Hardware Data Sheet Section III

ET1815 / ET1816

Ether**CAT** Slave Controller IP Core for Xilinx FPGAs Release 2.04e

Section	—	Technology
		(Online at http://www.beckhoff.com)

- Section II Register Description (Online at <u>http://www.beckhoff.com</u>)
- Section III Hardware Description Installation, Configuration, Resource consumption, Interface specification

Version 1.0 Date: 2015-01-20

DOCUMENT ORGANIZATION

The Beckhoff EtherCAT Slave Controller (ESC) documentation covers the following Beckhoff ESCs:

- ET1200
- ET1100
- EtherCAT IP Core for Altera® FPGAs
- EtherCAT IP Core for Xilinx[®] FPGAs
- ESC20

The documentation is organized in three sections. Section I and section II are common for all Beckhoff ESCs, Section III is specific for each ESC variant.

The latest documentation is available at the Beckhoff homepage (http://www.beckhoff.com).

Section I – Technology (All ESCs)

Section I deals with the basic EtherCAT technology. Starting with the EtherCAT protocol itself, the frame processing inside EtherCAT slaves is described. The features and interfaces of the physical layer with its two alternatives Ethernet and EBUS are explained afterwards. Finally, the details of the functional units of an ESC like FMMU, SyncManager, Distributed Clocks, Slave Information Interface, Interrupts, Watchdogs, and so on, are described.

Since Section I is common for all Beckhoff ESCs, it might describe features which are not available in a specific ESC. Refer to the feature details overview in Section III of a specific ESC to find out which features are available.

Section II – Register Description (All ESCs)

Section II contains detailed information about all ESC registers. This section is also common for all Beckhoff ESCs, thus registers, register bits, or features are described which might not be available in a specific ESC. Refer to the register overview and to the feature details overview in Section III of a specific ESC to find out which registers and features are available.

Section III – Hardware Description (Specific ESC)

Section III is ESC specific and contains detailed information about the ESC features, implemented registers, configuration, interfaces, pinout, usage, electrical and mechanical specification, and so on. Especially the Process Data Interfaces (PDI) supported by the ESC are part of this section.

Additional Documentation

Application notes and utilities can also be found at the Beckhoff homepage. Pinout configuration tools for ET1100/ET1200 are available. Additional information on EtherCAT IP Cores with latest updates regarding design flow compatibility, FPGA device support and known issues are also available.

Trademarks

Beckhoff[®], TwinCAT[®], EtherCAT[®], Safety over EtherCAT[®], TwinSAFE[®] and XFC[®] are registered trademarks of and licensed by Beckhoff Automation GmbH & Co. KG. Other designations used in this publication may be trademarks whose use by third parties for their own purposes could violate the rights of the owners.

Patent Pending

The EtherCAT Technology is covered, including but not limited to the following German patent applications and patents: DE10304637, DE102004044764, DE102005009224, DE102007017835 with corresponding applications or registrations in various other countries.

Disclaimer

The documentation has been prepared with care. The products described are, however, constantly under development. For that reason the documentation is not in every case checked for consistency with performance data, standards or other characteristics. In the event that it contains technical or editorial errors, we retain the right to make alterations at any time and without warning. No claims for the modification of products that have already been supplied may be made on the basis of the data, diagrams and descriptions in this documentation.

Copyright

© Beckhoff Automation GmbH & Co. KG 01/2015.

The reproduction, distribution and utilization of this document as well as the communication of its contents to others without express authorization are prohibited. Offenders will be held liable for the payment of damages. All rights reserved in the event of the grant of a patent, utility model or design.

DOCUMENT HISTORY

Version	Comment	
1.0	Initial release EtherCAT IP Core for Xilinx FPGAs v2.04e	

CONTENTS

1	Overview		1
	1.1	Frame processing order	2
	1.2	Scope of this document	3
	1.3	Scope of Delivery	3
	1.4	Target FPGAs	4
	1.5	Designflow requirements	4
	1.6	Tested FPGA/Designflow combinations	5
	1.7	Release Notes	6
	1.8	Design flow	8
	1.9	IP Core Evaluation	9
	1.10	Simulation	10
2	Features ar	d Registers	11
	2.1	Features	11
	2.2	Registers	15
	2.3	Extended ESC Features in User RAM	19
3	IP Core Inst	allation	21
	3.1	Installation on Windows PCs	21
		3.1.1 System Requirements	21
		3.1.2 Installation	21
	3.2	Installation on Linux PCs	22
		3.2.1 System Requirements	22
		3.2.2 Installation	22
	3.3	Files located in the lib folder	22
	3.4	License File	23
	3.5	IP Core Vendor ID Package	23
	3.6	RSA Decryption Keys	24
	3.7	Environment Variable	24
	3.8	Integrating the EtherCAT IP Core into the Xilinx Designflow	25
	3.9	Software Templates for example designs with Microblaze processor (EDK)	25
	3.10	EtherCAT Slave Information (ESI) / XML device description for example desig	jns 25
4	IP Core Usa	age	26
	4.1	IPCore_Config Tool	26
	4.2	EDK designs with EtherCAT IP Core	27
	4.3	Vivado designs with EtherCAT IP Core	31
5	IP Core Cor	nfiguration	32
		5.1.1 Product ID tab	33
		5.1.2 Physical Layer tab	34
		5.1.3 Internal Functions tab	35
		5.1.4 Feature Details tab	36

		5.1.5	Process Data Interface tab	38
6	Example D	esigns		45
	6.1	Avnet X	ilinx Spartan-6 LX150T Development Kit with Digital I/O	46
		6.1.1	Configuration and resource consumption	46
		6.1.2	Functionality	46
		6.1.3	Implementation	47
		6.1.4	SIIEEPROM	47
	6.2	Avnet X	ilinx Spartan-6 LX150T Development Kit with PLB/AXI	48
		6.2.1	Configuration and resource consumption	48
		6.2.2	Functionality	48
		6.2.3	Implementation	48
		6.2.4	SIIEEPROM	49
		6.2.5	Downloadable configuration file	49
7	FPGA Reso	ource Cor	nsumption	50
8	IP Core Sig	Inals		53
	8.1	General	Signals	53
		8.1.1	Clock source example schematics	53
	8.2	SII EEP	ROM Interface Signals	54
	8.3	LED Sig	gnals	55
	8.4	Distribut	ted Clocks SYNC/LATCH Signals	55
	8.5	Physica	I Layer Interface	56
		8.5.1	MII Interface	57
		8.5.2	RMII Interface	59
	8.6	PDI Sig	nals	60
		8.6.1	General PDI Signals	60
		8.6.2	Digital I/O Interface	60
		8.6.3	SPI Slave Interface	61
		8.6.4	Asynchronous 8/16 Bit µController Interface	61
		8.6.5	PLB Processor Local Bus	63
		8.6.6	OPB On-Chip Peripheral Bus	65
9	Ethernet In	terface		66
	9.1	PHY Ma	anagement interface	66
		9.1.1	PHY Management Interface Signals	66
		9.1.2	PHY Address Configuration	66
		9.1.3	Separate external MII management interfaces	67
		9.1.4	MII management timing specifications	67
	9.2	MII Inter	rface	68
		9.2.1	MII Interface Signals	69
		9.2.2	TX Shift Compensation	70
		9.2.3	MII Timing specifications	71
		9.2.4	MII example schematic	72

	9.3	RMII Interface		73
		9.3.1	RMII Interface Signals	73
		9.3.2	RMII example schematic	74
10	PDI Descrip	otion		75
	10.1	Digital I/	O Interface	76
		10.1.1	Interface	76
		10.1.2	Configuration	77
		10.1.3	Digital Inputs	77
		10.1.4	Digital Outputs	77
		10.1.5	Output Enable	78
		10.1.6	SyncManager Watchdog	78
		10.1.7	SOF	79
		10.1.8	OUTVALID	79
		10.1.9	Timing specifications	79
	10.2	SPI Slav	re Interface	81
		10.2.1	Interface	81
		10.2.2	Configuration	81
		10.2.3	SPI access	82
		10.2.4	Address modes	82
		10.2.5	Commands	83
		10.2.6	Interrupt request register (AL Event register)	83
		10.2.7	Write access	83
		10.2.8	Read access	83
		10.2.9	SPI access errors and SPI status flag	84
		10.2.10	2 Byte and 4 Byte SPI Masters	85
		10.2.11	Timing specifications	86
	10.3	•	onous 8/16 bit µController Interface	92
		10.3.1	Interface	92
		10.3.2	Configuration	92
		10.3.3	µController access	93
		10.3.4	Write access	93
		10.3.5	Read access	93
		10.3.6	µController access errors	94
		10.3.7	Connection with 16 bit µControllers without byte addressing	94
		10.3.8	Connection with 8 bit µControllers	95
		10.3.9	Timing Specification	96
	10.4		ve Interface	100
		10.4.1	Interface	100
		10.4.2	Configuration	101
		10.4.3	Timing specifications	102
	10.5	OPB Sla	ve Interface	104

		10.5.1	Interface	104
		10.5.2	Configuration	105
		10.5.3	Byte Enable (BE)	105
		10.5.4	Timing specifications	106
11	Distributed	Clocks SY	/NC/LATCH Signals	108
	11.1	Signals		108
	11.2	Timing s	pecifications	108
12	SII EEPROI	M Interfac	e (I ² C)	109
	12.1	Signals		109
	12.2	EEPRON	M Emulation	109
	12.3	Timing s	pecifications	109
13	Electrical Sp	pecificatio	ns	110
14	Synthesis C	constraints	8	111
15	Appendix			114
	15.1	Support	and Service	114
		15.1.1	Beckhoff's branch offices and representatives	114
	15.2	Beckhoff	f Headquarters	114

TABLES

Table 1: IP Core Main Features	
Table 2: Frame Processing Order	2
Table 3: Tested FPGA/Designflow combinations	5
Table 4: Release notes	6
Table 5: Register Revision (0x0001)	7
Table 6: Register Build (0x0002:0x0003)	7
Table 7: IP Core Feature Details	. 11
Table 8: Legend	. 14
Table 9: Register availability	. 15
Table 10: Legend	. 18
Table 11: Extended ESC Features (Reset values of User RAM - 0x0F80:0x0FFF)	. 19
Table 12: Contents of lib folder	
Table 13: Resource consumption Avnet LX150T example design	. 46
Table 14: Resource consumption Avnet LX150T example design	. 48
Table 15: Approximate resource requirements for main configurable functions	. 51
Table 16: EtherCAT IP Core configuration for typical EtherCAT Devices	
Table 17: EtherCAT IP Core resource consumption for typical EtherCAT Devices	
Table 18: General Signals	. 53
Table 19: SII EEPROM Signals	. 54
Table 20: LED Signals	. 55
Table 21: DC SYNC/LATCH signals	
Table 22: Physical Layer General	
Table 23: PHY Interface MII	. 57
Table 24: PHY Interface RMII	
Table 25: General PDI Signals	
Table 26: Digital I/O PDI	
Table 27: SPI PDI	
Table 28: 8/16 Bit µC PDI	
Table 29: 8 Bit µC PDI	
Table 30: 16 Bit µC PDI	
Table 31: PLB PDI	
Table 32: OPB PDI	
Table 33: PHY management Interface signals	
Table 34: MII management timing characteristics	67
Table 35: MII Interface signals	
Table 36: MII TX Timing characteristics	
Table 37: MII timing characteristics	
Table 38: RMII Interface signals	
Table 39: Available PDIs for EtherCAT IP Core	75
Table 40: IP core digital I/O signals	
Table 41: Input/Output byte reference	
Table 42: Digital I/O timing characteristics IP Core	
Table 43: SPI signals	
Table 44: Address modes	
Table 45: SPI commands CMD0 and CMD1	
Table 46: Interrupt request register transmission	
Table 47: Write access for 2 and 4 Byte SPI Masters	
Table 48: SPI timing characteristics IP Core	
Table 49: Read/Write timing diagram symbols	
Table 50: µController signals	
Table 51: 8 bit µController interface access types	
Table 52: 16 bit µController interface access types	
Table 53: µController timing characteristics IP Core	
Table 54: PLB signals	
Table 55: PLB clock period values for synchronous clocking	
Table 56: PLB timing characteristics	
Table 57: OPB signals	
Table 57: OF B signals Table 58: OPB timing characteristics	
Table 59: Distributed Clocks signals	
Table 60: DC SYNC/LATCH timing characteristics IP Core	
	.00

Table 61: I ² C EEPROM signals	109
Table 62: EEPROM timing characteristics IP Core	109
Table 63: AC Characteristics	110
Table 64: Forwarding Delays	110
Table 65: EtherCAT IP Core constraints	

FIGURES

Figure 1: EtherCAT IP Core Block Diagram	
Figure 2: Frame Processing	
Figure 3: Design flow	
Figure 4: Files installed with EtherCAT IP Core setup	. 21
Figure 5: IPCore_Config Open Menu	
Figure 6: IP Core generation successful	
Figure 7: EDK – Overview	
Figure 8: EDK – Configuration of IP Core	
Figure 9: EDK – Configuration Dialog	. 29
Figure 10: EDK – System Assembly View, Addresses tab	
Figure 11: EDK – System Assembly View, Ports tab	
Figure 12: EtherCAT IP Core Configuration Interface	
Figure 13: Product ID tab	
Figure 14: Physical Layer tab	
Figure 15: Internal Functions tab Figure 16: Feature Details tab	
Figure 17: Available PDI Interfaces	
Figure 18: Register Process Data Interface	
Figure 19: Register PDI – Digital I/O Configuration	
Figure 20: Register PDI – μ C-Configuration	
Figure 21: Register PDI – SPI Configuration	
Figure 22: Register PDI – PLB Interface Configuration	
Figure 23: Register PDI – OPB Interface Configuration	
Figure 24: EtherCAT IP Core clock source (MII)	
Figure 25: EtherCAT IP Core clock source (RMI)	
Figure 26: PHY management Interface signals	
Figure 27: Example schematic with two individual MII management interfaces	
Figure 28: MII Interface signals	
Figure 29: MII TX Timing Diagram	
Figure 30: MII timing RX signals	71
Figure 31: MII example schematic	
Figure 32: RMII Interface signals	
Figure 33: RMII example schematic	
Figure 34: IP core digital I/O signals	. 76
Figure 35: Digital Output Principle Schematic	
Figure 36: Digital Input: Input data sampled at SOF, I/O can be read in the same frame	
Figure 37: Digital Input: Input data sampled with LATCH_IN	
Figure 38: Digital Output timing	. 80
Figure 39: OUT_ENA timing	
Figure 40: SPI master and slave interconnection	. 81
Figure 41: Basic SPI_DI/SPI_DO timing (*refer to timing diagram for relevant edges of SPI_CLK)	. 87
Figure 42: SPI read access (2 byte addressing, 1 byte read data) with Wait State byte	. 88
Figure 43: SPI read access (2 byte addressing, 2 byte read data) with Wait State byte	
Figure 44: SPI write access (2 byte addressing, 1 byte write data)	
Figure 45: SPI write access (3 byte addressing, 1 byte write data)	
Figure 46: µController interconnection	
Figure 47: Connection with 16 bit µControllers without byte addressing	
Figure 48: Connection with 8 bit µControllers (BHE and DATA[15:8] should not be left open)	
Figure 49: Read access (without preceding write access)	
Figure 50: Write access (write after rising edge nWR, without preceding write access)	
Figure 51: Sequence of two write accesses and a read access	
Figure 52: Write access (write after falling edge nWR)	
Figure 53: PLB signals	
Figure 54: PLB Read Access	
Figure 55: PLB Write Access	
Figure 56: OPB signals	
Figure 57: OPB Read Access	
Figure 58: OPB Write Access	
Figure 59: Distributed Clocks signals	
Figure 60: LatchSignal timing	108

Figure 61: SyncSignal timing	108
Figure 62: I ² C EEPROM signals	109

ABBREVIATIONS

μC ADR AL BHE BSP CMD CS DC DCM DL ECAT EDK EOF ESC ESI FMMU FPGA GPI GPO HDL IP IRQ ISE	Microcontroller Address Application Layer Bus High Enable Board Support Package Command Chip Select Distributed Clock Digital Clock Manager Data Link Layer EtherCAT Embedded Development Kit (Xilinx software) End of Frame EtherCAT Slave Controller EtherCAT Slave Controller EtherCAT Slave Information Fieldbus Memory Management Unit Field Programmable Gate Array General Purpose Input General Purpose Output Hardware Description Language Intellectual Property Interrupt Request Integrated Software Environment (Xilinx software)
LE	Logic Element
	Logic Cell Madia Access Controller
MAC MDIO	Media Access Controller Management Data Input / Output
MHS	Management Data input / Output Microprocessor Hardware Specification
MI	(PHY) Management Interface
MI	Media Independent Interface
MISO	Master In – Slave Out
MOSI	Master Out – Slave In
MPD	Microprocessor Peripheral Specification
OPB	On-Chip Peripheral Bus
PAO	Peripheral Analyze Order
PDI	Process Data Interface
PLB PLD	Processor Local Bus Programmable Logic Device
PLL	Phase Locked Loop
RBF	Raw Binary File
RD	Read
RMII	Reduced Media Independent Interface
SDK	Software Development Kit
SM	SyncManager
SoC SOF	System on a Chip Start of Frame
SOPC	Start of Frame System on a programmable Chip
SPI	Serial Peripheral Interface
VHDL	Very High Speed Integrated Circuit Hardware Description Language
WR	Write

1 Overview

The EtherCAT IP Core is a configurable EtherCAT Slave Controller (ESC). It takes care of the EtherCAT communication as an interface between the EtherCAT fieldbus and the slave application. The EtherCAT IP Core is delivered as a configurable system so that the feature set fits the requirements perfectly and brings costs down to an optimum.

