Qualitätsverluste des übertragenen Signals,
- b) Erhöhte Verlustleistung der Kontakte
- c) Beeinträchtigung der Lebensdauer

Montage der EtherCAT-Klemmen (ELxxxx und des Buskopplers CXxxxx)

Abb. 12: Montage auf Tragschiene

- Reihen Sie auf der linken Seite des EtherCAT-EJ-Kopplers die Busklemmen an.
 - Stecken Sie dazu die Komponenten mit Nut und Feder zusammen und schieben Sie die Klemmen gegen die Tragschiene, bis die Verriegelung hörbar auf der Tragschiene einrastet.
 Wenn Sie die Klemmen erst auf die Tragschiene schnappen und dann nebeneinander schieben ohne das Nut und Feder ineinander greifen, wird keine funktionsfähige Verbindung hergestellt! Bei richtiger Montage darf kein nennenswerter Spalt zwischen den Gehäusen zu sehen sein.
 - Montieren Sie als letztes den Embedded PC (CXxxxx). Beachten Sie hierzu die zugehörige Dokumentation des Embedded PCs!

Tragschienenbefestigung

Der Verriegelungsmechanismus der Klemmen und Koppler reicht in das Profil der Tragschiene hinein. Achten Sie bei der Montage der Komponenten darauf, dass der Verriegelungsmechanismus nicht in Konflikt mit den Befestigungsschrauben der Tragschiene gerät. Verwenden Sie zur Befestigung von Tragschienen mit einer Höhe von 7,5 mm unter den Klemmen und Kopplern flache Montageverbindungen wie Senkkopfschrauben oder Blindnieten.

Demontage

Abb. 13: Demontage von der Tragschiene

- 1. Für die Demontage des EtherCAT-EJ-Kopplers lösen Sie die Arretierung. Drücken Sie diese mit einem Schraubendreher nach vorne.
- 2. Jede Klemme wird durch eine Verriegelung auf der Tragschiene gesichert, die zur Demontage gelöst werden muss:
 - Ziehen Sie die Klemme an ihren orangefarbigen Laschen ca. 1 cm von der Tragschiene herunter. Dabei wird die Tragschienenverriegelung dieser Klemme automatisch gelöst und Sie können die Klemme nun ohne großen Kraftaufwand aus dem Busklemmenblock herausziehen.
 - Greifen Sie dazu mit Daumen und Zeigefinger die entriegelte Klemme gleichzeitig oben und unten an den Gehäuseflächen und ziehen sie aus dem Busklemmenblock heraus.

Verbindungen innerhalb eines Busklemmenblocks

Die elektrischen Verbindungen zwischen Buskoppler und Busklemmen werden durch das Zusammenstecken der Komponenten automatisch realisiert:

- Die sechs Federkontakte des K-Bus/E-Bus übernehmen die Übertragung der Daten und die Versorgung der Busklemmenelektronik.
- Die Powerkontakte übertragen die Versorgung für die Feldelektronik und stellen so innerhalb des Busklemmenblocks eine Versorgungsschiene dar. Die Versorgung der Powerkontakte erfolgt über Klemmen auf dem Buskoppler (bis 24 V) oder für höhere Spannungen über Einspeiseklemmen.

Powerkontakte

Beachten Sie bei der Projektierung eines Busklemmenblocks die Kontaktbelegungen der einzelnen Busklemmen, da einige Typen (z.B. analoge Busklemmen oder digitale 4-Kanal-Busklemmen) die Powerkontakte nicht oder nicht vollständig durchschleifen. Einspeiseklemmen (KL91xx, KL92xx bzw. EL91xx, EL92xx) unterbrechen die Powerkontakte und stellen so den Anfang einer neuen Versorgungsschiene dar.

PE-Powerkontakt

Der Powerkontakt mit der Bezeichnung PE kann als Schutzerde eingesetzt werden. Der Kontakt ist aus Sicherheitsgründen beim Zusammenstecken voreilend und kann Kurzschlussströme bis 125 A ableiten.

Abb. 14: Linksseitiger Powerkontakt

HINWEIS

Beschädigung des Gerätes möglich

Beachten Sie, dass aus EMV-Gründen die PE-Kontakte kapazitiv mit der Tragschiene verbunden sind. Das kann bei der Isolationsprüfung zu falschen Ergebnissen und auch zur Beschädigung der Klemme führen (z. B. Durchschlag zur PE-Leitung bei der Isolationsprüfung eines Verbrauchers mit 230 V Nennspannung). Klemmen Sie zur Isolationsprüfung die PE- Zuleitung am Buskoppler bzw. der Einspeiseklemme ab! Um weitere Einspeisestellen für die Prüfung zu entkoppeln, können Sie diese Einspeiseklemmen entriegeln und mindestens 10 mm aus dem Verbund der übrigen Klemmen herausziehen.

WARNUNG

Verletzungsgefahr durch Stromschlag!

Der PE-Powerkontakt darf nicht für andere Potentiale verwendet werden!

5.4 Anschluss

5.4.1 Anschlusstechnik

WARNUNG

Verletzungsgefahr durch Stromschlag und Beschädigung des Gerätes möglich!

Setzen Sie das Busklemmen-System in einen sicheren, spannungslosen Zustand, bevor Sie mit der Montage, Demontage oder Verdrahtung der Busklemmen beginnen!

Übersicht

Mit verschiedenen Anschlussoptionen bietet das Busklemmensystem eine optimale Anpassung an die Anwendung:

- Die Klemmen der Serien ELxxxx und KLxxxx mit Standardverdrahtung enthalten Elektronik und Anschlussebene in einem Gehäuse.
- Die Klemmen der Serien ESxxxx und KSxxxx haben eine steckbare Anschlussebene und ermöglichen somit beim Austausch die stehende Verdrahtung.
- Die High-Density-Klemmen (HD-Klemmen) enthalten Elektronik und Anschlussebene in einem Gehäuse und haben eine erhöhte Packungsdichte.

Standardverdrahtung (ELxxxx / KLxxxx)

Abb. 15: Standardverdrahtung

Die Klemmen der Serien ELxxxx und KLxxxx sind seit Jahren bewährt und integrieren die schraublose Federkrafttechnik zur schnellen und einfachen Montage.

Steckbare Verdrahtung (ESxxxx / KSxxxx)

Abb. 16: Steckbare Verdrahtung

Die Klemmen der Serien ESxxxx und KSxxxx enthalten eine steckbare Anschlussebene.