Table 1: IP Core Main Features

Feature	IP Core configurable features
Ports	1-3 MII ports or 1-2 RMII ports
FMMUs	0-8
SyncManagers	0-8
RAM	1-60 KB
Distributed Clocks	Yes, 32 bit or 64 bit
Process Data Interfaces	 32 Bit Digital I/O (unidirectional) SPI Slave 8/16 bit asynchronous µController Interface PLB v4.6 on-chip bus OPB on-chip bus (legacy)
Other features	 Example designs for easy start up included Slave applications can run on-chip if the appropriate FPGAs with sufficient resources are used

The general functionality of the EtherCAT IP Core is shown in Figure 1:

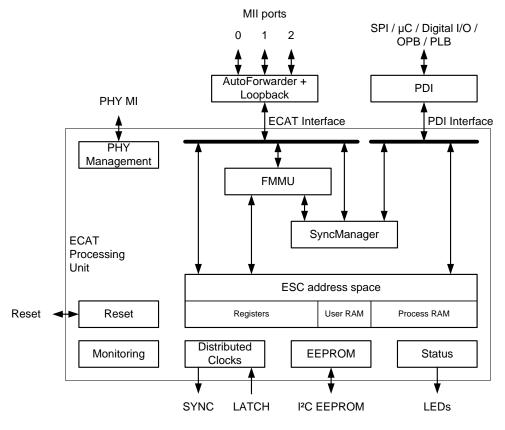


Figure 1: EtherCAT IP Core Block Diagram

1.1 Frame processing order

The frame processing order of the EtherCAT IP Core is as follows (logical port numbers are used):

Table 2: Frame Processing Order	Table	2: Fram	e Processina	Order
---------------------------------	-------	---------	--------------	-------

Number of Ports	Frame processing order
1	0→EtherCAT Processing Unit→0
2	$0 \rightarrow \text{EtherCAT Processing Unit} \rightarrow 1 / 1 \rightarrow 0$
3	0 \rightarrow EtherCAT Processing Unit \rightarrow 1 / 1 \rightarrow 2 / 2 \rightarrow 0 (log. ports 0,1, and 2)

Figure 2 shows the frame processing in general:

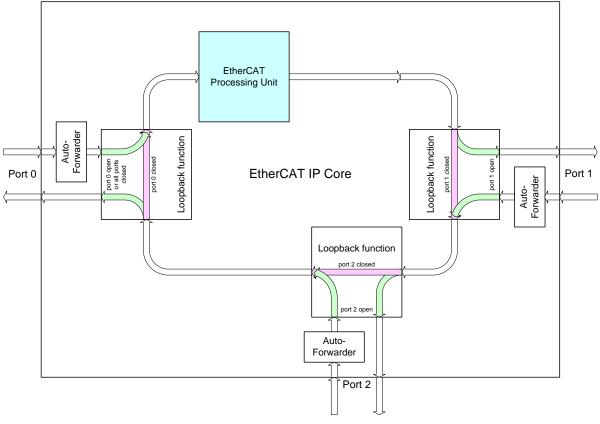


Figure 2: Frame Processing

Frame Processing Example with Ports 0 and 1

A frame received at port 0 goes via the Auto-Forwarder and the Loopback function to the EtherCAT Processing Unit which processes it. Then, the frame is sent to port 1. If port 1 is open, the frame is sent out at port 1. If it is closed, the frame is forwarded by the Loopback function to port 2. Since port 2 is not configured, the Loopback function of port 2 forwards the frame to the Loopback function of port 0, and then it is sent out at port 0 – back to the master.

1.2 Scope of this document

Purpose of this document is to describe the installation and configuration of the EtherCAT IP Core for Xilinx FPGAs. Furthermore, the signals and registers of the IP Core depending on the chosen configuration are described.

This documentation was made with the assumption that the user is familiar with the handling of the Xilinx Development Environment ISE[®] and EDK.

1.3 Scope of Delivery

The EtherCAT IP Core installation file includes:

- EtherCAT IP Core (encrypted VHDL library)
- Decryption keys for encrypted EtherCAT IP Core
- IP Core Configuration Tool (IPCore_Config.exe)
- Example designs

The following files which contain customer specific information are required to synthesize the IP Core. They are delivered independently of the installation file.

- License File to decrypt EtherCAT IP Core: iptb_ethercat_ipcore_<version>_flexIm.lic
- Encrypted Vendor ID package: pk_ECAT_VENDORID_<company>_Xilinx.vhd

1.4 Target FPGAs

The EtherCAT IP Core for Xilinx[®] FPGAs is targeted at these FPGA families:

- Spartan[®]-3, -3E, -3A, -3AN, -3A DSP
- Spartan®-6
- Artix[®]-7, Artix-7 Low Voltage
- Kintex[™]-7, Kintex-7 Lower Voltage
- Virtex[®]-4
- Virtex[®]-5
- Virtex[®]-6
- Virtex[®]-7
- Kintex[®] UltraScale[™]
- Virtex[®] UltraScale[™]
- Zynq[®]-7000

The EtherCAT IP Core is designed to support a wide range of FPGAs without modifications, because it does not instantiate dedicated FPGA resources, or rely on device specific features. Thus, the IP Core is easily portable to new FPGA families (e.g. Zynq UltraScale MPSoC).

The complexity of the IP Core is highly configurable, so its demands for logic resources, memory blocks, and FPGA speed cover a wide range. Thus, it is not possible to run any IP Core configuration on any target FPGA with any speed grade. I.e., there are IP Core configurations requiring a faster speed grade, or a larger FPGA, or even a more powerful FPGA family.

It is necessary to run through the whole synthesis process – including timing checks –, to evaluate if the selected FPGA is suitable for a certain IP Core configuration before making the decision for the FPGA. Please consider a security margin for the logic resources to allow for minor enhancements and bug fixes of the IP Core and the user logic.

1.5 Designflow requirements

For synthesis of the EtherCAT IP Core for Xilinx FPGAs, at least one of the following Xilinx design tools is needed:

- Xilinx Integrated Software Environment ISE 14.7
- Xilinx Platform Studio 14.7
- Xilinx PlanAhead 14.7
- Xilinx Vivado 2014.1 2014.4

Higher design tool versions are probably supported. Installation of the latest patches is recommended. A free version ("WebPack") is available from Xilinx (<u>http://www.xilinx.com</u>).

Optionally for using the EtherCAT IP Core with embedded processor designs, you will need

- Xilinx SDK
- Xilinx Vivado SDK

1.6 Tested FPGA/Designflow combinations

The EtherCAT IP Core has been synthesized successfully with different ISE/EDK versions and FPGA families. Table 3 lists combinations of FPGA devices and design tools versions which have been synthesized or even tested in real hardware. This list does not claim to be complete, it just illustrates that the EtherCAT IP Core is designed to comply with a broad spectrum of FPGAs.

IP Core	Family	Device	Designflow	Test	Used Example Designs
	Spartan-3E	XC3S1200E	ISE 14.7	Synthesis	
	Spartan-6	XC6SLX150T	ISE 14.7 EDK 14.7	Hardware	LX150T DIGI & PLB
	Artix-7	XC7A100T	ISE 14.7	Synthesis	
	Kintex-7	XC7K70T	ISE 14.7	Synthesis	
	Virtex-4	XC4VLX25	ISE 14.7	Synthesis	
2.04e	Virtex-5	XC5VLX30	ISE 14.7	Synthesis	
2.040	Virtex-6	XC6VLX75T	ISE 14.7	Synthesis	
	Virtex-7	XC7VX330T	ISE 14.7	Synthesis	
	Kintex UltraScale	XCKU035	Vivado 2014.3	Synthesis	
	Virtex UltraScale	XCVU080	Vivado 2014.3	Synthesis	
	Zynq 7020	XC7Z020	ISE 14.7	Synthesis	

Table 3: Tested FPGA/Designflow combinations

NOTE: Synthesis test means XST synthesis, implementation and programming file generation. Hardware test means the design was operational on hardware.

Refer to the *Hardware Data Sheet Section III Addendum* available at the Beckhoff homepage (<u>http://www.beckhoff.com</u>) for latest updates regarding device support, design flow compatibility, and known issues.

1.7 Release Notes

EtherCAT IP Core updates deliver feature enhancements and removed restrictions. Feature enhancements are not mandatory regarding conformance to the EtherCAT standard. Restrictions have to be judged whether they are relevant in the user's configuration or not, or if workarounds are possible.

Table 4: Release notes

Version	Release notes
2.04a (03/2011)	 Update to ISE 12.4/13.1 Station Alias register (0x0012:0x0013) is now permanently enabled Extended DL Control register (0x0102:0x0103) is now permanently enabled ECAT Event Mask register (0x0200:0x0201) is now permanently enabled AL Control register (0x0120:0x0121) and AL Status register (0x0130:0x0131) are now 16 bit wide Enhancements: Added example design for Avnet/Xilinx Spartan-6 LX150T Development Kit Restrictions of this version, which are removed in V2.04d: Restrictions of this version, which are removed in V2.04e:
	 The last 4 Kbyte Process Data RAM (0xF000:0xFFFF) cannot be used in the 60 Kbyte RAM configuration.
2.04d (07/2013)	 Update to ISE 14.5 Enhancements: PlanAhead and Vivado support added Xilinx Artix-7, Zynq-7000 support added RX FIFO size initialized by SII EEPROM MI link detection: relaxed checking of PHY register 9 (1000Base-T Master-Slave Control register) Restrictions of previous versions which are removed in this version: Improved receive time accuracy when Receive Times are enabled while Distributed Clocks are disabled (customers using this configuration in V2.04a should update to V2.04d)
	Restrictions of this version, which are removed in V2.04e:
	 The last 4 Kbyte Process Data RAM (0xF000:0xFFFF) cannot be used in the 60 Kbyte RAM configuration.
2.04e (01/2015)	 Update to ISE 14.7 The EL9800/FB1130 example designs have been removed because these evaluation boards are no longer available.
	Enhancements
	 Xilinx Kintex UltraScale, Virtex UltraScale are now supported Added LX150T DIGI example design For EEPROM Emulation, the CRC error bit 0x0502[11] can be written via PDI to indicate CRC errors during a reload command. The ESI XML device description does not use special data types anymore. Internal license attribute encoding updated (issues with Vivado 2012.x) The LX150T PLB example design now supports the PHY management interface correctly
	Restrictions of previous versions which are removed in this version:
	 The last 4 Kbyte Process Data RAM (0xF000:0xFFFF) can be used in the 60 Kbyte RAM configuration.

The IP Core version, denoted as X.Yz (e.g., 1.00a), consists of three values X, Y, and z. These values can be read out in registers 0x0001 and 0x0002. Value z is encoded like this: a=0, b=1, c=2, etc. .

Table 5: Register Revision (0x0001)

Bit	Description	ECAT	PDI	Reset Value
7:0	IP Core major version X	r/-	r/-	IP Core dep.

Table 6: Register Build (0x0002:0x0003)

Bit	Description	ECAT	PDI	Reset Value
3:0	IP Core maintenance version z	r/-	r/-	IP Core dep.
7:4	IP Core minor version Y	r/-	r/-	IP Core dep.
15:8	Patch level:0x00:original release0x01-0x0F:patch level of original release	r/-	r/-	IP Core dep.

1.8 Design flow

The design flow for creating an EtherCAT Slave Controller based on the EtherCAT IP Core is shown in the following picture:

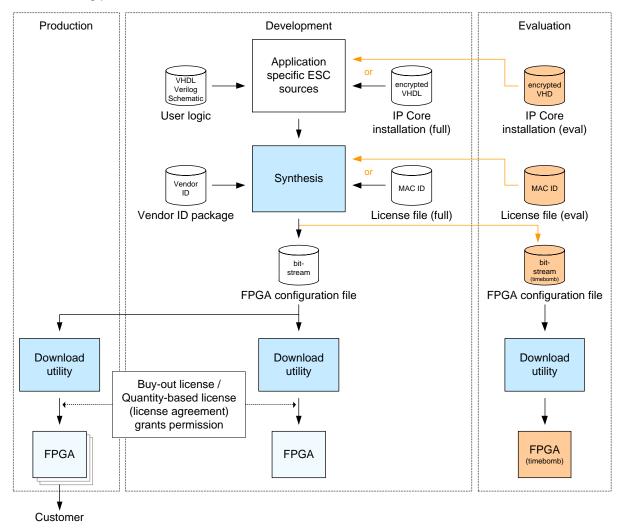


Figure 3: Design flow

1.9 IP Core Evaluation

The EtherCAT IP Core for Xilinx FPGAs supports IP core evaluation. A dedicated setup file containing the evaluation version of the IP Core is available, which also includes the decryption keys for the evaluation IP Core. Additionally, a special evaluation license file is required for IP core evaluation.

A design with the evaluation version of the EtherCAT IP Core is subject to some restrictions:

- The EtherCAT IP Core will discontinue its function after approximately one hour.
- The evaluation version slightly increases the resource consumption of the IP Core.
- The evaluation bitstream must not be distributed/sold.

A vendor ID package is required for both evaluation and full license. It is recommended to use an evaluation vendor ID (package) for evaluation, and the original vendor ID for production. The evaluation vendor ID is beginning with "0xE......" and ends with the original vendor ID digits. Evaluation vendor IDs cannot pass the EtherCAT conformance tests.

Selecting Full or Evaluation License

There are individual setup files for full and evaluation license. The evaluation version can be easily upgraded to a full version just by running the EtherCAT IP Core setup for the full version.

For Linux, just install the full version over the evaluation license, the appropriate files will be overwritten.

A design using an evaluation EtherCAT IP Core does not have to be changed when upgrading to a full license (or vice-versa).

Four steps have to be performed to change the license type:

- 1. Acquire the intended license and set it up
- 2. Windows:

Start the appropriate EtherCAT IP Core setup. Alternatively, uninstall the EtherCAT IP Core and install it again with the intended license version. The example designs are automatically updated and the decryption keys are also installed. **Linux:**

Unzip the setup files over the existing installation (you might want to delete the installation folder <IPInst_dir> before). Copy the new decryption keys from the <IPInst_dir>/lib folder to your \$HOME/RSA folder.

- 3. Update your own projects with the EtherCAT_IPCore.vhd from the lib-folder. For EDK projects, it is sufficient to generate the core again, because the IPCore_Config tool will integrate the current IP Core from the lib folder.
- 4. Synthesize your designs again to generate unlimited bitstreams with the full license, and timebombed bitstreams with the evaluation license.

A txt-file is placed in the lib folder which indicates the currently installed IP core version (evaluation or full).

1.10 Simulation

A behavioral simulation model of the EtherCAT IP core is not available because of its size and complexity. Thus, simulation of the entire EtherCAT IP Core is not supported. In most cases, simulation of the EtherCAT IP Core is not necessary, as the IP Core was thoroughly tested and the interfaces are standardized (Ethernet, PLB) or simple and well described. Problems at the interface level can often be solved with a scope shot of the interface signals.

Nevertheless, customer designs using the PLB on-chip bus can easily be simulated using a Bus Functional Model of the PLB slave interface instead of a simulation model of the entire EtherCAT IP Core.

From the processor's view, the EtherCAT IP Core is a memory (or a bunch of registers). For processor bus verification, the EtherCAT IP Core can be substituted by another IP core with OPB slave interface which behaves like a memory as well. The EtherCAT IP Core can be replaced for simulation by e.g.:

- Xilinx XPS Block RAM (BRAM) Interface Controller with a Block RAM block
- PLB Bus Functional models of the "IBM On-Chip Bus Model Toolkits". This toolkit can be used for complete verification of your PLB bus interfaces.

2 Features and Registers

2.1 Features

Table 7: IP Core Feature Details

Feature	IP Core Xilinx [®] V2.04e	IP Core Xilinx V2.04d
EtherCAT Ports	1-3	1-3
Permanent ports	1-3	1-3
Optional Bridge port 3 (EBUS or MII)	-	-
EBUS ports	-	-
MII ports	0-3	0-3
RMII ports	0-2	0-2
RGMII ports	-	-
Port 0	х	х
Ports 0, 1	х	х
Ports 0, 1, 2	X	X
EtherCAT mode	Direct	Direct
Slave Category	Full Slave	Full Slave
Position addressing Node addressing	x	x
Logical addressing	x	x
Broadcast addressing	×	x
Physical Layer General Features	*	*
FIFO Size configurable (0x0100[18:16])	x	x
FIFO Size default from SII EEPROM	x	x
Auto-Forwarder checks CRC and SOF	x	x
Forwarded RX Error indication, detection and Counter (0x0308:0x030B)	x	x
Lost Link Counter (0x0310:0x0313)	с	с
Prevention of circulating frames	x	x
Fallback: Port 0 opens if all ports are closed	x	x
VLAN Tag and IP/UDP support Enhanced Link	x	x
Detection per port configurable	x	x
General Ethernet Features (MII/RMII/RGMII)		
MII Management Interface (0x0510:0x051F)	с	с
Supported PHY Address Offsets	any	any
Individual port PHY addresses		-
Port PHY addresses readable	-	-
Link Polarity configurable Enhanced Link	User logic	User logic
Detection supported FX PHY support	x	x
(native)	-	-
PHY reset out signals	-	-
Link detection using PHY signal (LED)	x	x
MI link status and configuration	с	С
MI controllable by PDI (0x0516:0x0517)	x	x
MI read error (0x0510.13) MI PHY configuration	x	x
update status (0x0518.5)	x	x

Feature		IP Core Xilinx [®] V2.04e	IP Core Xilinx V2.04d
	MI preamble suppression	x	x
	Additional MCLK	х	х
	Gigabit PHY configuration	x	x
	Gigabit PHY register 9 relaxed check	x	x
	FX PHY configuration	-	-
	Transparent Mode	-	-
MII Fea			
	CLK25OUT as PHY clock source	User logic	User logic
	Bootstrap TX Shift settings	С	с
	Automatic TX Shift setting (with TX_CLK)	С	с
	TX Shift not necessary (PHY TX_CLK as clock source)	-	-
	FIFO size reduction steps	1	1
PDI Ger	neral Features		
	Increased PDI performance	-	-
	Extended PDI Configuration (0x0152:0x0153)	x	x
	PDI Error Counter (0x030D)	с	с
	PDI Error Code (0x030E)	с	с
	CPU_CLK output (10, 20, 25 MHz)	User logic	User logic
	SOF, EOF, WD_TRIG and WD_STATE independent of PDI	x	x
	Available PDIs and PDI features depending on port configuration	-	-
	PDI selection at run- time (SII EEPROM)	-	-
	PDI active immediately (SII EEPROM settings ignored)	x	x
	PDI function acknowledge by write	-	-
	PDI Information register 0x014E:0x014F	-	-
Digital	I/O PDI	x	x
	Digital I/O width [bits]	8/16/24/32	8/16/24/32
	PDI Control register value (0x0140:0x0141)	4	4
	Control/Status signals:	7	7
	LATCH_IN	x	x
	SOF	х	х
	OUTVALID	х	х
	WD_TRIG	х	х
	OE_CONF	-	-
	OE_EXT EEPROM	x	x
	Loaded	-	-
	WD_STATE	х	х
	EOF Granularity of direction	x 8	x 8
	configuration [bits]	- (User	- (User
	Bidirectional mode	logic)	logic)

Feature	IP Core Xilinx [®] V2.04e	IP Core Xilinx V2.04d
Output high-Z if WD	User logic	User logic
expired Output 0 if WD expired	x	x
Output with EOF	x	x
Output with DC SyncSignals	x	x
Input with SOF	х	х
Input with DC SyncSignals	x	×
SPI Slave PDI	x	x
Max. SPI clock [MHz]	30	30
SPI modes configurable (0x0150[1:0])	x	x
SPI_IRQ driver configurable (0x0150[3:2])	x	x
SPI_SEL polarity configurable (0x0150.4)	x	x
Data out sample mode configurable (0x0150.5)	x	x
Busy signaling	-	-
Wait State byte(s)	x	x
Number of address extension byte(s)	any	any
2/4 Byte SPI master support	x	x
Extended error detection (read busy violation)	x	x
SPI_IRQ delay	x	x
Status indication	х	x
EEPROM_ Loaded signal	-	•
Asynchronous µController PDI	8/16 bit	8/16 bit
Extended µC configuration bits 0x0150[7:4], 0x0152:0x0153	x	x
ADR[15:13] available (000 _b if not available)	x	x
EEPROM_Loaded signal		
RD polarity configurable (0x0150.7)	-	-
Read BUSY delay (0x0152.0)	×	x
Write after first edge (0x0152.2)	x	x
Synchronous µController PDI	•	•
EEPROM_ Loaded signal		
On-Chip Bus PDI	x	x
Avalon®	-	-
OPB®	x	x
	x	x
AXI3™ AXI4™	-	-
AXI4 LITE [™]		
Bus clock [MHz]	NIXOE	NIXOF
(N=1,2,3,)	N*25	N*25
Data bus width [bits]	32	32
Prefetch cycles	1/2/4 (OPB)	1/2/4 (OPB)
DC SyncSignals available directly and as IRQ	×	×
Bus clock multiplier in register 0x0150[6:0]	x	x
EEPROM_ Loaded signal	-	
EtherCAT Bridge (port 3, EBUS/MII)	-	

Feature	IP Core Xilinx [®] V2.04e	IP Core Xilinx V2.04d
General Purpose I/O	x	x
GPO bits	0/8/16/ 32/64	0/8/16/ 32/64
GPI bits	0/8/16/ 32/64	0/8/16/ 32/64
GPIO available independent of PDI or port configuration	x	x
GPIO available without PDI	x	x
Concurrent access to GPO by ECAT and PDI	x	x
ESC Information Basic Information (0x0000:0x0006)	x	x
Port Descriptor (0x0007)	x	x
ESC Features supported (0x0008:0x0009)	x	x
Extended ESC Feature Availability in User RAM (0x0F80 ff.)	x	x
Write Protection (0x0020:0x0031)	с	с
Data Link Layer Features		
ECAT Reset (0x0040) PDI Reset (0x0041)	c c	c c
ESC DL Control (0x0100:0x0103) bytes	4	4
EtherCAT only mode (0x0100.0)	x	x
Temporary loop control (0x0100.1)	x	x
FIFO Size configurable (0x0100[18:16])	x	x
Configured Station Address (0x0010:0x0011)	x	x
Configured Station Alias (0x0100.24, 0x0012:0x0013)	x	x
Physical Read/Write Offset (0x0108:0x0109)	С	С
Application Layer Features Extended AL		
Control/Status bits (0x0120[15:5], 0x0130[15:5])	x	x
AL Status Emulation (0x0140.8)	x	x
AL Status Code (0x0134:0x0135) Interrupts	с	с
ECAT Event Mask (0x0200:0x0201)	x	x
AL Event Mask (0x0204:0x0207)	с	с
ECAT Event Request (0x0210:0x0211)	x	x
AL Event Request (0x0220:0x0223)	x	x
SyncManager activation changed (0x0220.4)	x	x
SyncManager watchdog expiration (0x0220.6)	x	x
Error Counters RX Error Counter		
(0x0300:0x0307) Forwarded RX Error	х	х
Counter (0x0308:0x030B)	x	x
ECAT Processing Unit Error Counter (0x030C)	с	с
PDI Error Counter (0x030D)	с	с

Feature	IP Core Xilinx [®] V2.04e	IP Core Xilinx V2.04d
Lost Link Counter (0x0310:0x0313)	с	с
Watchdog		
Watchdog Divider configurable (0x0400:0x0401)	с	с
Watchdog Process Data	x	x
Watchdog PDI	х	х
Watchdog Counter Process Data (0x0442)	x	x
Watchdog Counter PDI (0x0443)	x	x
SII EEPROM Interface (0x0500:0x050F)		
EEPROM sizes supported	1 KB- 4 Mbyte	1 KB- 4 Mbyte
EEPROM size reflected in 0x0502.7	x	x
EEPROM controllable by PDI	x	x
EEPROM Emulation by PDI	с	с
Read data bytes (0x0502.6)	4	4
Internal Pull-Ups for EEPROM_CLK and EEPROM_DATA	User logic	User logic
FMMUs	0-8	0-8
Bit-oriented operation	х	х
SyncManagers	0-8	0-8
Watchdog trigger generation for 1 Byte Mailbox configuration independent of reading access	x	x
SyncManager Event Times (+0x8[7:6])	с	с
Buffer state (+0x5[7:6])	х	х
Distributed Clocks	c	с
Width	32/64	32/64
Sync/Latch signals	4 (2 Sync- Signals, 2 Latch- Signals)	4 (2 Sync- Signals, 2 Latch- Signals)
SyncManager Event Times (0x09F0:0x09FF)	с	с
DC Receive Times	с	с
DC Time Loop Control controllable by PDI	с	с
DC activation by EEPROM (0x0140[11:10])	-	-
Propagation delay measurement with traffic (BWR/FPWR 0x900 detected at each port)	x	x
LatchSignal state in Latch Status register (0x09AE:0x09AF)	x	x
SyncSignal Auto- Activation (0x0981.3)	x	x
SyncSignal 32 or 64 bit Start Time (0x0981.4)	x	x
SyncSignal Late Activation (0x0981[6:5])	x	x
SyncSignal debug pulse (0x0981.7)	x	x
SyncSignal Activation State 0x0984)	x	x
Reset filters after writing filter depth	x	x
ESC Specific Registers (0x0E00:0x0EFF)		
Product and Vendor ID	х	х
	~	~

Feature	IP Core Xilinx [®] V2.04e	IP Core Xilinx V2.04d
FPGA Update (online)	•	•
Process RAM and User RAM		
Process RAM (0x1000 ff.) [KByte]	1-60	1-60
User RAM (0x0F80:0x0FFF)	x	x
Extended ESC Feature Availability in User RAM	x	x
Additional EEPROMs	1-2	1-2
SII EEPROM (I ² C)	c (EEPROM of μC used)	c (EEPROM of μC used)
FPGA configuration EEPROM	x	x
LED Signals		
RUN LED	с	с
RUN LED override	c	c
Link/Activity(x) LED per		-
PERR(x) LED per port	×	×
Device ERR LED	- C	- C
STATE RUN LED	c	c
Optional LED states	C	U
RUN LED: Bootstrap	x	x
RUN LED: Booting	с	с
RUN LED: Device	с	с
RUN LED: loading SII EEPROM	с	с
Error LED: SII EEPROM loading error	с	С
Error LED: Invalid hardware configuration	-	-
Error LED: Process data watchdog timeout	с	с
Error LED: PDI watchdog timeout	с	с
Link/Activity: port closed	•	-
Link/Activity: local auto- negotiation error Link/Activity: remote		-
auto-negotiation error Link/Activity: unknown		-
PHY auto-negotiation error	-	-
LED test	•	-
Clock supply		
Crystal	-	-
Crystal oscillator	x	х
TX_CLK from PHY	x	х
25ppm clock source accuracy	x	x
Internal PLL	User logic	User logic
Power Supply Voltages	FPGA dep.	FPGA dep.
I/O Voltage	FPGA dep.	FPGA dep.
Core Voltage	FPGA dep.	FPGA dep.
Internal LDOs	-	-
Package	FPGA dep.	FPGA dep.
Size [mm ²]	FPGA dep.	FPGA dep.
Original Release date	1/2015	7/2013
Configuration and Pinout calculator (XLS)		-
Register Configuration	individual	individual
Complete IP Core evaluation	x	х

Feature	IP Core Xilinx [®] V2.04e	IP Core Xilinx V2.04d
Example designs/ pre-synthesized time-limited evaluation core included	2/1	4/2
FB1130 Digital I/O	-	x/x
FB1130 SPI	-	x/-
FB1130 PLB®	-	x/-
FB1130 OPB [®]	-	-
FB1130 PLB2OPB	-	-

Feature	IP Core Xilinx [®] V2.04e	IP Core Xilinx V2.04d
LX150T PLB2AXI®	x/x	x/x
LX150T Digital I/O	x/-	-
LX150T AXI	-	-
ZC702 AXI	-	-

Table 8: Legend

Symbol	Description
х	available
-	not available
С	configurable
User logic	Functionality can be added by user logic inside the FPGA
red	Feature changed in this version

2.2 Registers

An EtherCAT Slave Controller (ESC) has an address space of 64KByte. The first block of 4KByte (0x0000:0x0FFF) is dedicated for registers. The process data RAM starts at address 0x1000, its size is configurable.

Some registers are implemented depending on the configuration.

Table 9 gives an overview of the available registers.

Address	Length (Byte)	Description	IP Core V2.4.0-V2.4.4/ V2.04a-V2.04e		V2.:	P Cor 3.0-V2)3a-V2	.3.2/	V2.	P Core 2.1/V2. V2.02a	2.0/	
			Re S	gister M	set L	Re S	gister M	set L	Re S	gister : M	set L
0x0000	1	Туре	х	х	х	х	х	х	х	х	х
0x0001	1	Revision	х	х	х	х	х	х	х	х	х
0x0002:0x0003	2	Build	х	х	х	х	х	х	х	х	х
0x0004	1	FMMUs supported	х	х	х	х	х	х	х	х	х
0x0005	1	SyncManagers supported	х	х	х	х	х	х	х	х	х
0x0006	1	RAM Size	х	х	х	х	х	х	х	х	х
0x0007	1	Port Descriptor	х	х	х	х	х	х	х	х	х
0x0008:0x0009	2	ESC Features supported	х	х	х	х	х	х	х	х	х
0x0010:0x0011	2	Configured Station Address	х	х	х	х	х	х	х	Х	х
0x0012:0x0013	2	Configured Station Alias	X	X	х	С	С	х	С	С	х
0x0020	1	Write Register Enable	С	С	х	С	С	х	С	С	х
0x0021	1	Write Register Protection	С	С	х	С	С	х	С	С	х
0x0030	1	ESC Write Enable	С	С	х	С	С	х	С	С	х
0x0031	1	ESC Write Protection	С	С	х	с	С	х	С	С	х
0x0040	1	ESC Reset ECAT	С	С	С	С	С	С	С	С	С
0x0041	1	ESC Reset PDI	С	С	С	С	С	С	С	С	С
0x0100:0x0101	2	ESC DL Control	х	х	х	х	х	х	х	х	х
0x0102:0x0103	2	Extended ESC DL Control	X	X	х	r/c	r/c	х	r/c	r/c	х
0x0108:0x0109	2	Physical Read/Write Offset	С	С	х	С	С	х	С	С	х
0x0110:0x0111	2	ESC DL Status	х	х	х	х	х	х	х	х	х
0x0120	5 bits [4:0]	AL Control	х	х	х	х	х	х	х	х	х
0x0120:0x0121	2	AL Control	x	x	x	-	-	-	-	-	-
0x0130	5 bits [4:0]	AL Status	Х	х	х	х	х	х	х	х	х
0x0130:0x0131	2	AL Status	х	x	x	-	-	-	-	-	-
0x0134:0x0135	2	AL Status Code	С	х	х	С	х	х	С	х	х
0x0138	1	RUN LED Override	С	С	С	С	С	С	-	-	-
0x0139	1	ERR LED Override	С	С	С	С	С	С	-	-	-

Table 9: Register availability

Address	Length (Byte)	Description	IP Core V2.4.0-V2.4.4/ V2.04a-V2.04e		V2.:	P Cor 3.0-V2)3a-V2	.3.2/	V2.:	P Core 2.1/V2. V2.02a	2.0/	
			Reg S	gister M	set L	Re S	gister M	set L	Re S	gister M	set L
0x0140	1	PDI Control	х	х	х	х	х	х	х	х	х
0x0141	1	ESC Configuration	х	х	х	х	х	х	х	х	х
0x014E:0x014F	2	PDI Information	-	-	-	-	-	-	-	-	-
0x0150	1	PDI Configuration	х	х	х	х	х	х	х	х	х
0x0151	1	DC Sync/Latch Configuration	х	х	х	х	х	х	х	х	х
0x0152:0x0153	2	Extended PDI Configuration	х	х	х	х	х	х	х	х	х
0x0200:0x0201	2	ECAT Event Mask	x	x	х	с	С	х	с	С	х
0x0204:0x0207	4	PDI AL Event Mask	r/c	х	х	r/c	х	х	r/c	х	х
0x0210:0x0211	2	ECAT Event Request	х	х	х	х	х	х	х	х	х
0x0220:0x0223	4	AL Event Request	х	х	х	х	х	х	х	х	х
0x0300:0x0307	4x2	Rx Error Counter[3:0]	х	х	х	х	х	х	х	х	х
0x0308:0x030B	4x1	Forwarded Rx Error counter[3:0]	Х	х	х	х	х	х	Х	Х	Х
0x030C	1	ECAT Processing Unit Error Counter	С	С	х	С	С	х	С	С	х
0x030D	1	PDI Error Counter	С	С	х	С	С	х	С	С	х
0x030E	1	PDI Error Code	С	С	х	С	С	x	-	-	-
0x0310:0x0313	4x1	Lost Link Counter[3:0]	С	х	х	С	х	х	С	х	х
0x0400:0x0401	2	Watchdog Divider	r/c	х	х	r/c	х	х	r/c	х	х
0x0410:0x0411	2	Watchdog Time PDI	С	х	х	С	х	х	С	х	х
0x0420:0x0421	2	Watchdog Time Process Data	Х	х	х	х	х	х	Х	х	х
0x0440:0x0441	2	Watchdog Status Process Data	х	х	х	х	х	х	х	х	х
0x0442	1	Watchdog Counter Process Data	С	С	х	С	С	х	С	С	х
0x0443	1	Watchdog Counter PDI	С	С	х	С	С	х	С	С	х
0x0500:0x050F	16	SII EEPROM Interface	х	х	х	х	х	х	х	х	х
0x0510:0x0515	6	MII Management Interface	С	С	С	С	С	С	С	С	С
0x0516:0x0517	2	MII Management Access State	С	С	С	С	С	С	С	С	С
0x0518:0x051B	4	PHY Port Status[3:0]	С	С	С	С	С	С	С	С	С
0x0600:0x06FC	16x13	FMMU[15:0]	0- 8	0- 8	0- 8	0- 8	0- 8	0- 8	0- 8	0- 8	0- 8
0x0800:0x087F	16x8	SyncManager[15:0]	0- 8	0- 8	0- 8	0- 8	0- 8	0- 8	0- 8	0- 8	0- 8
0x0900:0x090F	4x4	DC – Receive Times[3:0]	rt	rt	rt	rt	rt	rt	rt	rt	rt
0x0910:0x0917	8	DC – System Time	dc	dc	dc	dc	dc	dc	dc	dc	dc
0x0918:0x091F	8	DC – Receive Time EPU	dc	dc	dc	dc	dc	dc	dc	dc	dc