Montage und Verdrahtung werden wie bei den Serien ELxxxx und KLxxxx durchgeführt.

Im Servicefall erlaubt die steckbare Anschlussebene, die gesamte Verdrahtung als einen Stecker von der Gehäuseoberseite abzuziehen.

Das Unterteil kann, über das Betätigen der Entriegelungslasche, aus dem Klemmenblock herausgezogen werden.

Die auszutauschende Komponente wird hineingeschoben und der Stecker mit der stehenden Verdrahtung wieder aufgesteckt. Dadurch verringert sich die Montagezeit und ein Verwechseln der Anschlussdrähte ist ausgeschlossen.

Die gewohnten Maße der Klemme ändern sich durch den Stecker nur geringfügig. Der Stecker trägt ungefähr 3 mm auf; dabei bleibt die maximale Höhe der Klemme unverändert.

Eine Lasche für die Zugentlastung des Kabels stellt in vielen Anwendungen eine deutliche Vereinfachung der Montage dar und verhindert ein Verheddern der einzelnen Anschlussdrähte bei gezogenem Stecker.

Leiterquerschnitte von 0,08 mm² bis 2,5 mm² können weiter in der bewährten Federkrafttechnik verwendet werden.

Übersicht und Systematik in den Produktbezeichnungen der Serien ESxxxx und KSxxxx werden wie von den Serien ELxxxx und KLxxxx bekannt weitergeführt.

High-Density-Klemmen (HD-Klemmen)

Abb. 17: High-Density-Klemmen

Die Klemmen dieser Baureihe mit 16 Klemmstellen zeichnen sich durch eine besonders kompakte Bauform aus, da die Packungsdichte auf 12 mm doppelt so hoch ist wie die der Standard-Busklemmen. Massive und mit einer Aderendhülse versehene Leiter können ohne Werkzeug direkt in die Federklemmstelle gesteckt werden.

Verdrahtung HD-Klemmen

Die High-Density-Klemmen der Serien ELx8xx und KLx8xx unterstützen keine steckbare Verdrahtung.

Ultraschall-litzenverdichtete Leiter

Ultraschall-litzenverdichtete Leiter

An die Standard- und High-Density-Klemmen können auch ultraschall-litzenverdichtete (ultraschallverschweißte) Leiter angeschlossen werden. Beachten Sie die Tabellen zum Leitungsquerschnitt!

5.4.2 Verdrahtung

WARNUNG

Verletzungsgefahr durch Stromschlag und Beschädigung des Gerätes möglich!

Setzen Sie das Busklemmen-System in einen sicheren, spannungslosen Zustand, bevor Sie mit der Montage, Demontage oder Verdrahtung der Busklemmen beginnen!

Klemmen für Standardverdrahtung ELxxxx/KLxxxx und für steckbare Verdrahtung ESxxxx/KSxxxx

Abb. 18: Anschluss einer Leitung an eine Klemmstelle

Bis zu acht Klemmstellen ermöglichen den Anschluss von massiven oder feindrähtigen Leitungen an die Busklemme. Die Klemmstellen sind in Federkrafttechnik ausgeführt. Schließen Sie die Leitungen folgendermaßen an:

- 1. Öffnen Sie eine Klemmstelle, indem Sie einen Schraubendreher gerade bis zum Anschlag in die viereckige Öffnung über der Klemmstelle drücken. Den Schraubendreher dabei nicht drehen oder hin und her bewegen (nicht hebeln).
- 2. Der Draht kann nun ohne Widerstand in die runde Klemmenöffnung eingeführt werden.
- 3. Durch Rücknahme des Druckes schließt sich die Klemmstelle automatisch und hält den Draht sicher und dauerhaft fest.

Den zulässigen Leiterquerschnitt entnehmen Sie der nachfolgenden Tabelle.

Klemmengehäuse	ELxxxx, KLxxxx	ESxxxx, KSxxxx
Leitungsquerschnitt (massiv)	0,08 2,5 mm ²	0,08 2,5 mm ²
Leitungsquerschnitt (feindrähtig)	0,08 2,5 mm ²	0,08 2,5 mm ²
Leitungsquerschnitt (Aderleitung mit Aderendhülse)	0,14 1,5 mm ²	0,14 1,5 mm ²
Abisolierlänge	8 9 mm	9 10 mm

High-Density-Klemmen (HD-Klemmen [▶ 29]) mit 16 Klemmstellen

Bei den HD-Klemmen erfolgt der Leiteranschluss bei massiven Leitern werkzeuglos, in Direktstecktechnik, das heißt der Leiter wird nach dem Abisolieren einfach in die Klemmstelle gesteckt. Das Lösen der Leitungen erfolgt, wie bei den Standardklemmen, über die Kontakt-Entriegelung mit Hilfe eines Schraubendrehers. Den zulässigen Leiterquerschnitt entnehmen Sie der nachfolgenden Tabelle.

Klemmengehäuse	HD-Gehäuse
Leitungsquerschnitt (massiv)	0,08 1,5 mm ²
Leitungsquerschnitt (feindrähtig)	0,25 1,5 mm ²
Leitungsquerschnitt (Aderleitung mit Aderendhülse)	0,14 0,75 mm ²
Leitungsquerschnitt (ultraschall-litzenverdichtet)	nur 1,5 mm²
Abisolierlänge	8 9 mm

5.4.3 Schirmung

Schirmung

Encoder, analoge Sensoren und Aktoren sollten immer mit geschirmten, paarig verdrillten Leitungen angeschlossen werden.

5.5 Positionierung von passiven Klemmen

Hinweis zur Positionierung von passiven Klemmen im Busklemmenblock

EtherCAT-Klemmen (ELxxxx / ESxxxx), die nicht aktiv am Datenaustausch innerhalb des Busklemmenblocks teilnehmen, werden als passive Klemmen bezeichnet. Zu erkennen sind diese Klemmen an der nicht vorhandenen Stromaufnahme aus dem E-Bus. Um einen optimalen Datenaustausch zu gewährleisten, dürfen nicht mehr als zwei passive Klemmen direkt aneinander gereiht werden!