Address	Length (Byte)	Description	IP Core V2.4.0-V2.4.4/ V2.04a-V2.04e		V2.:	P Core 3.0-V2.)3a-V2	.3.2/	V2.2	P Core 2.1/V2. V2.02a	2.0/	
			Re S	gister M	set L	Re S	gister M	set L	Re S	gister M	set L
0x0920:0x0935	24	DC – Time Loop Control Unit	dc	dc	dc	dc	dc	dc	dc	dc	dc
0x0936	1	DC – Receive Time Latch mode	-	-	-	-	-	-	-	-	-
0x0980	1	DC – Cyclic Unit Control	dc	dc	dc	dc	dc	dc	dc	dc	dc
0x0981	1	DC – Activation	dc	dc	dc	dc	dc	dc	dc	dc	dc
0x0982:0x0983	2	DC – Pulse length of SyncSignals	dc	dc	dc	dc	dc	dc	dc	dc	dc
0x0984	1	DC – Activation Status	dc	dc	dc	dc	dc	dc	dc	dc	dc
0x098E:0x09A7	26	DC – SYNC Out Unit	dc	dc	dc	dc	dc	dc	dc	dc	dc
0x09A8	1	DC – Latch0 Control	dc	dc	dc	dc	dc	dc	dc	dc	dc
0x09A9	1	DC – Latch1 Control	dc	dc	dc	dc	dc	dc	dc	dc	dc
0x09AE	1	DC – Latch0 Status	dc	dc	dc	dc	dc	dc	dc	dc	dc
0x09B0:0x09B7	8	DC – Latch0 Positive Edge	dc	dc	dc	dc	dc	dc	dc	dc	dc
0x09B8:0x09BF	8	DC – Latch0 Negative Edge	dc	dc	dc	dc	dc	dc	dc	dc	dc
0x09C0:0x09C7	8	DC – Latch1 Positive Edge	dc	dc	dc	dc	dc	dc	dc	dc	dc
0x09C7:0x09CF	8	DC – Latch1 Negative Edge	dc	dc	dc	dc	dc	dc	dc	dc	dc
0x09F0:0x09F3 0x09F8:0x09FF	12	DC – SyncManager Event Times	С	С	С	С	С	С	С	С	С
0x0E00:0x0E03	4	Power-On Values (Bits)	-	-	-	-	-	-	-	-	-
0x0E00:0x0E07	8	Product ID	х	х	х	х	х	х	х	х	х
0x0E08:0x0E0F	8	Vendor ID	х	х	х	х	х	х	х	х	х
0x0F00:0x0F03	4	Digital I/O Output Data	io	io	io	io	io	io	io	io	io
0x0F10:0x0F17	8	General Purpose Outputs [Byte]	0- 8	0- 8	0- 8	0- 8	0- 8	0- 8	0- 8	0- 8	0- 8
0x0F18:0x0F1F	8	General Purpose Inputs [Byte]	0- 8	0- 8	0- 8	0- 8	0- 8	0- 8	0- 8	0- 8	0- 8
0x0F80:0x0FFF	128	User RAM	х	х	х	х	х	х	х	х	х
0x1000:0x1003	4	Digital I/O Input Data	io	io	io	io	io	io	io	io	io
0x1000 ff.		Process Data RAM [Kbyte]	1- 60	1- 60	1- 60	1- 60	1- 60	1- 60	1- 60	1- 60	1- 60

Table 10: Legend

Symbol	Description
Х	Available
-	Not available
r	Read only
С	Configurable
dc	Available if Distributed Clocks with all Sync/Latch signals are enabled
rt	Available if Receive Times or Distributed Clocks are enabled (always available for 3-4 ports)
io	Available if Digital I/O PDI is selected
red	Register changed in this version

2.3 Extended ESC Features in User RAM

Table 11: Extended ESC Features (Reset values of User RAM – 0x0F80:0x0FFF)

Bit	Description	small	medium	large
7:0	Number of extended feature bits	Sman	142	iai ge
1.0	IP Core extended features:	1: Avail	available	
8	Extended DL Control Register (0x0102:0x0103)	1	1	1
9	AL Status Code Register (0x0134:0x0135)	С	1	1
10	ECAT Interrupt Mask (0x0200:0x0201)	С	С	1
11	Configured Station Alias (0x0012:0x0013)	1	1	1
12	General Purpose Inputs (0x0F18:0x0F1F)	С	С	С
13	General Purpose Outputs (0x0F10:0x0F17)	С	С	С
14	AL Event Mask (0x0204:0x0207)	С	1	1
15	Physical Read/Write Offset (0x0108:0x0109)	С	С	1
16	Watchdog divider writeable (0x0400:0x04001) and Watchdog PDI (0x0410:0x0f11)	с	1	1
17	Watchdog counters (0x0442:0x0443)	С	С	1
18	Write Protection (0x0020:0x0031)	С	С	1
19	Reset (0x0040:0x0041)	С	С	С
20	Reserved	0	0	0
21	DC SyncManager Event Times (0x09F0:0x09FF)	С	С	1
22	ECAT Processing Unit/PDI Error Counter (0x030C:0x030D)	с	с	1
23	EEPROM Size configurable (0x0502.7):0: EEPROM Size fixed to sizes up to 16 Kbit1: EEPROM Size configurable	1	1	1
24	Reserved	1	1	1
25	Reserved	0	0	0
26	Reserved	0	0	0
27	Lost Link Counter (0x0310:0x0313)	С	1	1
28	MII Management Interface (0x0510:0x0515)	С	С	С
29	Enhanced Link Detection MII	С	С	С
30	Enhanced Link Detection EBUS	0	0	0
31	Run LED (DEV_STATE LED)	С	С	С
32	Link/Activity LED	1	1	1
33	Reserved	0	0	0
34	Reserved	1	1	1
35	Reserved	1	1	1
36	Reserved	0	0	0
37	Reserved	1	1	1
38	DC Time loop control assigned to PDI	С	С	С
39	Link detection and configuration by MI	С	С	С
40	MI control by PDI possible	1	1	1
41	Automatic TX shift	С	С	С
42	EEPROM emulation by µController	С	С	С
43	Reserved	0	0	0

Bit	Description	small	medium	large
44	Reserved	0	0	0
45	Reserved	0	0	0
46	Reserved	0	0	0
47	Reserved	0	0	0
48	Reserved	0	0	0
49	Reserved	0	0	0
50	ERR LED, RUN/ERR LED Override	0	0	0
others	Reserved	0	0	0

3 IP Core Installation

3.1 Installation on Windows PCs

3.1.1 System Requirements

The system requirements of the Xilinx Design tools are applicable. The EtherCAT IP Core configuration tool has these additional requirements:

Microsoft .NET Framework 2.0 (available from Microsoft, <u>http://www.microsoft.com</u>)

3.1.2 Installation

For installation of the EtherCAT IP Core on your system run the setup program

"EtherCAT IP core for Xilinx FPGAs <version> Setup.exe"

and follow the instructions of the installation wizard.

The EtherCAT IP Core, example designs, and documentation are typically installed in the directory *C:\BECKHOFF\ethercat_<version>*

This folder is further referenced to as *<IPInst_dir*>.

⊿ 퉬 ethercat_xilinx_v2.04e	Installation directory <ipinst_dir></ipinst_dir>
🎍 doc 🗸 🚽	Documentation
 example_designs EtherCAT_Device_Description LX150T_DIGI LX150T_PLB 	Example designs XML Device Description for Example Designs
DK_application_templates	Software templates
🎍 ipcore_config 🛛 🔸	Configuration Tool
퉬 lib 🔸	IP Core Library and decryption keys

Figure 4: Files installed with EtherCAT IP Core setup

3.2 Installation on Linux PCs

3.2.1 System Requirements

The system requirements of the Xilinx Design tools are applicable. The EtherCAT IP Core configuration tool has these additional requirements¹:

Mono 1.2.6 or higher (software for running Microsoft .NET Framework programs, available at http://www.mono-project.com)

3.2.2 Installation

For installation of the EtherCAT IP Core extract the archive to any folder on your Linux PC (same contents as on windows PCs):

- 1. Create installation directory, e.g. /opt/beckkhoff/:
 # mkdir /opt/beckhoff
- 2. Change to installation directory
 # cd /opt/beckhoff
- 3. Copy EtherCAT IP Core archive to installation folder
- 4. Extract the EtherCAT IP Core:
 - # tar -xf EtherCAT_IP_core_for_Xilinx_FPGAs_<version>_Linux_ <region>.tar.gz
- 5. Continue with the following installation chapters.

The folder

ethercat_<version>

created inside this directory is further referenced to as <IPInst_dir>.

3.3 Files located in the lib folder

Table 12: Contents of lib folder

File name	Description
EtherCAT_CLK.vhd	Example EtherCAT clock supply
EtherCAT_IPCore.vhd	Encrypted EtherCAT IP Core source code
EtherCAT_Reset.vhd	Example EtherCAT reset supply
pk_ECAT_VENDORID_ <company>_Xilinx_RSA.vhd</company>	Vendor ID package (added during installation, not part of setup)
rsa_ethercat_base_pvt.pem	RSA decryption key for Vendor ID package
rsa_ethercat_ip_ <version>_<type>_pvt.pem</type></version>	RSA decryption key for EtherCAT IP Core
The full version of EtherCAT_IPCore.vhd was installed.txt or The evaluation version of EtherCAT_IPCore.vhd was installed.txt	Name of this empty text file indicates which version of EtherCAT_IPCore.vhd is present in this folder

¹ Not all of these variants have been tested with the EtherCAT IP core.

3.4 License File

The license file for the EtherCAT IP Core (iptb_ethercat_ipcore_<version>_flexIm.lic) has to be made available to the Xilinx tools. The EtherCAT IP Core can only be used with a license file.

There are two options:

- In Xilinx ISE select "Help Manage License..." from the menu, and press the "Copy License..." button in the Manage Xilinx Licenses tab. Select the license file you have received from Beckhoff. This will copy the license file to
 - C:\.Xilinx\
 - on Windows PCs (please note the dot before Xilinx\), or <HOME directory>/.Xilinx/

on Linux PCs

2. Add the path of the license file to the LM_LICENSE_FILE environment variable (separated by a semicolon). This variable can also be set from the Xilinx License Configuration Manager.

For further information regarding license setup, refer to the Xilinx IP licensing help <u>http://www.xilinx.com/ipcenter/ip_license/ip_licensing_help.htm</u>.

NOTE: Take care that the local EtherCAT IP Core license occurs before any license servers, otherwise the synthesis might be subject to extreme slow-down.

The license version for major updates to the EtherCAT IP Core will be changed, i.e., a new license has to be requested from BECKHOFF to use the updates. Such a new license will not cover previous IP Core versions, thus both old and new license have to be installed if old and new IP Core versions are used in parallel.

3.5 IP Core Vendor ID Package

The Vendor ID Package (VHDL file) is part of the EtherCAT IP Core source code, and it contains your company's unique vendor ID. The vendor ID package is not part of the IP Core setup, it is delivered separately.

Copy the IP Core Vendor ID package (*pk_ECAT_VENDORID_<company>_Xilinx.vhd*) to the lib folder in the IP Core Directory.

<IPInst_dir>\lib

The IP Core Vendor ID package is also necessary for completion of the example designs. Execute

<IPInst_dir>\example_designs\addvendor.cmd (addvendor.sh for Linux PCs)

to copy the Vendor ID package into the example designs. Alternatively, you can rename your Vendor ID package it to *pk_ECAT_VENDORID.vhd* and copy it into these folders:

- <IPInst_dir>\example_designs\LX150T_DIGI
- </PInst_dir>\example_designs\LX150T_PLB\pcores\plb_ethercat_user_<version>\hdl\vhdl

The steps of integrating the IP Core Vendor ID package into the IP Core installation folder and into the example designs can also be performed by the EtherCAT IP Core Setup program (Windows PCs only). Just check the appropriate option and select the path to your

pk_ECAT_VENDORID_<company>_Xilinx.vhd

file, and the Setup program will perform all necessary steps.

A vendor ID package is required for both evaluation and full license. It is recommended to use an evaluation vendor ID (package) for evaluation, and the original vendor ID for production. The evaluation vendor ID is beginning with "0xE......" and ends with the original vendor ID digits. Evaluation vendor IDs cannot pass the EtherCAT conformance tests.

3.6 RSA Decryption Keys

The Xilinx XST synthesis flow requires two decryption keys for decrypting the EtherCAT IP Core during synthesis. These two keys can be found in the *<IPInst_dir*>\lib folder of the IP core installation:

• rsa_ethercat_base_pvt.pem

•	rsa_ethercat_ip_ <version>_eval_pvt.pem</version>	(Evaluation of the EtherCAT IP Core)
	or	
	rsa_ethercat_ip_ <version>_full_pvt.pem</version>	(Full version of the EtherCAT IP Core)

These keys have to be copied to the application folder of your user profile:

or	%APPDATA%\RSAP	(Windows)
	\$HOME/.rsa/	(Linux)

or they can be copied into the design tool installation folders (available to all users):

ISE_DS\ISE\data	(ISE)
ISE_DS\PlanAhead\tps\isl	(PlanAhead)
Vivado\ <version>\tps\isl</version>	(Vivado)

On Windows, all this is automatically performed during IP Core installation (except for Vivado).

3.7 Environment Variable

If you use the EDK, the following environment variable should be set:

ETHERCAT_XIL_INST = <IPInst_dir>

Example:

```
ETHERCAT_XIL_INST = C:\BECKHOFF\ethercat-<version>
```

This allows the configuration tool to locate all necessary files for completing a user configured IP Core. You can select to set the environment variable by EtherCAT IP Core Setup program (Windows PCs only).

² E.g., C:\users\<name>\AppData\Roaming\RSA (Windows 7 english) or C:\Benutzer\<name>\AppData\Roaming\RSA (Windows 7 german) or C:\Documents and Settings\<name>\Application Data\RSA (Windows XP english) or C:\Dokumente und Einstellungen\<name>\Anwendungsdaten\RSA (Windows XP german)

3.8 Integrating the EtherCAT IP Core into the Xilinx Designflow

3.9 Software Templates for example designs with Microblaze processor (EDK)

Software example templates are available for example designs with Microblaze processor. The templates have to be copied to your EDK installation folder.

Copy everything inside the templates folder

<IPInst_Dir>\example_designs\SDK_application_templates

to your EDK installation folder

<Xilinx installation folder>\ISE_DS\EDK\sw\lib\sw_apps\

On Windows, the IP Core installation tries to identify EDK installations and integrates the templates automatically.

For stand-alone SDK installations, copy the templates to your SDK installation folder:

<SDK installation folder>\sw\lib\sw_apps

3.10 EtherCAT Slave Information (ESI) / XML device description for example designs

If you want to use the example designs, add the ESI to your EtherCAT master/EtherCAT configuration tool/network configurator.

The ESI is located at

<IPInst_dir>\example_designs\EtherCAT_Device_Description\BECKHOFF ET1815.xml

If you are using TwinCAT, add the ESI to the appropriate folder of your TwinCAT installation before the System Manager is started:

- TwinCAT 2: <TwinCAT installation folder>\lo\EtherCAT
- TwinCAT 3: <TwinCAT installation folder>\<TwinCAT version>\Config\lo\EtherCAT

4 IP Core Usage

4.1 IPCore_Config Tool

This chapter explains how to configure your own EtherCAT IP Core using the IPCore_Config tool. The IPCore_Config tool is used for configuration of the EtherCAT IP Core. The output of the tool is a VHDL wrapper for the EtherCAT IP Core library file. The wrapper file makes only those interfaces visible which were selected by the user, and it configures the EtherCAT IP Core using generics as desired. The EtherCAT IP Core library file contains the encrypted source code with the EtherCAT functionality.

A synthesizable EtherCAT IP Core consists of the user generated VHDL wrapper, the EtherCAT IP Core library file, and the vendor ID package (*pk_ECAT_VENDORID.vhd*). These files, together with a DCM or PLL, represent the minimum source set for a fully functional EtherCAT slave. Typically, additional user logic is added inside the FPGA.

 Configure your IP Core with IPCore_Config.exe Start IPCore_Config.exe located in the directory <IPInst_dir>\IPCore_Config On Linux PCs, Start the IP Core configuration tool using mono:

```
# mono IPCore Config.exe
```

- 2. Enter a design name and folder, or browse for a folder and enter the new design name in the file dialog.
- 3. Press "Continue"

辛 EtherCAT IP	Core configuration V2.04e	
Design name	LX150T_DIGI	a Browse
Design folder	c_v2.04e\example_designs\LX150T_DIGI	
BECKHOFF	b	Continue
Ether CA	Release 2.4.4.0	Exit

Figure 5: IPCore_Config Open Menu

- 4. Configure the EtherCAT IP Core. See chapter 5 for configuration options.
- 5. Generate IP Core by pressing the Generate button if configuration is complete

EtherCAT IP core generation finished	
EtherCAT IP core generated successfully. Generated files: C:\BECKHOFF\ethercat_xilinx_v2.04e\example_designs\LX150T_DIGI\LX150T_DIGI. eccnf C:\BECKHOFF\ethercat_xilinx_v2.04e\example_designs\LX150T_DIGI\LX150T_DIGI. vhd C:\BECKHOFF\ethercat_xilinx_v2.04e\example_designs\LX150T_DIGI\pk_LX150T_D IGI_comp.vhd	
ОК)

Figure 6: IP Core generation successful

The tool will generate three files (unless OPB or PLB PDI are configured):

- The VHDL wrapper for the user configured IP core (<design name>.vhd)

- A VHDL package which contains the component declaration of the IP Core (*pk_<design name>_comp.vhd*)
 Add the component declaration inside this file to any VHDL architecture that instantiates the IP Core wrapper, or directly include the package.
- A settings file with all the configurations from the IPCore_Config Tool (<*design name*>.*eccnf*). This file can be opened by the IPCore_Config tool for changes and updates.
- 6. Open Xilinx ISE
- 7. Add the EtherCAT IP Core sources to your ISE project:

EtherCAT_IPCore.vhd	EtherCAT IP Core Library
<design_name>.vhd</design_name>	Wrapper generated by IPCore_Config tool
pk_ECAT_VENDORID.vhd	Your specific vendor ID package

- 8. Add a clock source, a reset controller, and constraints, as well as additional user logic.
- Implement (synthesize) the design and download it to an FPGA. Use an EtherCAT master to communicate with the EtherCAT slave. The EtherCAT slave requires an SII EEPROM (or another non-volatile storage) which contains the EtherCAT Slave Information (ESI) for device identification.