Beispiele für die Positionierung von passiven Klemmen (hell eingefärbt)

Abb. 19: Korrekte Positionierung

Abb. 20: Inkorrekte Positionierung

5.6 Spannungsversorgung und Signalübertragung auf dem Signal-Distribution-Board

Beim Design des Signal-Distribution-Boards ist die Spannungsversorgung für die maximal mögliche Strombelastung des Klemmen- und Modulstrangs auszulegen. Die Information, wie viel Strom aus der E-Bus-Versorgung benötigt wird, finden Sie für jede EtherCAT-Klemme / EtherCAT-Steckmodul in der jeweiligen Dokumentation im Kapitel "Technische Daten", online und im Katalog. Im TwinCAT System Manager wird der Strombedarf der Klemmen und Module angezeigt (s. <u>Stromaufnahme aus dem E-Bus</u> [<u>19]</u>).

Der Embedded PC versorgt die angereihten EtherCAT-Klemmen und den EtherCAT-EJ-Koppler

- mit einer Versorgungsspannung Us von 24 V_{DC} (-15 %/+20%). Aus dieser Spannung werden der E-Bus und die Busklemmenelektronik versorgt.
 Die CXxxxx versorgen den E-Bus mit max. 2.000 mA E-Bus-Strom. Wird durch die angefügten Klemmen mehr Strom benötigt, sind Einspeiseklemmen bzw. Netzteil-Steckmodule zur E-Bus-Versorgung zu setzen.
- mit einer Peripheriespannung Up von 24 V_{DC} zur Versorgung der Feldelektronik.

Die EtherCAT-EJ-Koppler EK1110-004x leiten über den rückwärtigen Stecker

- die E-Bus Signale,
- die E-Bus Spannung U_{EBUS} (3,3 V) und
- die Peripheriespannung U_P (24 V_{DC})

an das Signal-Distribution-Board weiter.

Abb. 21: Leiterkarte mit Embedded PC, EK1110-0043 und EJxxxx, Rückansicht EK1110-0043

Spannungsversorgung des Single Distribution Boards über EK1110-004x

Abb. 22: Spannungsversorgung des Single Distribution Boards über den Embedded PC und EK1110-004x

Die E-Bus-Spannung U_{EBUS} wird über die E-Bus-Kontakte der EtherCAT Klemmen und den Rückwärtigen Stecker des EtherCAT-EJ-Kopplers EK1110-004x and das Single-Distribution-Board weitergeleitet. Die Pin-Belegung des rückwärtigen Steckers finden Sie im Kapitel <u>EK1110-004x - Steckerbelegung [)</u> 36].

Die Peripheriespannung Up wird über die Power-Kontakte der EtherCAT Klemmen und den Rückwärtigen Stecker des EtherCAT-EJ-Kopplers EK1110-004x and das Single-Distribution-Board weitergeleitet.

5.7

EK1110-004x - Steckerbelegung

	E	K1110-0043, EK11		
Pi	n#	Sig	nal	
1	2	U _{EBUS}	U _{EBUS}	F Bus Kontakte
3	4	GND	GND	L-Dus Nontakte
5	6	GND	TX1+	D : 0
7	8	GND	TX1-	Die Spannungsversorgung
9	10	GND	GND	U _{EBUS} wird vom Koppler zur
11	12	GND RX1+		Veragengengengengengengengengengengengengeng
13	14	GND	RX1-	FtherCAT-Kopplers versorat
15	16	GND	GND	Energy in reppiers verseige.
17	18	0V Up	0V Up	U _P -Kontakte
19	20	0V Up	24V Up	Die Peripheriespannung U _P
21	22	24V Up 24V Up		versorgt die Elektronik auf der
23	24	SGND	SGND	Feldseite.

Signal	Beschreibung
U _{EBUS}	Spannungsversorgung E-Bus 3,3 V
GND	E-Bus Signalmasse Nicht mit 0V Up verbinden!
RX1+	Positives E-Bus Receive Signal
RX1-	Negatives E-Bus Receive Signal
TX1+	Positives E-Bus Transmit Signal
TX1-	Negatives E-Bus Transmit Signal
0V Up	GND Signal Feldseite
24V Up	Spannungsversorgung Feldseite 24 V
SGND	Schirm Masse

Abb. 23: EK1110-004x - Kontaktbelegung des rückwärtigen Steckers

Der Leiterkarten Footprint steht auf der Beckhoff-Homepage zum Download bereit (<u>EK1110-0043</u>, <u>EK1110-0044</u>).

Schädigung von Geräten möglich!

Vor der Montage und Inbetriebnahme lesen Sie auch die Kapitel <u>Installation [▶ 22]</u> von EJ-Modulen und <u>Inbetriebnahme [▶ 40]</u>!

Die Typenbezeichnung für die Buchse auf dem Signal-Distribution-Board lautet: Samtec SSQ-112-21-L-D-K-TR.

5.8 EK1110-0043 - Diagnose-LEDs

Abb. 24: EK1110-0043

LEDs zur Diagnose der Spannungsversorgung

LED		Anzeige	Beschreibung	
U _{E-Bus}	grün	aus	Keine Spannungsversorgung der E-Bus Signale (3,3 V) am Steckverbinder vorhanden	
		an	Spannungsversorgung der E-Bus Signale (3,3 V) am Steckverbinder vorhanden	
U _P	grün	aus	Keine Spannungsversorgung Feldseite U _P (24 V) an Steckverbinder vorhanden	
		an	Spannungsversorgung Feldseite U _P (24 V) an Steckverbinder vorhanden	

LED Diagnose EtherCAT State Machine

LED		Bedeutung		
RUN	grün	Diese LED gibt den Betriebszustand der Klemme wieder:		
		aus	Zustand der EtherCAT State Machine: INIT = Initialisierung der Klemme	
gleichmäßig blinkend Zustand der EtherCAT State Machine: PREOP = Funktion für Mailbox- Kommunikation und abweichende Standard-Einstellungen gesetzt				
langsam Zustand der EtherCAT S blinkend Sync-Managers und der Ausgänge bleiben im sic		langsam blinkend	Zustand der EtherCAT State Machine: SAFEOP = Überprüfung der Kanäle des Sync-Managers und der Distributed Clocks. Ausgänge bleiben im sicheren Zustand	
		an	Zustand der EtherCAT State Machine: OP = normaler Betriebszustand; Mailbox- und Prozessdatenkommunikation ist möglich	
		schnell blinkend	Zustand der EtherCAT State Machine: BOOTSTRAP = Funktion für Firmware- Updates der Klemme	

5.9

EK1110-0044 - Diagnose-LEDs

Abb. 25: EK1110-0044 - LEDs

LEDs zur Diagnose der Spannungsversorgung

LED		Anzeige	Beschreibung		
U _{E-Bus}	grün	aus	Keine Spannungsversorgung der E-Bus Signale (3,3 V) am Steckverbinder vorhanden		
		an	Spannungsversorgung der E-Bus Signale (3,3 V) am Steckverbinder vorhanden		
U _P	grün	aus	Keine Spannungsversorgung Feldseite U _P (24 V) an Steckverbinder vorhanden		
		an	Spannungsversorgung Feldseite U _P (24 V) an Steckverbinder vorhanden		

LED zur Diagnose der EtherCAT State Machine

LED		Bedeutung		
RUN	grün	Diese LED gibt den Betriebszustand der Klemme wieder:		
aus Zustand der EtherCAT State Machine: INIT = Initiali			Zustand der EtherCAT State Machine: INIT = Initialisierung der Klemme	
		gleichmäßig blinkend	Zustand der EtherCAT State Machine: PREOP = Funktion für Mailbox- Kommunikation und abweichende Standard-Einstellungen gesetzt	
		langsam blinkend	Zustand der EtherCAT State Machine: SAFEOP = Überprüfung der Kanäle des Sync-Managers und der Distributed Clocks. Ausgänge bleiben im sicheren Zustand	
		an	Zustand der EtherCAT State Machine: OP = normaler Betriebszustand; Mailbox- und Prozessdatenkommunikation ist möglich	
		schnell blinkend	Zustand der EtherCAT State Machine: BOOTSTRAP = Funktion für Firmware- Updates der Klemme	

LED zur Feldbusdiagnose

LED		Anzeige	Beschreibung
Link / grün aus Keine Verbindung interner E-Bus Act an Verbindung interner E-Bus blinkt Verbindung/Kommunikation interner E-Bus		aus	Keine Verbindung interner E-Bus
		Verbindung interner E-Bus	
		blinkt	Verbindung/Kommunikation interner E-Bus

5.10 Entsorgung

Mit einer durchgestrichenen Abfalltonne gekennzeichnete Produkte dürfen nicht in den Hausmüll. Das Gerät gilt bei der Entsorgung als Elektro- und Elektronik-Altgerät. Die nationalen Vorgaben zur Entsorgung von Elektro- und Elektronik-Altgeräten sind zu beachten.

6 Inbetriebnahme

6.1 EK1110-0043 - Konfiguration, Online-Status

Konfiguration mit dem TwinCAT System Manager

Tragen Sie im TwinCAT System Manager im Config-Mode unter Geräte den EK1110-0043 als EtherCAT (Direct Mode) Gerät ein. Sollte die Klemme schon am Netzwerk angeschlossen sein, können Sie diese auch einlesen. Dabei werden automatisch alle Buskoppler mit Busklemmen und Konfiguration hochgeladen. Diese können Sie dann nach Ihren Bedürfnissen anpassen.

Abb. 26: TwinCAT Baum am Beispiel EK1100-0008, State - Karteireiter online

Anzeige des Online-Status

Unter *State* wird im Karteireiter *Online* der Online-Status der Klemme angezeigt (s. Abb. oben). Unter *Comment* wird die Bedeutung der angezeigten Werte beschrieben.

Wert	Beschreibung			
0x1	Slave in 'INIT' state			
0x2	Slave in 'PREOP' state			
0x3	Slave in 'BOOT' state			
0x4	Slave in 'SAFEOP' state			
0x8	Slave in 'OP' state			
0x001_	Slave signals error			
0x002_	Invalid vendorld, productCode read			
0x004_	Initialization error occurred			
0x010_	Slave not present			
0x020_	Slave signals link error			
0x040_	Slave signals missing link			
0x080_	Slave signals unexpected link			
0x100_	Communication port A			
0x200_	Communication port B			
0x400_	Communication port C			
0x800_	Communication port D			

7 Anhang

7.1 EtherCAT AL Status Codes

Detaillierte Informationen hierzu entnehmen Sie bitte der vollständigen EtherCAT-Systembeschreibung.

7.2 Firmware Kompatibilität

Die EtherCAT-EJ-Koppler EK1110-0043 und EK1110-0044 verfügen über keine Firmware.

7.3 Firmware Update EL/ES/ELM/EM/EPxxxx

Dieses Kapitel beschreibt das Geräte-Update für Beckhoff EtherCAT Slaves der Serien EL/ES, ELM, EM, EK und EP. Ein FW-Update sollte nur nach Rücksprache mit dem Beckhoff Support durchgeführt werden.

HINWEIS

Nur TwinCAT 3 Software verwenden!

Ein Firmware-Update von Beckhoff IO Geräten ist ausschließlich mit einer TwinCAT3-Installation durchzuführen. Es empfiehlt sich ein möglichst aktuelles Build, kostenlos zum Download verfügbar auf der Beckhoff-Website <u>https://www.beckhoff.com/de-de/</u>.

Zum Firmware-Update kann TwinCAT im sog. FreeRun-Modus betrieben werden, eine kostenpflichtige Lizenz ist dazu nicht nötig.

Das für das Update vorgesehene Gerät kann in der Regel am Einbauort verbleiben; TwinCAT ist jedoch im FreeRun zu betreiben. Zudem ist auf eine störungsfreie EtherCAT Kommunikation zu achten (keine "LostFrames" etc.).

Andere EtherCAT-Master-Software wie z.B. der EtherCAT-Konfigurator sind nicht zu verwenden, da sie unter Umständen nicht die komplexen Zusammenhänge beim Update von Firmware, EEPROM und ggf. weiteren Gerätebestandteilen unterstützen.

Speicherorte

In einem EtherCAT-Slave werden an bis zu drei Orten Daten für den Betrieb vorgehalten:

- Je nach Funktionsumfang und Performance besitzen EtherCAT Slaves einen oder mehrere lokale Controller zur Verarbeitung von IO-Daten. Das darauf laufende Programm ist die sog. **Firmware** im Format *.efw.
- In bestimmten EtherCAT Slaves kann auch die EtherCAT Kommunikation in diesen Controller integriert sein. Dann ist der Controller meist ein so genannter **FPGA**-Chip mit der *.rbf-Firmware.
- Darüber hinaus besitzt jeder EtherCAT Slave einen Speicherchip, um seine eigene Gerätebeschreibung (ESI; EtherCAT Slave Information) zu speichern, in einem sog. ESI-EEPROM. Beim Einschalten wird diese Beschreibung geladen und u. a. die EtherCAT Kommunikation entsprechend eingerichtet. Die Gerätebeschreibung kann von der Beckhoff Website (<u>http:// www.beckhoff.de</u>) im Downloadbereich heruntergeladen werden. Dort sind alle ESI-Dateien als Zip-Datei zugänglich.