4.2 EDK designs with EtherCAT IP Core

The EtherCAT IP Core can also be integrated into a System on a Programmable Chip (SOPC) with a processor inside the FPGA (e.g., Xilinx MicroBlaze processor). The EtherCAT IP Core and the processor can communicate via a PLB or OPB on-chip bus system.

The Xilinx Environment Development Kit (EDK) is used for building an SOPC including the EtherCAT IP Core.

- 1. Create an EDK project using Xilinx EDK.
- 2. Create a folder called *pcores* in the EDK project folder (next to *system.xmp*) if there is not already one.
- 3. Start IPCore_Config.exe located in the directory <IPInst_dir>\IPCore_Config
- 4. Browse to the *pcores* folder and enter a new design name for your EtherCAT IP Core.
- 5. Configure the IP Core with a PLB or OPB PDI.
- 6. Generate IP Core by pressing the Generate button if configuration is complete. The tool will generate an IP for the Xilinx EDK containing these files:
 - *<design name>.eccnf* contains the configuration
 - <design name>_<version> folder tree for the EDK with the following files in it:
 - data\<design name>_v2_1_0.mpd is the SOPC IP core Microprocessor Peripheral Definition
 - data\<design name>_v2_1_0.pao is the SOPC IP core Peripheral Analyze Order
 - hdl/vhdl/<design name>.vhd is the VHDL wrapper for the user configured IP core
 - doc\pk_<design name>_comp.vhd is the component declaration package of the IP Core
 - The tool will also copy some files from the EtherCAT IP installation folder to the folder tree:
 - hdl\vhdl\EtherCAT_IPCore.vhd is the EtherCAT IP Core
 - hdl\vhdl\pk_ECAT_VENDORID.vhd is your Vendor ID package
 - other IP core documentation is copied to the doc folder

The last files can only be found and copied by the IPCore_Config tool if the ETHERCAT_XIL_INST environment variable is set correctly to point to <*IPInst_dir*>, otherwise these files have to be added manually. The IPCore_Config tool gives advice if this happens

7. In Xilinx EDK, rescan the user repositories (menu Project – Rescan User Repositories) after each update of the EtherCAT IP Core.

8. Now you can find your user configured EtherCAT IP Core in the IP Catalog for adding it to the system:

File Edit View	Project Hardware Device Configur	ation Debu	g Simulation Windo	w Help				_
è 🚂 🍯 😥 🖻	🗠 💽 🔮 📾 📾 🔛 I	14 Σ Σ						
Navigator 🗙	IP Catalog	⇔□₽×	LLP	Bus Interfaces	Ports	Addresses		
	12 💿 🖹 🕃 🕷 👔		M M L B B B	Name		1	Р Туре	IP Version
Design Flow	Description	IP Version		dlmb			▲ Imb_v10	1.00.a
	🖮 🗶 EDK Install			ilmb			🚹 lmb_v10	1.00.a
S	Analog		0	mb_plb			🚖 plb_v46	1.05.a
	Bus and Bridge			⊕ microblaze_0			📩 microblaze	8.50.a
Run DRCs	Clock, Reset and Interrupt		▏۩۩∎ ⋼ ▖┤	imb_bram			🚖 bram_block	1.00.a
	Communication High-Speed		4	dlmb_cntlr			Imb_bram_if_cntlr	2.10.b
* 1 1 1	Communication Low-Speed			ilmb_cntlr			Imb_bram_if_cntlr	2.10.b
Implement Flow	DMA and Timer			• debug_module_	0		🖕 mdm	2.10.a
-	Debug		L .	plb_ethercat_us	er_0	ſ	🗟 plb_ethercat_user	2.04.d
2	General Purpose IO		<u> </u>				👷 xps_gpio	2.00.a
	ID Modules		10 0 0	clock_generator	0		clock_generator	4.03.a
Generate Netlist	 Interprocessor Communicati 			proc_sys_reset_0			proc_sys_reset	3.00.a
	Memory and Memory Contr							
4	PCI							
1010	Peripheral Controller							
Generate BitStream	Processor							
	Utility							
	Project Local PCores			-				
SDK	E BECKHOFF							
\checkmark	EtherCAT Reset	3.00.b						
Export Design		2.04.d						
	S PEB EINEICAI IF COLE	2.04.0						
Simulation Flow								
Simulation Flow								
Tran.								
1								
Generate HDL Files								
			Legend					
							ted OUnconnected M Mo	
	Search IP Catalog:	Clear			e (eval)	🗟 🗟 Local 🏅	≚ Pre Production 🕸 Beta	🗮 Developmer
Launch Simulator			🔔 Superseded 🛛 🔾 Di	scontinued				
	🍪 Project 🎊 IP Catalog		🗵 Design Summary	🔹 🏀 🛛 Graphical Des	inn View		stem Assembly View 🔣	

Figure 7: EDK – Overview

9. You can optionally configure some of the IP Core features without IPCore_Config inside the EDK. Select "Configure IP" in the context menu.

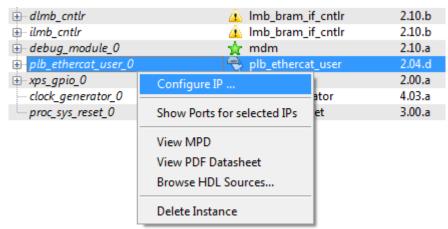


Figure 8: EDK – Configuration of IP Core

In the upcoming dialog you can configure all the functions, which are not directly related to the I/O signals of the Core.

Note:

Changes made in this dialog will not be reflected in the .eccnf configuration file for IPCore_Config, they are only saved in the .mpd file. Updating the IP configuration using IPCore_Config will overwrite the .mpd file and you will lose changes made in this dialog. This feature is only recommended for experienced users.

Figure 9: EDK – Configuration Dialog

10. Assign addresses to the EtherCAT IP Core. The tab "Addresses" in the "System Assembly View" shows the internal addresses of the IP Cores. Press the Generate Addresses button to automatically assign addresses.

Bus Interfaces Ports	Addresses						
Instance	Base Name	Base Address	High Address	Size	Bus Interface(s)	Bus Name	Lock
imicroblaze_0's Address M	ар						
- dlmb_cntlr	C_BASEADDR	0x00000000	0x00003FFF	16K	SLMB	dlmb	
ilmb_cntlr	C_BASEADDR	0x00000000	0x00003FFF	16K	SLMB	ilmb	
xps_gpio_0	C_BASEADDR	0x81400000	0x8140FFFF	64K	SPLB	mb_plb	
debug_module_0	C_BASEADDR	0x84400000	0x8440FFFF	64K	SPLB	mb_plb	
plb_ethercat_user_0	C_BASEADDR	0xCD000000	0xCD00FFFF	64K	SPLB	mb_plb	
pib_ethercat_user_o	C_BASEADDI	0XCD000000	UXCDUUFFFF	041	➡ SFLD	nio_pio	

Note:

If you have added a new IP Core, you can generate or set the internal addresses. The EtherCAT IP core needs at least 64 Kbyte address space. Larger sizes will result in less address decoding logic.

Bus Interfaces	Ports	Addresses							
Name			Net		Direction	Range	Class	Reset Polarity	Sensitivity
External Ports									
+ dlmb									
ilmb									
⊡ mb_plb									
microblaze_0									
lmb_bram									
dlmb_cntlr									
ilmb_cntlr									
🗠 debug_module_0									
plb_ethercat_use	r_0								
CLK25			clk_25_0000MHz	-	I		CLK		
CLK100			clk_100_0000MHz	-	I		CLK		
PROM_SIZE			PROM_SIZE	-	I				
PROM_DATA			PROM_DATA	-	IO				
- nMII_LINK0			nMII_LINK0	-	I				
MII_RX_CLK0			MII_RX_CLK0	-	I				
MIL_RX_DV0			MII_RX_DV0	-	I				
MILRX_DATA	0		MII_RX_DATA0	-		[3:0]			
MIL_RX_ERR0			MII_RX_ERR0	-					
- nMII_LINK1			nMII_LINK1	-	I				
MILRX_CLK1			MII_RX_CLK1	-					
MIL RX_DV1			MII_RX_DV1		I				
MILRX_DATA	1		MII_RX_DATA1	-	I	[3:0]			
MIL_RX_ERR1			MII_RX_ERR1						
PHY_OFFSET	VEC		net_gnd	-		[4:0]			
MDIO	-		MDIO		IO				
PDI_EMULAT	ION		net_gnd	-	I				
PROM_CLK			PROM_CLK		0				
LINK_ACT			LINK_ACT		0	[1:0]			
MIL TX ENAO			MII_TX_ENA0		0				
MIL_TX_DATA	0		MII_TX_DATA0		0	[3:0]			
MIL_TX_ENA1			MII_TX_ENA1		0				
MITX DATA			MIL TX DATA1		0	[3:0]			
MCLK			MCLK		0				
LED RUN			LED_RUN		0				
PDI_PLB_IRQ	MAIN		IRQ_ESC		0		INTER		LEVEL_HIG
PDI_SOF	-		No Connection		0				
PDI_EOF			No Connection		0				
PDI_WD_TRIC	GER		No Connection		õ				
PDI_WD_STA			No Connection		0				
xps_gpio_0					_				
clock_generator_()								

11. The tab "Ports" in the "System Assembly View" shows the connection signals. Connect the EtherCAT IP Core to other IP and external FPGA pins.

Figure 11: EDK – System Assembly View, Ports tab

- 12. Generate Bitstream: Result is the file "system.bit" in the *implementation* folder of the EDK project. This configuration file only includes the hardware parts of the design, without software for the processor.
- 13. Create and build a software application (Export Design Export & Launch SDK)
- 14. Update Bitstream with software program information
- (EDK Device Configuration Update Bitstream)
 - → Result is the file "download.bit" (= "system.bit" + "<software application>.elf") in the *implementation* folder of the EDK project.
- 15. Download the design into your FPGA:
 - a) Download temporarily into the volatile configuration memory of the FPGA via JTAG-Interface: EDK – Device Configuration – Download Bitstream
 - b) Download permanently into the non-volatile configuration SPI flash via JTAG-Interface and indirect SPI flash configuration using Xilinx IMPACT.

4.3 Vivado designs with EtherCAT IP Core

There are two basic kinds of implementing the EtherCAT IP core using Vivado:

The first option is characterized by placing the EtherCAT IP core outside of a block design. All IPs are connected inside the block design except for the EtherCAT IP. The AXI connection for the EtherCAT IP is an external connection of the block design. The block design is instantiated on a top-level HDL file, which also instantiates the EtherCAT IP Core.

The second option is to use the output files of the IPCore_Config tool as input sources for an individual IP packed with the Xilinx IP Packager. In this case, the EtherCAT IP gets another wrapper generated by the IP Packager. The packed IP is added to the block design and connected to other IP.

5 IP Core Configuration

EtherCAT IP Core configuration V2.04e	
Product ID Physical Layer Internal Functions Feature Details	Process Data Interface
Your Product ID	
PRODUCT_ID input in decimal groups (0-65535)	
0 : 0 : 0 :	43
PRODUCT_ID in hexadecimal	
0x0000 : 0x0000 : 0x0000 :	0x002B
INFO: EEPROM Words 0-3: 0x0F04, 0x6604, 0x0064, 0xF000, XML EEPROM ConfigData = 040F0466640000F0	• •
Cancel < Prev Next > ETHERCAT_XIL_INST = C:\BECKHOFF\ethercat_xilinx_v2.04e	Generate

Figure 12: EtherCAT IP Core Configuration Interface

Parameters pane (top)

The configuration options for the EtherCAT IP Core are available in the IP Core parameters pane at the top.

Message pane (bottom)

In the lower box additional information like warnings, errors, and EEPROM configuration recommendations are displayed.

ETHERCAT_XIL_INST (status line)

The status line displays the current ETHERCAT_XIL_INST environment variable, which points to the EtherCAT IP Core installation directory with the required source files.

5.1.1 Product ID tab

➡ EtherCAT IP Core configuration V2.04e	
Product ID Physical Layer Internal Functions Feature Details	Process Data Interface
Your Product ID	
PRODUCT_ID input in decimal groups (0-65535)	
0 : 0 : 0 :	43
PRODUCT_ID in hexadecimal	
Qx0000 : Qx0000 : Qx0000 :	0x002B
INFO: EEPROM Words 0-3: 0x0F04, 0x6604, 0x0064, 0xF000, XML EEPROM ConfigData = 040F0466640000F0	×
Cancel < Prev Next >	Generate
ETHERCAT_XIL_INST = C:\BECKHOFF\ethercat_xilinx_v2.04e	

Figure 13: Product ID tab

PRODUCT_ID input in decimal groups

The Product ID can be chosen freely and is for vendor issues. It can be read out in register 0x0E08:0x0E0F.

The PRODUCT_ID has to be entered in decimal format as a number between 0 and 65535 for each of the four 16 bit fields (representing a 16 bit part of the 64 bit Product ID each).

The Product ID is meant to identify special configurations of the IP Core. It does not have to reflect the EtherCAT slave product code, which is part of the EEPROM/XML device description.

5.1.2 Physical Layer tab

Product ID	Physical Layer	Internal Functions	eature Details Pr	ocess Data Interface
Communic	cation Ports			
	Number of con	munication ports:	2 -	
	Selected comm	nunication type Port0:	MII 👻	
	Selected comm	nunication type Port 1:	MII 👻	
	Selected comm	nunication type Port2:	MII 💌	
- MII Confi	-			
V PH	Y Management In		NK state and PHY rough MI	configuration
V TX	Shift		nhanced link detect	ion
Tris	tate driver inside (core (EEPROM/MI)		
		3: 0x0F04, 0x6604, 0x figData = 040F046664		

Figure 14: Physical Layer tab

Communication Ports

The number of communication ports by default is two. As PHY interface MII (1, 2, or 3 ports) or RMII (1 or 2 ports only) can be selected. It is recommended to use MII as for accuracy of the distributed clocks is much better with MII.

PHY Management Interface

The PHY Management Interface function can be selected or deselected. If it deselected, the other MII Configuration options are not available.

TX Shift

Automatic or manual TX Shift is available if TX Shift is selected. TX Shift delays MII TX signals to comply to Ethernet PHY setup and hold timing. Automatic TX Shift uses the TX_CLK signals of the PHYs to detect appropriate TX Shift settings automatically. Manual TX Shift configuration allows for delaying the MII TX signals by 0, 10, 20, or 30 ns.

LINK state and PHY configuration through MI

MI link detection and configuration is available if checked. Ethernet PHYs are configured and link status is polled via the MII Management Interface. Enhanced link detection has to be activated if MI link detection and configuration is used and the nMII LINK0/1/2 signals are not used.

Enhanced link detection

Enhanced MII link detection is a mechanism of informing link partners of receive errors.

Tristate Driver inside core (EEPROM/MI)

If selected tri-state drivers of the core are used for access to EEPROM and PHY Management signals.

This function should not be enabled when the OPB/PLB Process Data Interface is used. This is also marked in the output window at the bottom.

5.1.3 Internal Functions tab

	er Internal Functions	Feature Details Pr	ocess Data Interface
roduct ID Physical Lay FMMUs			ocess Data Intellace
FMMUS			
Number of instances	0	4	8
SyncManager			
Number of instances	1		
Number of Instances	0	4	8
Process Data RAM			
1 kByte	2 kByte	🔘 4 kByte	🔘 8 k Byte
16 kByte	⊚ 32 kByte	🔘 60 kByte	
Distributed Clocks Confi	abled		
	enabled		
Receive Times ena Distributed Clocks (enabled) 64 Bit	
Receive Times enz Distributed Clocks vide Distributed Clocks wide	enabled ch	64 Bit)
Receive Times enz Distributed Clocks widt Distributed Clocks widt Cyclic pulse length: Mapping to global IRQ	biled enabled (@) 32 Bit 100 • 10ns (0	== acknowledge mode	
Receive Times ena Distributed Clocks of Distributed Clocks wide Cyclic pulse length:	biled enabled (@) 32 Bit 100 • 10ns (0	0	
Receive Times enz Distributed Clocks • Distributed Clocks widd Cyclic pulse length: Mapping to global IRQ Ø Map SYNC[0] FO: EEPROM Word	biled enabled (@) 32 Bit 100 • 10ns (0	== acknowledge mode Image: Map SYNC[1 . 0x0064, 0xF000,	

Figure 15: Internal Functions tab

FMMUs

Number of FMMU instances. Between 0 and 8 FMMUs are possible.

SyncManager

Number of SyncManager instances. Between 0 and 8 SyncManagers are possible.