Kundenseitig zugänglich sind diese Daten nur über den Feldbus EtherCAT und seine Kommunikationsmechanismen. Beim Update oder Auslesen dieser Daten ist insbesondere die azyklische Mailbox-Kommunikation oder der Registerzugriff auf den ESC in Benutzung.

Der TwinCAT Systemmanager bietet Mechanismen, um alle drei Teile mit neuen Daten programmieren zu können, wenn der Slave dafür vorgesehen ist. Es findet üblicherweise keine Kontrolle durch den Slave statt, ob die neuen Daten für ihn geeignet sind, ggf. ist ein Weiterbetrieb nicht mehr möglich.

Vereinfachtes Update per Bundle-Firmware

Bequemer ist der Update per sog. **Bundle-Firmware**: hier sind die Controller-Firmware und die ESI-Beschreibung in einer *.efw-Datei zusammengefasst, beim Update wird in der Klemme sowohl die Firmware, als auch die ESI verändert. Dazu ist erforderlich

- dass die Firmware in dem gepackten Format vorliegt: erkenntlich an dem Dateinamen der auch die Revisionsnummer enthält, z. B. ELxxxx-xxxx_REV0016_SW01.efw
- dass im Download-Dialog das Passwort=1 angegeben wird. Bei Passwort=0 (default Einstellung) wird nur das Firmware-Update durchgeführt, ohne ESI-Update.
- dass das Gerät diese Funktion unterstützt. Die Funktion kann in der Regel nicht nachgerüstet werden, sie wird Bestandteil vieler Neuentwicklungen ab Baujahr 2016.

Nach dem Update sollte eine Erfolgskontrolle durchgeführt werden

- ESI/Revision: z. B. durch einen Online-Scan im TwinCAT ConfigMode/FreeRun dadurch wird die Revision bequem ermittelt
- · Firmware: z. B. durch einen Blick ins Online-CoE des Gerätes

HINWEIS

Beschädigung des Gerätes möglich!

- ✓ Beim Herunterladen von neuen Gerätedateien ist zu beachten
- a) Das Herunterladen der Firmware auf ein EtherCAT-Gerät darf nicht unterbrochen werden.
- b) Eine einwandfreie EtherCAT-Kommunikation muss sichergestellt sein, CRC-Fehler oder LostFrames dürfen nicht auftreten.
- c) Die Spannungsversorgung muss ausreichend dimensioniert, die Pegel entsprechend der Vorgabe sein.
- ⇒ Bei Störungen während des Updatevorgangs kann das EtherCAT-Gerät ggf. nur vom Hersteller wieder in Betrieb genommen werden!

7.3.1 Gerätebeschreibung ESI-File/XML

HINWEIS

ACHTUNG bei Update der ESI-Beschreibung/EEPROM

Manche Slaves haben Abgleich- und Konfigurationsdaten aus der Produktion im EEPROM abgelegt. Diese werden bei einem Update unwiederbringlich überschrieben.

Die Gerätebeschreibung ESI wird auf dem Slave lokal gespeichert und beim Start geladen. Jede Gerätebeschreibung hat eine eindeutige Kennung aus Slave-Name (9-stellig) und Revision-Nummer (4-stellig). Jeder im System Manager konfigurierte Slave zeigt seine Kennung im EtherCAT-Reiter:

SYSTEM - Configuration NC - Configuration	General EtherCAT	Process Data Startu	p CoE - Online Online
PLC - Configuration I/O - Configuration	Туре:	EL3204 4Ch. Ana. In	put PT100 (RTD)
🖃 🎬 I/O Devices	Product/Revision:	EL3204-0000-0016	
🖃 🔫 Device 2 (EtherCAT)	Auto Inc Addr:	FFFF	
Device 2-Image-Info	EtherCAT Addr:	1002	Advanced Settings
🖃 🐨 😻 Outputs	Previous Port:	Term 1 (EK1101) - B	~
🕢 😧 InfoData			
□ III Term 1 (EK1101)			
🗟 😵 WcState			
InfoData			

Abb. 27: Gerätekennung aus Name EL3204-0000 und Revision -0016

Die konfigurierte Kennung muss kompatibel sein mit der tatsächlich als Hardware eingesetzten Gerätebeschreibung, d. h. der Beschreibung die der Slave (hier: EL3204) beim Start geladen hat. Üblicherweise muss dazu die konfigurierte Revision gleich oder niedriger der tatsächlich im Klemmenverbund befindlichen sein.

Weitere Hinweise hierzu entnehmen Sie bitte der EtherCAT System-Dokumentation.

Update von XML/ESI-Beschreibung

Die Geräterevision steht in engem Zusammenhang mit der verwendeten Firmware bzw. Hardware. Nicht kompatible Kombinationen führen mindestens zu Fehlfunktionen oder sogar zur endgültigen Außerbetriebsetzung des Gerätes. Ein entsprechendes Update sollte nur in Rücksprache mit dem Beckhoff Support ausgeführt werden.

Anzeige der Slave-Kennung ESI

Der einfachste Weg die Übereinstimmung von konfigurierter und tatsächlicher Gerätebeschreibung festzustellen, ist im TwinCAT-Modus Config/FreeRun das Scannen der EtherCAT-Boxen auszuführen:

Abb. 28: Rechtsklick auf das EtherCAT Gerät bewirkt das Scannen des unterlagerten Feldes

Wenn das gefundene Feld mit dem konfigurierten übereinstimmt, erscheint

Abb. 29: Konfiguration identisch

ansonsten erscheint ein Änderungsdialog, um die realen Angaben in die Konfiguration zu übernehmen.

Abb. 30: Änderungsdialog

In diesem Beispiel in Abb. Änderungsdialog. wurde eine EL3201-0000-**0017** vorgefunden, während eine EL3201-0000-**0016** konfiguriert wurde. In diesem Fall bietet es sich an, mit dem *Copy Before*-Button die Konfiguration anzupassen. Die Checkbox *Extended Information* muss gesetzt werden, um die Revision angezeigt zu bekommen.