Process Data RAM

The size of the Process data memory can be determined in this dialog. Minimum memory size is 1 KByte, maximum memory size is 60 KByte.

Receive Times enabled

The Distributed Clocks receive time feature for propagation delay calculation can be enabled without using all DC features. They will be automatically enabled for configurations with 3 ports.

Distributed Clocks enabled

The Distributed Clocks feature comprises synchronized distributed clocks, receive times, SyncSignal generation, and LatchSignal time stamping.

Distributed Clocks Width

The width of the Distributed Clocks can be selected to be either 32 bit or 64 bit. DC with 64 bit require more FPGA resources. DC with 32 bit and DC with 64 bit are interoperable.

Cyclic pulse length

Determines the length of SyncSignal output (register 0x0982:0x0983).

Mapping to global IRQ

Sync0 and Sync1 can additionally be mapped internally to the global IRQ. This might be a good solution if a microcontroller interface is short on IRQs. However, the sync signals will remain available on Sync0 and Sync1 outputs.

5.1.4 Feature Details tab

← EtherCAT IP Core configuration V2.04e
Product ID Physical Layer Internal Functions Feature Details Process Data Interface
Base Feature Set (small)
Small Medium Large
ECAT processing
Read/Write Offset
DL-AL processing
AL Status Code Register
PDI processing
Extended Watchdog Watchdog Counter
AL Event Mask Register System Time PDI controlled
Diagnostics
SyncManager Event Times EPU and PDI Error Counter
Lost Link Counter
Additional Functions
EEPROM Emulation by PDI RESET slave by ECAT/PDI
RUN LED (Dev_State)
INFO: EEPROM Words 0-3; 0x0F04, 0xEE04, 0x0064, 0xF000,
XML EEPROM ConfigData = 040F04EE640000F0
Cancel < Prev Next > Generate ETHERCAT XIL_INST = C:\BECKHOFF\ethercat xilinx, v2.04e

Figure 16: Feature Details tab

Base Feature Set (current feature set)

Depending on the IP Core functionality that should be implemented and the available resources (LEs) in the FPGA, the internal features can be chosen. Three feature presets are available: small, medium and large. Based upon these presets, additional functions can be enabled on this tab.

Read/Write Offset

Physical Read/Write Offset (0x00108:0x0109) is available if checked.

Write Protection

Register write protection and ESC write protection (0x0020:0x0031) are available if checked.

AL Status Code Register

AL Status Code register (0x0134:0x0135) is available if checked.

Extended Watchdog

Watchdog Divider (0x0400:0x0401) is configurable and PDI Watchdog (0x0410:0x0411, and 0x0100.1) is available if checked.

AL Event Mask Register

AL Event Mask register (0x0204:0x0207) is available if checked.

Watchdog Counter

Watchdog Counters (0x0442:0x0443) are available if checked. Watchdog Counter PDI is only used if Extended Watchdog feature is selected.

System Time PDI controlled

Distributed Clocks Time Loop Control Unit is controlled by PDI (µController) if selected. EtherCAT access is not possible. Used for synchronization of secondary EtherCAT busses.

SyncManager Event Times

Distributed Clocks SyncManager Event Times (0x09F0:0x09FF) are available if checked. Used for debugging SyncManager interactions.

EPU and PDI Error Counter

EtherCAT Processing Unit (EPU) and PDI Error counters (0x030C:0x030D) are available if checked.

Lost Link Counter

Lost Link Counters (0x0310:0x0313) are available if checked.

EEPROM Emulation by PDI

EEPROM is and has to be emulated by a μ Controller with access to a NVRAM. I²C EEPROM is not necessary if EEPROM Emulation is activated, I²C interface is deactivated. Only usable with PDIs for μ Controller connection.

RESET slave by ECAT/PDI

The reset registers (0x0040:0x0041) and the RESET_OUT signal is available if this feature is checked.

RUN LED (Dev_State)

RUN LED output (DEV_STATE) indicates AL Status (0x0130) if activated. Otherwise RUN LED has to be controlled by a µController. Always activated if no PDI is selected or if Digital I/O PDI is selected.

Extended RUN/ERR LED

Support for ERR LED and STATE LED, direct control of RUN/ERR LED via RUN/ERR LED Override register (0x0138:0x0139).

5.1.5 Process Data Interface tab

Several interfaces between ESC and the application are available:

- Digital I/O
- 8 Bit asynchronous µController
- 16 Bit asynchronous µController
- SPI slave
- PLB v4.6 on-chip bus
- OPB on-chip bus (deprecated, use only for legacy projects)
- General Purpose I/O

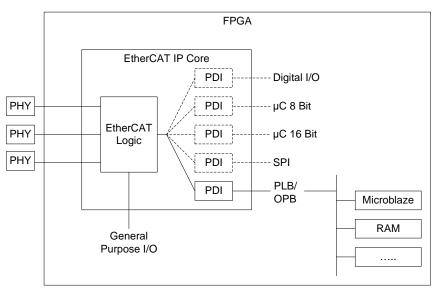


Figure 17: Available PDI Interfaces

The PDI can be selected from the pull down menu. After selection settings for the selected PDI are shown and can be changed.

5.1.5.1 No Interface and General Purpose I/O

If there is no interface selected no communication with the application is possible (except for general purpose I/O).

EtherCAT IP Core configuration V2.04e	
Product ID Physical Layer Internal Functions Feature Details	Process Data Interface
Selected PDI No Interface -	
General Purpose I/Os Number of GPIOs 8 Bytes	
Number of GPIOs 8 Bytes INFO: EEPROM Words 0-3; 0x0F00, 0xEE00, 0x0064, 0x0000,	Generate

Figure 18: Register Process Data Interface

Number of GPIOs

General purpose I/O signals can be added to any selected PDI. The number of GPIO bytes is configurable to 0, 1, 2, 4, or 8 Bytes. Both general purpose outputs and general purpose inputs of the selected width are available.

5.1.5.2 Digital I/O Configuration

The Digital I/O PDI supports up to 4 Bytes of digital I/O signals. Each byte can be assigned as input or output byte.

LUIEICA	T IP Core confi			
Product ID	Physical Layer	Internal Functions	Feature Details	Process Data Interface
	Selected	PDI Digital IO	•	
Digital IO	Configuration			
Number o	f digital I/Os 4	Bytes 🔻		
Port Con	figuration			
Byte	0		Byte 1	
۹) input	output	input	output
Byte	2		Byte 3	
0) input	output	input	 output
Output mo	ode Output at I	Dist-Sync0 👻		
General P Number of	urpose I/Os GPIOs 8 B	ytes	•	
NFO: EE XI	EPROM Words (ML EEPROM Co)-3: 0x0F04, 0xEE84 nfigData = 040F84E	. 0x0064, 0xF000, E640000F0	
6	ancel	< Prev	Next >	Generate
				L

Figure 19: Register PDI – Digital I/O Configuration

Number of digital I/Os

Total number of I/Os. Possible values are 1, 2, 3 or 4 Bytes.

Port Configuration

Defining byte-wise if digital I/Os are used as input or output byte

Input Mode

Defines the latch signal which is used to take over input data.

- Latch at SOF (Start of Frame)
 - The inputs are latched just before the data have to be written in the frame.
- <u>Latch with ext. signal</u> Connected to DIGI_LATCH_IN. Application controls latching
- <u>Latch at Dist-Sync0</u>
 Latch input data with distributed clock Sync0 signal
- <u>Latch at Dist-Sync1</u>
 Latch input data with distributed clock Sync1 signal

Output Mode

Defines the trigger signal for data output.

- <u>Output at EOF (End of Frame)</u> The outputs will be set if the frame containing the data is received complete and error free.
- <u>Output at Dist-Sync0</u> Outputs will be set with Sync0 signal if distributed clocks are enabled.
- <u>Output at Dist-Sync1</u> Outputs will be set with Sync1 signal if distributed clocks are enabled.

5.1.5.3 µController Configuration (8/16Bit)

The 8/16 Bit μ Controller interface is an asynchronous parallel interface for μ Controllers. The difference between 8 and 16 bit interface is the extended data bus and the BHE signal which enables access to the upper byte.

EtherCAT IP Core configuration V2.04e	
Product ID Physical Layer Internal Functions Feature Details	Process Data Interface
Selected PDI uController 16Bit	
µController Configuration	
Busy Configuration	
ective low	
ø push-pull O open drain	
Read BUSY delayed	
Interrupt Configuration	
extive low active high	
e push-pull open drain	
Vite on falling edge	
☑ Tristate driver for data bus inside core	
General Purpose I/Os	
Number of GPIOs None	
INFO: EEPROM Words 0-3: 0x0E08, 0xEE00, 0x0064, 0x0002, XML EEPROM ConfigData = 080E00EE64000200	
Cancel < Prev Next >	Generate
ETHERCAT_XIL_INST = C:\BECKHOFF\ethercat_xilinx_v2.04e	

Figure 20: Register PDI – µC-Configuration

Busy Configuration

Electrical definition of the busy signal driver

Read BUSY delayed

Delay the output of the BUSY signal by ~20 ns (refer to register 0x00152.0).

Interrupt Configuration

Electrical definition of the interrupt signal driver

Write on falling edge

Start write access earlier with falling edge of nWR. Single write accesses will become slower, but maximum write access time becomes faster.

Tristate driver for data bus inside core

If Tristate drivers for the data bus should be integrated into the IP Core already activate the check box.

5.1.5.4 SPI Configuration

The SPI interface is a serial slave interface for µControllers.

EtherCAT IP Core configuration V2.04e	
Product ID Physical Layer Internal Functions Feature Details	Process Data Interface
Selected PDI SPI	
SPI Configuration	
SPI Mode (0-3): 3	
Late sample	
Interrupt Configuration	
active low O active high	
Polarity of SPI_SEL	
active low or active high act	
☑ Tristate driver for SPI_DO inside core	
General Purpose I/Os	
Number of GPIOs None	
INFO: EEPROM Words 0-3: 0x0E05, 0xEE03, 0x0064, 0x0000, XML EEPROM ConfigData = 050E03EE64000000	4

Figure 21: Register PDI – SPI Configuration

SPI Mode

The SPI mode determines the SPI timing. Refer to SPI PDI description for details. Mode 3 is recommended for slave sample code.

Late Sample

The Late Sample configuration determines the SPI timing. Refer to SPI PDI description for details. It is recommended to leave this unchecked for slave sample code.

Interrupt Configuration

SPI_IRQ output driver configuration.

Polarity of SPI_SEL

SPI_SEL signal polarity.

Tristate driver for SPI_DO inside core

Include tri-state driver for SPI Data Out. With tri-state driver, SPI_DO is either driven actively or high impedance output.

5.1.5.5 Processor Local Bus (PLB) Configuration

The PLB v4.6 PDI connects the IP Core with a PLB Master (e.g. Xilinx MicroBlaze[™]). The data bus with is 32 bit, and the address bus is also 32 bit wide.

Des durat ID		EtherCAT IP Core configuration V2.04e					
FIODUCLID	Physical I	Layer	Internal Fu	unctions	Feature Details	Proces	s Data Interface
			PDI PLE	3 v4.6	•		
	us Configur	ration					
Interrupt f	type:			Level	(high)	-	
Tristat	e driver ins	ide XPS	Sproject (EEPROM	/MD		
	e driver ins		Sproject (I	EEPROM	/MI)		
	e driver ins Purpose I/O		Sproject (I	EEPROM	/MI)		
	Purpose I/O			EEPROM	/MI) •		
General F Number of NFO: EI	^p urpose I/O f GPIOs	None	3: 0x0E80,	0xEE40.	▼ 0x0064, 0x0000,		
General F Number of NFO: EI XI	Purpose I/O f GPIOs EPROM W	None	3: 0x0E80,	0xEE40.	▼ 0x0064, 0x0000,		Generate

Figure 22: Register PDI – PLB Interface Configuration

Interrupt type

Select the usage type of the interrupt signal (level or edge). Since the main interrupt can have different sources, a level based interrupt is typically required.

Tristate driver inside XPS project (EEPROM/MII)

This option is available if the Tristate drivers are not integrated in the core (Physical Layer tab). It allows to export the IN/OUT/ENA tristate signals to higher levels above the XPS, or implement the tristate driver in the XPS.

This additional option is offered in the "Configure IP" dialog of the EtherCAT IP Core instance inside EDK.

5.1.5.6 On-Chip Peripheral Bus (OPB) Configuration

The OPB PDI connects the IP Core with an OPB Master (e.g. Xilinx MicroBlaze). The data bus with is 32 bit, and the address bus is also 32 bit wide.

EtherCAT IP Core configuration V2.04e							
Product ID	Physical Layer	Internal Fu	nctions	Feature Details	Process	s Data Interface	
	Selected			•			
Internal Bu	is Configuration	1					
Interrupt ty	/pe:		Level	(high)	•		
Data bus v	width of smalles	st bus master:	4 Byte	s	•		
Bus Clock	Multiplier:		1				
			Bus Clo	ock = 25MHz			
Tristate	e driver inside X	(PS project (E	EPROM	/MI)			
	e driver inside X urpose I/Os	(PS project (E	EPROM	/MI)			
	urpose I/Os		EPROM	/MI) •			
General Pu Number of M WARN: OPB NFO: EE	urpose I/Os GPIOs Nor	ne precated by X 0-3: 0x0E80, (ilinx. xEE81,	▼ 0x0064, 0x0000			
General Pu Number of WARN: OPB NFO: EE XM	urpose I/Os GPIOs Nor interface is dej PROM Words	ne precated by X 0-3: 0x0E80, (ilinx. xEE81,	▼ 0x0064, 0x0000	_	Senerate	

Figure 23: Register PDI – OPB Interface Configuration

Interrupt type

Select the usage type of the interrupt signal (level or edge). Since the main interrupt can have different sources, a level based interrupt is typically required.

Data Bus Width of smallest Bus Master

Data bus width of the OPB, counted in bytes (1, 2, or 4 Bytes).

Bus Clock Multiplier

Bus Clock Multiplier (n*25MHz) gives the frequency of the OPB bus clock for communication between ESC and the OPB master.

Tristate driver inside XPS project (EEPROM/MII)

This option is available if the Tristate drivers are not integrated in the core (Physical Layer tab). It allows to export the IN/OUT/ENA tristate signals to higher levels above the XPS, or implement the tristate driver in the XPS.

This additional option is offered in the "Configure IP" dialog of the EtherCAT IP Core instance inside EDK.

6 Example Designs

Example designs are available for:

- Avnet Xilinx Spartan-6 LX150T Development Kit with MII and Digital I/O PDI
- Avnet Xilinx Spartan-6 LX150T Development Kit with MII, PLB-to-AXI bridge, and Microblaze processor

The EtherCAT master uses an XML file which describes the device and its features. The XML device description file for all example designs and its schema can be found in the installation directory.

<IPInst_dir>\example_designs\EtherCAT_Device_Description\

Projects have to be compiled and then can be loaded to the SPI configuration devices of the evaluation board.

The EtherCAT IP core example design resource consumption figures for the PLB design are based on EtherCAT IP Core for Xilinx FPGAs Version 2.04a and Xilinx ISE 12.4.

The EtherCAT IP core example design resource consumption figures for the Digital I/O design are based on EtherCAT IP Core for Xilinx FPGAs Version 2.04e and Xilinx EDK 14.7.

6.1 Avnet Xilinx Spartan-6 LX150T Development Kit with Digital I/O

6.1.1 Configuration and resource consumption

Configuration		Resources	XC6SLX150	Т
Physical layer	2x MII, TX Shift, MIIM, Enhanced Link Detection	Slice Registers	6,847	3 %
Internal Function	3x FMMU 4x SyncManager 1 KB RAM	Slice LUTs	8,596	9 %
Distributed clocks	32 bit, 2x Sync, 2x Latch	Occupied Slices	3,057	13 %
Feature details	Extended Watchdog, Watchdog counter, EPU and PDI Error Counter, Lost link counter, RUN_LED, Extended RUN/ERR LED	Block RAM RAMB8BWER RAMB16BWER	2 0	1 % 0 %
PDI	Digital I/O: 3 Byte IN, 1 Byte OUT	DCM	1	8 %

Table 13: Resource consumption Avnet LX150T example design

6.1.2 Functionality

Attach the FMC ISMNET module to FMC1 connector of LX150T base board. Populate jumper JP6 pins 1-2 (CARRIER_25MHz to CARRIER_25MHZ_S) on ISMNET, because the 25 MHz clock source for the Ethernet PHYs is also used as the clock source for the whole system including EtherCAT IP core in the Spartan-6 LX150T FPGA. Configure FMC IO voltage to 2.5V. You can optionally connect the UART or the LX150T (JR1) to your PC (9600 baud, 8 bit data, 1 stop bit, no parity, no hardware handshake). The LEDs D3 and D4 on the FMC ISMNET module are used as Link/Activity LEDs for the two Ethernet ports.