Änderung der Slave-Kennung ESI

Die ESI/EEPROM-Kennung kann unter TwinCAT wie folgt aktualisiert werden:

- · Es muss eine einwandfreie EtherCAT-Kommunikation zum Slave hergestellt werden
- Der State des Slave ist unerheblich
- Rechtsklick auf den Slave in der Online-Anzeige führt zum Dialog *EEPROM Update*, Abb. *EEPROM Update*

Abb. 31: EEPROM Update

Im folgenden Dialog wird die neue ESI-Beschreibung ausgewählt, s. Abb. *Auswahl des neuen ESI.* Die CheckBox *Show Hidden Devices* zeigt auch ältere, normalerweise ausgeblendete Ausgaben eines Slave.

BECKHOFE

Write EEPROM	
Available EEPROM Descriptions:	ОК
B EL3162 2Ch. Ana. Input 0-10V (EL3162-0000-0000) EL3201 1Ch. Ana. Input PT100 (RTD) (EL3201-0000-0016) EL3201-0010 1Ch. Ana. Input PT100 (RTD), High Precision (EL3201-0010-0016) EL3201-0020 1Ch. Ana. Input PT100 (RTD), High Precision, calibrated (EL3201-0020-0016) EL3202 2Ch. Ana. Input PT100 (RTD) (EL3202-0000-0016) EL3202-0010 2Ch. Ana. Input PT100 (RTD), High Precision (EL3202-0010-0016) EL3204 4Ch. Ana. Input PT100 (RTD), High Precision (EL3202-0010-0016) EL3204 4Ch. Ana. Input PT100 (RTD) (EL3204-0000-0016) EL3311 1Ch. Ana. Input Thermocouple (TC) (EL3311-0000-0017) EL3311 2Ch. Ana. Input Thermocouple (TC) (EL3312-0000-0016)	Cancel

Abb. 32: Auswahl des neuen ESI

Ein Laufbalken im System Manager zeigt den Fortschritt - erst erfolgt das Schreiben, dann das Veryfiing.

Die meisten EtherCAT-Geräte lesen eine geänderte ESI-Beschreibung umgehend bzw. nach dem Aufstarten aus dem INIT ein. Einige Kommunikationseinstellungen wie z. B. Distributed Clocks werden jedoch erst bei PowerOn gelesen. Deshalb ist ein kurzes Abschalten des EtherCAT Slave nötig, damit die Änderung wirksam wird.

7.3.2 Erläuterungen zur Firmware

Versionsbestimmung der Firmware

Versionsbestimmung mit dem System-Manager

Der TwinCAT System-Manager zeigt die Version der Controller-Firmware an, wenn der Slave online für den Master zugänglich ist. Klicken Sie hierzu auf die E-Bus-Klemme deren Controller-Firmware Sie überprüfen möchten (im Beispiel Klemme 2 (EL3204) und wählen Sie den Karteireiter CoE-Online (CAN over EtherCAT).

CoE-Online und Offline-CoE

Es existieren zwei CoE-Verzeichnisse:

• online: es wird im EtherCAT Slave vom Controller angeboten, wenn der EtherCAT Slave dies unterstützt. Dieses CoE-Verzeichnis kann nur bei angeschlossenem und betriebsbereitem Slave angezeigt werden.

• offline: in der EtherCAT Slave Information ESI/XML kann der Default-Inhalt des CoE enthalten sein. Dieses CoE-Verzeichnis kann nur angezeigt werden, wenn es in der ESI (z. B. "Beckhoff EL5xxx.xml") enthalten ist.

Die Umschaltung zwischen beiden Ansichten kann über den Button Advanced vorgenommen werden.

In Abb. Anzeige FW-Stand EL3204 wird der FW-Stand der markierten EL3204 in CoE-Eintrag 0x100A mit 03 angezeigt.

Abb. 33: Anzeige FW-Stand EL3204

TwinCAT 2.11 zeigt in (A) an, dass aktuell das Online-CoE-Verzeichnis angezeigt wird. Ist dies nicht der Fall, kann durch die erweiterten Einstellungen (B) durch *Online* und Doppelklick auf *All Objects* das Online-Verzeichnis geladen werden.

7.3.3 Update Controller-Firmware *.efw

CoE-Verzeichnis

Das Online-CoE-Verzeichnis wird vom Controller verwaltet und in einem eigenen EEPROM gespeichert. Es wird durch ein FW-Update im allgemeinen nicht verändert.

Um die Controller-Firmware eines Slave zu aktualisieren, wechseln Sie zum Karteireiter *Online*, s. Abb. *Firmware Update*.

E- W SYSTEM - Configuration		
	General EtherCAT Process Data Startup	CoE - Online Unline
PLC - Configuration	Clube Machine	
I/O - Configuration	State Machine	
- I/O Devices	Init A Bootstrap	
Device 2 (EtherCAT)	B	Current State: BOOT
Device 2-Image	Pre-Up Sare-Up	Bequested State: BOOT
Device 2-Image-Info	Op Clear Error	Trequested State: DOOT
		Open 🔹 🛛
Outputs		
🖈 🔒 InfoData	DLL Status	Look in: 🙆 NewFW 🛛 💙 🔇 🧭 🖽 🗸
	Port A: Carrier / Open	
		EL3204_06.erw
WrState	Port B: No Larrier / Llosed	
🕀 😵 InfoData	Port C: No Carrier / Closed	My Recent Dog ments
Term 2 (EL3204)	Port D: No Carrier / Closed	D'OCUTIERS
Term 3 (EL3201)	Ho caller / closed	
	File Access over EtherCAT	Desktop
	Download Upload	
	Name Online	FinDat
	Q1 Underrange 0	E IGD 8
	Overrange 1	
	♦T Limit 1 0x0 (0)	
	•TLimit 2 0x0 (0)	
	Server 1	My Computer
	V TxPDO State 0	
	V raue 0x2134 <850.000>	File name: EL3204_06.efw Y Open
0	◆ WC5tate 1 ●↑State 0×0003 (3)	Mu Naturate Files of tuper EtherCAT Firmware File (" abu)
Č I	Cadcaddy 00.00.00.00.03.01 E	E Carca
	Sel waswaar 00 00 00 00 00 01 C	

Abb. 34: Firmware Update

Es ist folgender Ablauf einzuhalten, wenn keine anderen Angaben z. B. durch den Beckhoff Support vorliegen. Gültig für TwinCAT 2 und 3 als EtherCAT Master.

• TwinCAT System in ConfigMode/FreeRun mit Zykluszeit >= 1ms schalten (default sind im ConfigMode 4 ms). Ein FW-Update während Echtzeitbetrieb ist nicht zu empfehlen.

Microsoft Visual Studio	Microsoft Visual Studio
Load I/O Devices	Activate Free Run
Yes No	Yes No

• EtherCAT Master in PreOP schalten

- Slave in INIT schalten (A)
- Slave in BOOTSTRAP schalten

- Kontrolle des aktuellen Status (B, C)
- Download der neuen *efw-Datei, abwarten bis beendet. Ein Passwort wird in der Regel nicht benötigt.

- Nach Beendigung des Download in INIT schalten, dann in PreOP
- Slave kurz stromlos schalten (nicht unter Spannung ziehen!)
- Im CoE 0x100A kontrollieren ob der FW-Stand korrekt übernommen wurde.

7.3.4 FPGA-Firmware *.rbf

Falls ein FPGA-Chip die EtherCAT-Kommunikation übernimmt, kann ggf. mit einer *.rbf-Datei ein Update durchgeführt werden.

- · Controller-Firmware für die Aufbereitung der E/A-Signale
- FPGA-Firmware für die EtherCAT-Kommunikation (nur für Klemmen mit FPGA)

Die in der Seriennummer der Klemme enthaltene Firmware-Versionsnummer beinhaltet beide Firmware-Teile. Wenn auch nur eine dieser Firmware-Komponenten verändert wird, dann wird diese Versionsnummer fortgeschrieben.

Versionsbestimmung mit dem System-Manager

Der TwinCAT System-Manager zeigt die Version der FPGA-Firmware an. Klicken Sie hierzu auf die Ethernet-Karte Ihres EtherCAT-Stranges (im Beispiel Gerät 2) und wählen Sie den Karteireiter *Online*.

Die Spalte *Reg:0002* zeigt die Firmware-Version der einzelnen EtherCAT-Geräte in hexadezimaler und dezimaler Darstellung an.

📑 TwinCAT System Manager	-	
Datei Bearbeiten Aktionen Ansicht Opti	tionen <u>?</u>	
🗅 🚅 📽 🔚 🍜 🖪 👗 🛍 🛱	🖌 🛤 ð 🖳 🖴 🗸 🍏 👧 🎭 🌾 💽 🖘	E
SYSTEM - Konfiguration	Allgemein Adapter EtherCAT Online	
CNC - Konfiguration	No Addr Name State CRC Reg:0002	
	1 1001 Klemme 1 (EK1100) OP 0 0x0002 (1	1)
🖻 😎 E/A - Konfiguration	2 1002 Klemme 2 (EL2004) OP 0 0x0002 (1	0)
🖻 🎬 E/A Geräte	3 1003 Klemme 3 (EL2004) OP 0 0x0002 (1	1)
🖻 🗒 Gerät 2 (EtherCAT)	4 1004 Kiemme 4 (EL5001) OP 0 0x0002 (1	UJ 1)
Gerät 2-ProzeBabbild	6 1006 Klemme 6 (EL 5101) OP 0 0x0008 (1	11
Gerät 2-Prozeläabbild-Into	7 1007 Klemme 7 (EL5101) OP 0 0x000C (1	2)
Eingange 	Aktueller Status: OP gesendete Frames: 742 Init Pre-Op Safe-Op Op Frames / sec: 325 CRC löschen Frames löschen Verlorene Frames: 0	237
	Nummer Boxbezeichnung Adresse Typ Eing, Größe	A 🔺
	1 Klemme 1 (EK1100) 1001 EK1100 0.0	0
	2 Klemme 2 (EL2004) 1002 EL2004 0.0	0
	3 Klemme 3 (EL2004) 1003 EL2004 0.0	0
l	4 Klemme 4 (EL5001) 1004 EL5001 5.0	0 🔻
Bereit	Lokal () Free Run	

Abb. 35: Versionsbestimmung FPGA-Firmware

Falls die Spalte *Reg:0002* nicht angezeigt wird, klicken sie mit der rechten Maustaste auf den Tabellenkopf und wählen im erscheinenden Kontextmenü, den Menüpunkt *Properties*.

Abb. 36: Kontextmenu Eigenschaften (Properties)

In dem folgenden Dialog *Advanced Settings* können Sie festlegen, welche Spalten angezeigt werden sollen. Markieren Sie dort unter *Diagnose/***Online Anzeige** das Kontrollkästchen vor '0002 *ETxxxx Build*' um die Anzeige der FPGA-Firmware-Version zu aktivieren.

P	dvanced Settings		×
	⊡ - Diagnose Online Anzeige - Emergency - Scan	Online Anzeige	0000 Add
			OK Abbrechen

Abb. 37: Dialog Advanced settings

Update

Für das Update der FPGA-Firmware

- eines EtherCAT-Kopplers, muss auf diesem Koppler mindestens die FPGA-Firmware-Version 11 vorhanden sein.
- einer E-Bus-Klemme, muss auf dieser Klemme mindestens die FPGA-Firmware-Version 10 vorhanden sein.

Ältere Firmware-Stände können nur vom Hersteller aktualisiert werden!

Update eines EtherCAT-Geräts

Es ist folgender Ablauf einzuhalten, wenn keine anderen Angaben z. B. durch den Beckhoff Support vorliegen:

• TwinCAT System in ConfigMode/FreeRun mit Zykluszeit >= 1 ms schalten (default sind im ConfigMode 4 ms). Ein FW-Update während Echtzeitbetrieb ist nicht zu empfehlen.

• Wählen Sie im TwinCAT System-Manager die Klemme an, deren FPGA-Firmware Sie aktualisieren möchten (im Beispiel: Klemme 5: EL5001) und klicken Sie auf dem Karteireiter *EtherCAT* auf die Schaltfläche *Weitere Einstellungen*:

😎 TwinCAT System Manager				_ 🗆 ×
Datei Bearbeiten Aktionen Ansicht Opti	Datei Bearbeiten Aktionen Ansicht Optionen ?			
🗅 📽 📽 🔚 🍜 🗟 👗 🛍 🛍	B 🗚 8	🖳 🖴 🗸 💣 👧) 😫 🔨 💽	🗣 🖹
SYSTEM - Konfiguration	Allgemein E	therCAT Prozessdaten Sta	artup CoE - Onli	ne Online
ENC - Konfiguration	T			
SPS - Konfiguration	тур:	JELSOUT IK. SSI EI	ncoder	
E/A - Konfiguration	Produkt / Rev	vision: EL5001-0000-0000)	
E/A Geräte	Auto-Inc-Adr	esse: FFFC		
⊡- ⊞ÿ Gerät 2 (EtherCAT)	EtherCAT-Ad	resser 🗖 1005 🖃	Weitere Einstellu	ngen 📐 📗
Gerät 2-Prozeßabbild-Info) D	- -
	vorganger-Fi	Internine 4 (ELSOUT	J.р	<u> </u>
🕀 🕀 kusgänge				
· · · · · · · · · · · · · · · · · · ·				
Em A InfoData				
HINDOUCU HINDOUCU				
	http://www.	beckhoff.de/german/default.htr	m?EtherCAT/ELt	0001.htm
🕂 🦓 Klemme 4 (EL5001)				
🖻 🍓 Klemme 5 (EL5001)				
庄 🖓 Channel 1	Name	Online	Тур	Größe
😟 🕀 😥 🕀 🗄	♀ ↑ Status	0×41 (65)	BYTE	1.0
主 💀 😣 InfoData	Q ⊺Value	0×00000000 (0)	UDINT	4.0
🕀 📲 Klemme 6 (EL5101)	♥ T WcState	0	BOOL	0.1
🕀 📲 Klemme 7 (EL5101)	♀ [State	0x0008 (8)	UINT	2.0
Klemme 8 (EL9010)	s≫l AdsAddr	AC 10 03 F3 03 01 ED 03	AMSADDRESS	8.0
Zuordnungen	•			►
Bereit			Lokal () Con	fig Mode 🛛 🎢

• Im folgenden Dialog Advanced Settings klicken Sie im Menüpunkt ESC-Zugriff/E²PROM/FPGA auf die Schaltfläche Schreibe FPGA:

• Wählen Sie die Datei (*.rbf) mit der neuen FPGA-Firmware aus und übertragen Sie diese zum EtherCAT-Gerät:

Öffnen ? 🗙
Suchen in: 🗀 FirmWare 💽 🔇 🤌 📂 🖽
SocCOM_T1_EBUS_BGA_LVTTL_F2_S4_BLD12.rbf
Dateiname: A_LVTL_F2_S4_BLD12.rbf0ffnen
Dateityp: FPGA File (*.rbf) Abbrechen
Dateiname: A_LVTL_F2_S4_BLD12.rbf 0ffnen Dateityp: FPGA File (*.rbf) Abbrechen

- Abwarten bis zum Ende des Downloads
- Slave kurz stromlos schalten (nicht unter Spannung ziehen!). Um die neue FPGA-Firmware zu aktivieren ist ein Neustart (Aus- und Wiedereinschalten der Spannungsversorgung) des EtherCAT-Geräts erforderlich
- Kontrolle des neuen FPGA-Standes

HINWEIS

Beschädigung des Gerätes möglich!

Das Herunterladen der Firmware auf ein EtherCAT-Gerät dürfen Sie auf keinen Fall unterbrechen! Wenn Sie diesen Vorgang abbrechen, dabei die Versorgungsspannung ausschalten oder die Ethernet-Verbindung unterbrechen, kann das EtherCAT-Gerät nur vom Hersteller wieder in Betrieb genommen werden!

7.3.5 Gleichzeitiges Update mehrerer EtherCAT-Geräte

Die Firmware von mehreren Geräten kann gleichzeitig aktualisiert werden, ebenso wie die ESI-Beschreibung. Voraussetzung hierfür ist, dass für diese Geräte die gleiche Firmware-Datei/ESI gilt.

General	Adapter	EtherCAT	Online	CoE - Online		
No	Ado	dr Name			Stat	e
1 1	1001	1 Term 5	(EK1101)	INIT	
	2 1002	2 Term 6	(EL3102	l	INIT	
	3 100. 4 1004 5 1009	3 Term 7 4 Term 8 5 Term 9	(EL3102) (EL3102) (EL3102)	Request ' Request ' Request ' Request ' Request ' Clear 'ERF EEPROM I	INIT' state PREOP' state SAFEOP' state OP' state BOOTSTRAF ROR' state Update	e ite ''state

Abb. 38: Mehrfache Selektion und FW-Update

Wählen Sie dazu die betreffenden Slaves aus und führen Sie das Firmware-Update im BOOTSTRAP Modus wie o. a. aus.

7.4 Support und Service

Beckhoff und seine weltweiten Partnerfirmen bieten einen umfassenden Support und Service, der eine schnelle und kompetente Unterstützung bei allen Fragen zu Beckhoff Produkten und Systemlösungen zur Verfügung stellt.

Beckhoff Niederlassungen und Vertretungen

Wenden Sie sich bitte an Ihre Beckhoff Niederlassung oder Ihre Vertretung für den <u>lokalen Support und</u> <u>Service</u> zu Beckhoff Produkten!

Die Adressen der weltweiten Beckhoff Niederlassungen und Vertretungen entnehmen Sie bitte unseren Internetseiten: <u>https://www.beckhoff.de</u>

Dort finden Sie auch weitere Dokumentationen zu Beckhoff Komponenten.

Beckhoff Support

Der Support bietet Ihnen einen umfangreichen technischen Support, der Sie nicht nur bei dem Einsatz einzelner Beckhoff Produkte, sondern auch bei weiteren umfassenden Dienstleistungen unterstützt:

- Support
- Planung, Programmierung und Inbetriebnahme komplexer Automatisierungssysteme
- umfangreiches Schulungsprogramm für Beckhoff Systemkomponenten

Hotline:	+49(0)5246 963 157
Fax:	+49(0)5246 963 9157
E-Mail:	support@beckhoff.com

Beckhoff Service

Das Beckhoff Service-Center unterstützt Sie rund um den After-Sales-Service:

- · Vor-Ort-Service
- Reparaturservice
- Ersatzteilservice
- Hotline-Service

Hotline:	+49(0)5246 963 460
Fax:	+49(0)5246 963 479
E-Mail:	service@beckhoff.com

Beckhoff Firmenzentrale

Beckhoff Automation GmbH & Co. KG

Hülshorstweg 20 33415 Verl Deutschland

Telefon:	+49(0)5246 963 0
Fax:	+49(0)5246 963 198
E-Mail:	info@beckhoff.com
Internet:	https://www.beckhoff.de

Mehr Informationen: www.beckhoff.de/EK1110-0043

Beckhoff Automation GmbH & Co. KG Hülshorstweg 20 33415 Verl Deutschland Telefon: +49 5246 9630 info@beckhoff.de www.beckhoff.de