Functionality of the Digital I/O example design:

- Digital input data from push buttons SW3-SW5 on the LX150T are available in the Process Data RAM 0x1000[2:0]
- Digital input data from DIP switches SW6 on the LX150T are available in the Process Data RAM 0x1001
- Digital input data from push buttons SW1-SW2 on the ISMNET module are available in the Process Data RAM 0x1002[1:0]
- Digital input data from DIP switches SW3 on the ISMNET module are available in the Process Data RAM 0x1002[7:4]
- Digital output data from Digital Output register (0x0F03) is visualized with LEDs D7-D14 on the LX150T
- DC LatchSignals are connected to push buttons SW1-SW2 on the ISMNET module

6.1.3 Implementation

- 1. Open Xilinx ISE
- 2. Open example design <IPInst_dir>\example_designs\LX150T_DIGI.xise
- Generate Programming File
 Download bitstream to FPGA

6.1.4 SII EEPROM

Use this ESI for the SII EEPROM:

Beckhoff Automation GmbH (Evaluation)/ IP Core example designs ET1815 (Xilinx)/ ET1815 IP Core Avnet LX150T DIGI

6.2 Avnet Xilinx Spartan-6 LX150T Development Kit with PLB/AXI

6.2.1 Configuration and resource consumption

Configuration		Resources	XC6SLX1	50T
FMMU	3	Slices	5,100	22 %
SyncManager	4	Slice FF	10,575	5 %
RAM	1 KB	LUT	13,418	14 %
Register set	Large + Run LED + MI	I/O	73	18 %
Distributed Clocks	32 bit	Block RAM	17	6 %
PDI	PLB, 50 MHz	BUFGMUX	6	37 %
		PLL	1	16 %

Table 14: Resource consumption Avnet LX150T example design

6.2.2 Functionality

Attach the FMC ISMNET module to FMC1 connector of LX150T base board. Populate jumper JP6 pins 1-2 (CARRIER_25MHz to CARRIER_25MHZ_S) on ISMNET, because the 25 MHz clock source for the Ethernet PHYs is also used as the clock source for the whole system including EtherCAT IP core in the Spartan-6 LX150T FPGA. Configure FMC IO voltage to 2.5V. You can optionally connect the UART or the LX150T (JR1) to your PC (9600 baud, 8 bit data, 1 stop bit, no parity, no hardware handshake). The LEDs D3 and D4 on the FMC ISMNET module are used as Link/Activity LEDs for the two Ethernet ports. Push button SW2 on the LX150T is used as system reset input.

The Microblaze demo application performs the following tasks:

- Accept any EtherCAT Slave State request (copying AL Control to AL Status register). Print state changes via UART.
- Copy output data from EtherCAT IP Core (0x1024) to GPIO for LEDs D7-D14 on the LX150T.
- Copy output data from EtherCAT IP Core (0x1004) to GPIO for DIGILENT U15 on the ISMNET.
- Print output data from the EtherCAT IP Core (0x1020-0x1023) via UART.
- Copy input data from GPIO for push buttons SW3-SW5 on the LX150T to the EtherCAT IP Core (0x1000).
- Copy input data from GPIO for push buttons SW1-SW2 on the ISMNET module to the EtherCAT IP Core (0x1002).
- Copy input data from GPIO for DIP switches SW6 on the LX150T to the EtherCAT IP Core (0x1001).
- Copy input data from GPIO for DIP switches SW3 on the ISMNET module to the EtherCAT IP Core (0x1003).

6.2.3 Implementation

- 1. Open Xilinx EDK
- 1. Open project:
 - <IPInst_dir>\ example_designs\LX150T_PLB\system.xmp
- Generate Bitstream (Menu Hardware Generate Bitstream). Result is the file "system.bit" in the implementation folder of the EDK project. This configuration file only includes the hardware parts of the design, without software for the processor.
- 3. Select menu Project Export hardware design to SDK...
- 4. Select Export & Launch SDK
- 5. In SDK, select menu File New Xilinx C Project
- 6. Enter a project name, and select project template "BECKHOFF EtherCAT LX150T"
- 7. Select Next, then Finish.
- 8. Wait until the projects are built automatically, or select menu Project Build All
- Update Bitstream with application image and download to FPGA by selecting menu Xilinx Tools Program FPGA

 \rightarrow Result is the file "download.bit" (= "system.bit" + "<application>.elf") in the *implementation* folder of the EDK project.

6.2.4 SII EEPROM

Use this ESI for the SII EEPROM:

Beckhoff Automation GmbH (Evaluation)/ IP Core example designs ET1815 (Xilinx)/ ET1815 IP Core Avnet LX150T

6.2.5 Downloadable configuration file

Two already synthesized time limited configuration files

• LX150T_AXI_Demo_V2_04a_time_limited.bit

based on this digital I/O example design can be found in the

<IPInst_dir>\example_designs\LX150T_PLB\

folder. After expiration of about 1 hour the design quits its operation. These files must only be used for evaluation purposes, any distribution is not allowed.

7 FPGA Resource Consumption

The resource consumption figures shown in this chapter reflect results of example synthesis runs and can only be used for rough resource estimations. The figures are subject to quite large variations depending on design tools and version, FPGA type, constraints (e.g., area vs. speed), total FPGA utilization (design tools typically stop optimization if the timing goal is reached), etc. No extra effort was undertaken to achieve optimum results, i.e. by sophisticated constraining and design flow setting.

For accurate resource consumption figures, please use the evaluation license of the EtherCAT IP Core and synthesize your individual configuration for the desired FPGA.

The figures of the following table do not imply that the individual features are operational in the selected FPGA (i.e., that the resources are sufficient or that timing closure is achievable). The synthesis runs where performed without timing constraints, without location constraints, and without bitstream generation.

The EtherCAT IP core resource consumption overview figures are based on EtherCAT IP Core for Xilinx FPGAs Version 2.03a, Xilinx ISE 11.4, and Xilinx Spartan-3E or Spartan-6 devices. One Spartan-3E slice contains 2 lookup-tables (LUT4) and 2 flip-flops, a Spartan-6 slice contains 4 lookup-tables (LUT6) and 4 flip-flops. The number of slices is shown for very rough estimations, because they highly depend on the optimization process. Registers and logic can be combined in slices or implemented separately, depending on the device utilization and placement, so the variation of the slices figure is extremely high. The registers and logic LUT figures are more stable, but also subject to variation as a result of optimization.

Configurable	Spartan-3E			Spartan-6			Details
Function	Slices	Reg.	Log.	Slices	Reg.	Log.	Details
	Chicco	neg.	LUT4	Onoco	neg.	LUT6	
Minimum Configuration	2,400	1,800	2,800	800	2,000	2,100	0 x SM, 0 x FMMU, small register preset, no DC, PDI: 32 Bit digital I/O, 1 kByte DPRAM, 1 port MII
Maximum Configuration	14,000	14,000	21,000	5,900	13,200	17,300	8 x SM, 8 x FMMU, large register preset plus all features except for EEPROM Emulation, DC 64 bit, PDI: SPI, GPIO, 60 kByte DPRAM, 3 ports MII
Additional port	700	550	900	250	550	600	all port features enabled (without DC Receive times)
SyncManager	350	200	550	150	200	400	per SyncManager
FMMU	400	400	600	200	400	450	per FMMU
Distributed Clocks	200	150	150	150	400	200	Receive time per port
	2,100	2,100	2,800	800	2,200	2,300	32 bit
	3,300	3,600	4,300	1,600	3,600	3,900	64 bit
	650	350	450	100	350	200	SyncManager Event Times
Register preset							
small	-	-	-	-	-	-	reference
medium	300	250	200	0	250	200	according to small register preset
large	600	550	650	200	550	550	according to small register preset
PHY features	900	400	850	150	400	500	All MII features: Management Interface, MI link detection and configuration, TX Shift, and enhanced link detection (3 ports)
DPRAM	300	0	0	50	0	450	60 KB (BlockRAM)
PDI							
32 Bit Digital I/O	400	250	250	100	200	200	
SPI	250	250	350	100	250	300	
8 Bit µController	150	150	200	50	150	150	
16 Bit µController	200	200	250	50	150	200	
PLB	550	400	450	150	400	250	50 MHz, 32 Bit
OPB	600	300	450	100	300	350	50 MHz, 32 Bit
GPIO	550	350	250	50	350	200	8 Byte
3 .							,

Table 15: Approximate resource requirements for main configurable functions

The EtherCAT IP core resource consumption figures for typical EtherCAT devices are based on EtherCAT IP Core for Xilinx FPGAs Version 2.04a, Xilinx ISE 12.4, and Xilinx Spartan-3E or Spartan-6 devices.

Table 16: EtherCAT IP Core configuration for ty	pical EtherCAT Devices
---	------------------------

EtherCAT Device	SM	FMMU	DPRAM [kByte]	PDI	DC	Register preset
Ю	2	2	1	32 Bit Digital I/O	-	Small
Frequency Inverter	4	3	1	SPI	-	Large
Encoder	4	3	1	SPI	32 bit	Large
Fieldbus Gateway	4	3	4	16 Bit µC	-	Large
Servo Drive	4	3	4	16 Bit µC	32 bit	Large

NOTE: Register preset medium and large including MII Management Interface. All devices have 2 MII ports, DC is 32 bit wide.

EtherCAT Device		Spartan-3E		Spartan-6			
	Slices	Reg.	Log. LUT4	Slices	Reg.	Log. LUT6	
IO	4,200	3,900	6,200	1,900	3,900	5,000	
Frequency Inverter	6,200	5,200	9,000	2,300	5,300	7,000	
Encoder	9,000	8,100	12,400	2,500	8,100	9,800	
Fieldbus Gateway	6,100	5,100	8,900	2,400	5,100	6,900	
Servo Drive	8,900	8,000	12,200	2,500	8,000	9,800	

Table 17: EtherCAT IP Core resource consumption for typical EtherCAT Devices

8 IP Core Signals

The available signals depend on the IP Core configuration.

8.1 General Signals

Condition	Name	Direction	Description
	nRESET	INPUT	Resets all registers of the IP Core, active low
Reset slave by ECAT/PDI	RESET_OUT	OUTPUT	Reset by ECAT (reset register 0x0040), active high. RESET_OUT has to trigger nRESET, which clears RESET_OUT.
	CLK25	INPUT	25 MHz clock signal from PLL (rising edge synchronous with rising edge of CLK100)
	CLK100	INPUT	100 MHz clock signal from PLL

8.1.1 Clock source example schematics

The EtherCAT IP Core and the Ethernet PHYs have to share the same clock source. The initial accuracy of the EtherCAT IP clock source has to be 25ppm or better.

Typically, the clock inputs of the EtherCAT IP Core (CLK25, CLK100, and optionally CLK50) are sourced by a DCM/PLL inside the FPGA. The DCM/PLL has to use a configuration which guarantees a fixed phase relation between clock input and clock outputs, in order to enable TX shift compensation for the MII TX signals.

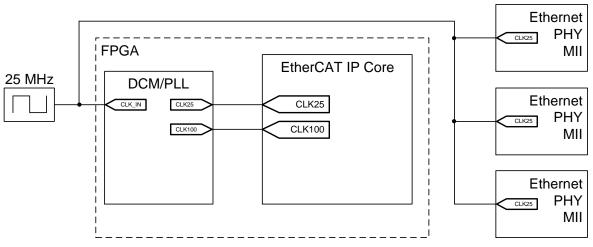


Figure 24: EtherCAT IP Core clock source (MII)

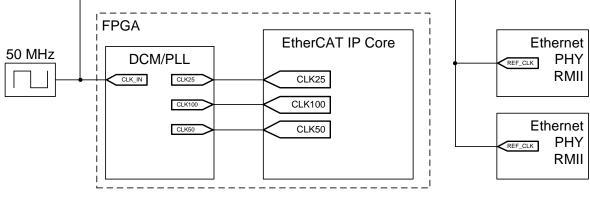


Figure 25: EtherCAT IP Core clock source (RMII)

8.2 SII EEPROM Interface Signals

Table	19:	SII	EEP	ROM	Signals
-------	-----	-----	-----	-----	---------

Condition	Name	Direction	Description
	PROM_SIZE	INPUT	Sets EEPROM size: 0: up to 16 kbit EEPROM 1: 32 kbit-4Mbit EEPROM
Tristate drivers inside core (EEPROM/MI)	PROM_CLK	OUTPUT	EEPROM I ² C Clock (output values: 0 or Z)
External tristate drivers for EEPROM/MI	PROM_CLK	OUTPUT	EEPROM I ² C Clock (output values: 0 or 1)
Tristate drivers inside core (EEPROM/MI)	PROM_DATA	BIDIR	EEPROM I ² C Data
External tristate drivers for EEPROM/MI	PROM_DATA_IN	INPUT	EEPROM I²C Data: EEPROM → IP Core
	PROM_DATA_OUT	OUTPUT	EEPROM I²C Data: IP Core → EEPROM (always 0)
	PROM_DATA_ENA	OUTPUT	0: disable output driver for PROM_DATA_OUT 1: enable output driver for PROM_DATA_OUT

8.3 LED Signals

Table 20 lists the signals used for the LEDs. The LED signals are active high. All LEDs should be green.

Table 20: LED Signals

Condition	Name	Direction	Description	
	LINK_ACT[0]	OUTPUT	Link/activity LED for ethernet port 0	
2 or 3 communication ports	LINK_ACT[1]	OUTPUT	Link/activity LED for ethernet port 1	
3 communication ports	LINK_ACT[2]	OUTPUT	Link/activity LED for Ethernet port 2	
RUN_LED enabled	LED_RUN	OUTPUT	RUN LED for device status. Always 0 if RUN LED is deactivated.	
RUN_LED enabled and Extended RUN/ERR LED enabled	LED_ERR	OUTPUT	ERR LED for device status.	
	LED_STATE_RUN	OUTPUT	Connect to RUN pin of dual-color STATE LED, connect LED_ERR to ERR pin of STATE LED	

NOTE: The application ERR LED and STATE LED can alternatively be controlled by a µController if required.

8.4 Distributed Clocks SYNC/LATCH Signals

Table 21 lists the signals used with Distributed Clocks.

Table 21: DC SYNC/LATCH signals

Condition	Name	Direction	Description
Distributed Clocks enabled	SYNC_OUT0	OUTPUT	DC sync output 0
	SYNC_OUT1	OUTPUT	DC sync output 1
	LATCH_IN0	INPUT	DC latch input 0
	LATCH_IN1	INPUT	DC latch input 1

NOTE: SYNC_OUT0/1 are active high/push-pull outputs.

8.5 Physical Layer Interface

The IP Core is connected with Ethernet PHYs using MII or RMII interfaces.

Table 22 lists the general PHY interface signals.

Condition	Name	Direction	Description		
PHY Management Interface enabled	PHY_OFFSET_VEC[4:0]	INPUT	PHY address offset		
PHY Management Interface enabled	MCLK	OUTPUT	PHY management clock		
PHY Management Interface enabled, Tristate drivers inside core (EEPROM/MII)	MDIO	BIDIR	PHY management data		
PHY Management Interface enabled, External tristate drivers for EEPROM/MI	MDIO_DATA_IN	INPUT	PHY management data: PHY → IP Core		
	MDIO_DATA_OUT	OUTPUT	PHY management data: IP Core → PHY		
	MDIO_DATA_ENA	OUTPUT	0: disable output driver for MDIO_DATA_OUT 1: enable output driver for MDIO_DATA_OUT		

 Table 22: Physical Layer General

NOTE: MDIO must have a pull-up resistor (4.7k Ω recommended for ESCs).

8.5.1 MII Interface

Table 23 lists the signals used with MII. The TX_CLK signals of the PHYs is not connected to the IP Core unless TX Shift automatic configuration is enabled.

Condition	Name	Direction	Description
	nMII_LINK0	INPUT	0: 100 Mbit/s (Full Duplex) link at port 0 1: no link at port 0
	MII_RX_CLK0	INPUT	Receive clock port 0
Port0 = MII	MII_RX_DV0	INPUT	Receive data valid port 0
	MII_RX_DATA0[3:0]	INPUT	Receive data port 0
	MII_RX_ERR0	INPUT	Receive error port 0
	MII_TX_ENA0	OUTPUT	Transmit enable port 0
	MII_TX_DATA0[3:0]	OUTPUT	Transmit data port 0
	MII_TX_CLK0	INPUT	Transmit clock port 0 for automatic TX Shift configuration. Set to 0 for manual TX Shift configuration.
Port0 = MII and TX Shift activated	MII_TX_SHIFT0[1:0]	INPUT	Manual TX shift configuration port 0. Additional TX signal delay: 00: 0 ns 01: 10 ns 10: 20 ns 11: 30 ns
	nMII_LINK1	INPUT	 0: 100 Mbit/s (Full Duplex) link at port 1 1: no link at port 1
	MII_RX_CLK1	INPUT	Receive clock port 1
Port1 = MII	MII_RX_DV1	INPUT	Receive data valid port 1
	MII_RX_DATA1[3:0]	INPUT	Receive data port 1
	MII_RX_ERR1	INPUT	Receive error port 1
	MII_TX_ENA1	OUTPUT	Transmit enable port 1
	MII_TX_DATA1[3:0]	OUTPUT	Transmit data port 1
Port1 = MII and TX Shift activated	MII_TX_CLK1	INPUT	Transmit clock port 1 for automatic TX Shift configuration. Set to 0 for manual TX Shift configuration.
	MII_TX_SHIFT1[1:0]	INPUT	Manual TX shift configuration port 1. Additional TX signal delay: 00: 0 ns 01: 10 ns 10: 20 ns 11: 30 ns

Table 23: PHY Interface MII

Condition	Name	Direction	Description
	nMII_LINK2	INPUT	 100 Mbit/s (Full Duplex) link at port 2 no link at port 2
	MII_RX_CLK2	INPUT	Receive clock port 2
Port2 = MII	MII_RX_DV2	INPUT	Receive data valid port 2
	MII_RX_DATA2[3:0]	INPUT	Receive data port 2
	MII_RX_ERR2	INPUT	Receive error port 2
	MII_TX_ENA2	OUTPUT	Transmit enable port 2
	MII_TX_DATA2[3:0]	OUTPUT	Transmit data port 2
Port2 = MII and TX Shift activated	MII_TX_CLK2	INPUT	Transmit clock port 2 for automatic TX Shift configuration. Set to 0 for manual TX Shift configuration.
	MII_TX_SHIFT2[1:0]	INPUT	Manual TX shift configuration port 2. Additional TX signal delay: 00: 0 ns 01: 10 ns 10: 20 ns 11: 30 ns

8.5.2 RMII Interface

Table 24 lists the signals used with RMII.

Condition	Name	Direction	Description
Port0 = RMII	CLK50	INPUT	50 MHz reference clock signal from PLL (rising edge synchronous with rising edge of CLK100), also connected to PHY
	nRMII_LINK0	INPUT	 100 Mbit/s (Full Duplex) link at port 0 no link at port 0
	RMII_RX_DV0	INPUT	Carrier sense/receive data valid port 0
	RMII_RX_DATA0[1:0]	INPUT	Receive data port 0
	RMII_RX_ERR0	INPUT	Receive error port 0
	RMII_TX_ENA0	OUTPUT	Transmit enable port 0
	RMII_TX_DATA0[1:0]	OUTPUT	Transmit data port 0
Port1 = RMII	nRMII_LINK1	INPUT	 100 Mbit/s (Full Duplex) link at port 1 no link at port 1
	RMII_RX_DV1	INPUT	Carrier sense/receive data valid port 1
	RMII_RX_DATA1[1:0]	INPUT	Receive data port 1
	RMII_RX_ERR1	INPUT	Receive error port 1
	RMII_TX_ENA1	OUTPUT	Transmit enable port 1
	RMII_TX_DATA1[1:0]	OUTPUT	Transmit data port 1

8.6 PDI Signals

8.6.1 General PDI Signals

Table 26 lists the signals available independent of the PDI configuration.

Table 25: General PDI Signals				
Condition	Name	Direction	Description	
	PDI_SOF	OUTPUT	Ethernet Start-of-Frame if 1	
	PDI_EOF	OUTPUT	Ethernet End-of-Frame if 1	
	PDI_WD_TRIGGER	OUTPUT	Process Data Watchdog trigger if 1	
	PDI_WD_STATE	OUTPUT	Process Data Watchdog state 0: Expired 1: Not expired	
GPIO Bytes > 0	PDI_GPI[8*Bytes-1:0]	INPUT	General purpose inputs (width configurable, 1/2/4/8 Bytes)	
GPIO Bytes > 0	PDI_GPO[8*Bytes-1:0]	OUTPUT	General purpose outputs (width N:0 configurable, 1/2/4/8 Bytes)	

8.6.2 Digital I/O Interface

Table 26 lists the signals used with the Digital I/O PDI.

Table 26: Digital I/O PDI

Condition	Name	Direction	Description
Byte 0 is Output	PDI_DIGI_DATA_OUT0 [7:0]	OUTPUT	Digital output byte 0
Byte 0 is Input	PDI_DIGI_DATA_IN0 [7:0]	INPUT	Digital input byte 0
Byte 1 is Output	PDI_DIGI_DATA_OUT1[7:0]	OUTPUT	Digital output byte 1
Byte 1 is Input	PDI_DIGI_DATA_IN1[7:0]	INPUT	Digital input byte 1
Byte 2 is Output	PDI_DIGI_DATA_OUT2[7:0]	OUTPUT	Digital output byte 2
Byte 2 is Input	PDI_DIGI_DATA_IN2[7:0]	INPUT	Digital input byte 2
Byte 3 is Output	PDI_DIGI_DATA_OUT3 [7:0]	OUTPUT	Digital output byte 3
Byte 3 is Input	PDI_DIGI_DATA_IN3[7:0]	INPUT	Digital input byte 3
If both, digital input and output selected	PDI_DIGI_DATA_ENA	OUTPUT	Digital output enable
any digital input selected and Input mode=Latch with ext. signal	PDI_DIGI_LATCH_IN	INPUT	Latch digital input at rising edge
any digital output	PDI_DIGI_OE_EXT	INPUT	External output enable
selected	PDI_DIGI_OUTVALID	OUTPUT	Output event: output valid

8.6.3 SPI Slave Interface

Table 27 used with an SPI PDI.

Condition	Name	Direction	Description	
SPI PDI	PDI_EMULATION	INPUT	Value for register 0x0140.8: 0: device status register is controlled by µC 1: device status register is identical to device control register	
	PDI_SPI_CLK	INPUT	SPI clock	
	PDI_SPI_SEL	INPUT	SPI slave select	
	PDI_SPI_DI	INPUT	SPI slave data in (MOSI)	
	PDI_SPI_IRQ	OUTPUT	SPI interrupt	
Tristate drivers inside core (SPI configuration)	PDI_SPI_DO	OUTPUT	SPI slave data out (MISO)	
External tristate drivers	PDI_SPI_DO_OUT	OUTPUT	SPI slave data out: IP Core → μC	
	PDI_SPI_DO_ENA	OUTPUT	0: disable output driver for PDI_SPI_DO_OUT 1: enable output driver for PDI_SPI_DO_OUT	

8.6.4 Asynchronous 8/16 Bit µController Interface

Table 28 lists the signals used with both, 8 Bit and 16 Bit asynchronous µController PDI.

Table	28:	8/16	Bit	µC PD	

Condition	Name	Direction	Description
	PDI_EMULATION	INPUT	Value for register 0x0140.8: 0: device status register is controlled by µC 1: device status register is identical to device control register
	PDI_uC_ADR[15:0]	INPUT	μC address bus
	PDI_uC_nBHE	INPUT	μC byte high enable
8/16 Bit µC	PDI_uC_nRD	INPUT	μC read access
	PDI_uC_nWR	INPUT	μC write access
	PDI_uC_nCS	INPUT	μC chip select
	PDI_uC_IRQ	OUTPUT	Interrupt
	PDI_uC_BUSY	OUTPUT	PDI busy
	PDI_uC_DATA_ENA	OUTPUT	0: disable output driver for PDI_uC_DATA_OUT 1: enable output driver for PDI_uC_DATA_OUT

8.6.4.1 8 Bit µController Interface

Table 29 lists the signals used with an 8 Bit μC PDI.

Table 29: 8 Bit µC PDI

Condition	Name	Direction	Description
Tristate drivers inside core (µController configuration)	PDI_uC_DATA[7:0]	BIDIR	µC data bus
External tristate drivers	PDI_uC_DATA_IN[7:0]	INPUT	µC data bus: µC → IP Core
	PDI_uC_DATA_OUT[7:0]	OUTPUT	μC data bus : IP Core → μC

8.6.4.2 16 Bit µController Interface

Table 30 lists the signals used with a 16 Bit μC PDI.

Condition	Name	Direction	Description
Tristate drivers inside core (µController configuration)	PDI_uC_DATA[15:0]	BIDIR	µC data bus
External tristate drivers	PDI_uC_DATA_IN[15:0]	INPUT	µC data bus: µC → IP Core
	PDI_uC_DATA_OUT[15:0]	OUTPUT	μC data bus: IP Core → μC

Table 30: 16 Bit µC PDI

8.6.5 PLB Processor Local Bus

Table 32 lists the signals used with the PLB v4.6 PDI.

	Table	31:	PLB	PDI
--	-------	-----	-----	-----

Condi- tion	Name	Direction	Description
	C_BASEADDR	GENERIC	PLB base address
	C_HIGHADDR	GENERIC	PLB end address
	C_SPLB_AWIDTH	GENERIC	PLB address bus width (only 32 supported)
	C_SPLB_DWIDTH	GENERIC	PLB data bus width (only 32 supported)
	C_SPLB_NATIVE_DWIDTH	GENERIC	Native data bus width
	C_SPLB_CLK_PERIOD_PS	GENERIC	PLB bus clock period in ps (\leq 40,000)
	C_SPLB_NUM_MASTERS	GENERIC	Number of masters
	C_SPLB_MID_WIDTH	GENERIC	Width of master ID
	C_SPLB_P2P	GENERIC	Peer-to-peer system
	C_SPLB_SUPPORT_BURSTS	GENERIC	Burst support (must be 0, not supported)
	PDI_PLB_SPLB_Clk	INPUT	PLB bus clock
	PDI_PLB_SPLB_Rst	INPUT	PLB bus reset
	PDI_PLB_ABus[0:31]	INPUT	PLB address bus
	PDI_PLB_UABus[0:31]	INPUT	PLB upper address bus (not supported)
	PDI_PLB_PAValid	INPUT	PLB primary address valid
PLB	PDI_PLB_SAValid	INPUT	PLB secondary address valid (ignored)
	PDI_PLB_rdPrim	INPUT	PLB secondary to primary read request (ignored)
	PDI_PLB_wrPrim	INPUT	PLB secondary to primary write request (ignored)
	PDI_PLB_masterID [0:C_SPLB_MID_WIDTH-1]	INPUT	PLB master ID
	PDI_PLB_abort	INPUT	PLB abort bus (ignored)
	PDI_PLB_busLock	INPUT	PLB bus lock (ignored)
	PDI_PLB_RNW	INPUT	PLB read not write
	PDI_PLB_BE (0:(C_SPLB_DWIDTH/8)-1)	INPUT	PLB byte enables
	PDI_PLB_MSize	INPUT	PLB master data bus size (ignored)
	PDI_PLB_size	INPUT	PLB transfer size (must be 0000)
	PDI_PLB_type	INPUT	PLB transfer type (must be 0)
	PDI_PLB_lockErr	INPUT	PLB lock error (ignored)
	PDI_PLB_wrDBus (0:C_SPLB_DWIDTH-1)	INPUT	PLB write data bus
	PDI_PLB_wrBurst	INPUT	PLB burst write transfer (ignored)
	PDI_PLB_rdBurst	INPUT	PLB burst read transfer (ignored)
	PDI_PLB_wrPendReq	INPUT	PLB pending write bus request (ignored)

Condi- tion	Name	Direction	Description
	PDI_PLB_rdPendReq	INPUT	PLB pending read bus request (ignored)
	PDI_PLB_wrPendPri(0:1)	INPUT	PLB pending write request priority (ignored)
	PDI_PLB_rdPendPri(0:1)	INPUT	PLB pending read request priority (ignored)
	PDI_PLB_reqPri(0:1)	INPUT	PLB current request priority (ignored)
	PDI_PLB_TAttribute(0:15)	INPUT	PLB transfer attribute bus (must be 0x0000)
	PDI_PLB_SI_addrAck	OUTPUT	Slave address acknowledge
	PDI_PLB_SI_SSize(0:1)	OUTPUT	Slave data bus size (always 00)
	PDI_PLB_SI_wait	OUTPUT	Slave wait
	PDI_PLB_SI_rearbitrate	OUTPUT	Slave rearbitrate bus (always 0)
	PDI_PLB_SI_wrDAck	OUTPUT	Slave write data acknowledge
	PDI_PLB_SI_wrComp	OUTPUT	Slave write transfer complete
	PDI_PLB_SI_wrBTerm	OUTPUT	Slave terminate write burst transfer (always 0)
	PDI_PLB_SI_rdDBus (0:C_SPLB_DWIDTH-1)	OUTPUT	Slave read data bus
	PDI_PLB_SI_rdWdAddr(0:3)	OUTPUT	Slave read word address (always 0)
	PDI_PLB_SI_rdDAck	OUTPUT	Slave read data acknowledge
	PDI_PLB_SI_rdComp	OUTPUT	Slave read transfer complete
	PDI_PLB_SI_rdBTerm	OUTPUT	Slave terminate read burst transfer (always 0)
	PDI_PLB_SI_MBusy (0:C_SPLB_NUM_MASTERS-1)	OUTPUT	Slave busy
	PDI_PLB_SI_MWrErr (0:C_SPLB_NUM_MASTERS-1)	OUTPUT	Slave write error (always 0)
	PDI_PLB_SI_MRdErr (0:C_SPLB_NUM_MASTERS-1)	OUTPUT	Slave read error (always 0)
	PDI_PLB_SI_MIRQ (0:C_SPLB_NUM_MASTERS-1)	OUTPUT	Slave interrupt (always 0)
	PDI_PLB_IRQ_MAIN	OUTPUT	Interrupt

The address range of the EtherCAT IP core should span at least 64 Kbyte (e.g., C_BASEADDR = 0x00010000 and C_HIGHADDR=0x0001FFFF). A larger address range results in less address decoding logic.

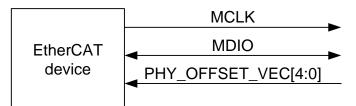
8.6.6 OPB On-Chip Peripheral Bus

Table 32 lists the signals used with the OPB PDI.

Condition	Name	Direction	Description
	C_BASEADDR	GENERIC	OPB base address of the IP core address range
	C_HIGHADDR	GENERIC	OPB end address of the IP core address range
	RESET_POL_ACT_HIGH	GENERIC	0: nReset polarity is active low 1: nReset polarity is active high
OPB PDI	PDI_EMULATION	INPUT	Value for register 0x0140.8: 0: device status register is controlled by μC 1: device status register is identical to device control register
	PDI_OPB_CLK	INPUT	N*25 MHz OPB bus clock from DLL (rising edge of CLK25 synchronous with rising edge of PDI_OPB_CLK)
	PDI_OPB_ABUS[0:31]	INPUT	OPB address bus
	PDI_OPB_DBUS[0:31]	INPUT	OPB data bus
	PDI_OPB_BE[0:3]	INPUT	OPB byte enable
	PDI_OPB_RNW	INPUT	OPB read/write access
	PDI_OPB_SELECT	INPUT	OPB select
	PDI_OPB_SEQADDR	INPUT	OPB sequential address
	PDI_OPB_SL_DBUS[0:31]	OUTPUT	Slave data bus
	PDI_OPB_SL_ERRACK	OUTPUT	Slave error acknowledge
	PDI_OPB_SL_RETRY	OUTPUT	Slave bus cycle retry
	PDI_OPB_SL_TOUTSUP	OUTPUT	Slave timeout suppress
	PDI_OPB_SL_XFERACK	OUTPUT	Slave transfer acknowledge
	PDI_OPB_IRQ	OUTPUT	Slave interrupt output

The address range of the EtherCAT IP core should span at least 64 Kbyte (e.g., C_BASEADDR = 0x00010000 and C_HIGHADDR=0x0001FFFF). A larger address range results in less address decoding logic.

Table 32: OPB PDI


9 Ethernet Interface

The IP Core is connected with Ethernet PHYs using MII or RMII interfaces. MII is recommended since the PHY delay (and delay jitter) is smaller in comparison to RMII.

9.1 PHY Management interface

9.1.1 PHY Management Interface Signals

The PHY management interface of the IP Core has the following signals:

Figure 26: PHY management Interface signals

Table 33: PHY management Interface signals

Signal	Direction	Description
MCLK	OUT	Management Interface clock (alias MCLK)
MDIO	BIDIR	Management Interface data (alias MDIO)
PHY_OFFSET_VEC[4:0]	INPUT	PHY address offset (consecutive PHY addresses, address of port 0)

MDIO must have a pull-up resistor (4.7 k Ω recommended for ESCs), either integrated into the ESC or externally. MCLK is driven rail-to-rail, idle value is High.

9.1.2 PHY Address Configuration

The EtherCAT IP Core addresses Ethernet PHYs typically using logical port number plus PHY address offset. Ideally, the Ethernet PHY addresses should correspond with the logical port number, so PHY addresses 0-2 are used.

A PHY address offset of 0-31 can be applied which moves the PHY addresses to any consecutive address range. The IP Core expects logical port 0 to have PHY address 0 plus PHY address offset (and so on).

9.1.3 Separate external MII management interfaces

If two separate external MII management interfaces are to be connected to the single MII management interface of the EtherCAT IP Core, some glue logic has to be added. Disable internal Tri-State drivers for the MII management bus and combine the signals according to the following figure. Take care of proper PHY address configuration: the PHYs need different PHY addresses.

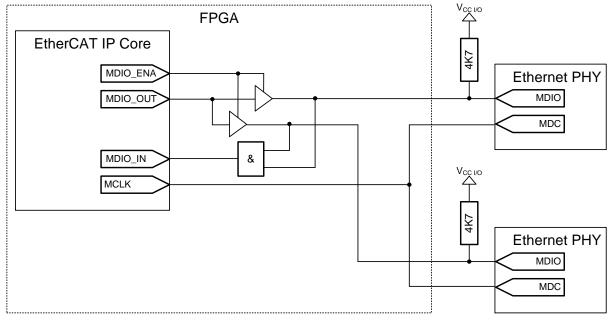


Figure 27: Example schematic with two individual MII management interfaces

9.1.4 MII management timing specifications

For MII Management Interface timing diagrams refer to Section I.

Parameter	Min	Тур	Max	Comment
t _{MI_startup}		1.34 ms		Time between reset end and the first access of via management interface
tcik		400 ns		MI_CLK period
twrite		~ 25.6 µs		MI Write access time
t _{Read}		~ 25.4 µs		MI Read access time

9.2 MII Interface

The MII interface of the IP Core is optimized for low processing/forwarding delays by omitting a transmit FIFO. To allow this, the IP Core has additional requirements to Ethernet PHYs, which are easily accomplished by several PHY vendors.

Refer to "Section I – Technology" for Ethernet PHY requirements.

Additional information regarding the IP Core:

- The clock source of the PHYs is the same as for the FPGA (25 MHz quartz oscillator)
- The signal polarity of nMII_LINK is not configurable inside the IP Core, nMII_LINK is active low. If necessary, the signal polarity must be swapped by user logic outside the IP Core.
- The IP Core can be configured to use the MII management interface for link detection and link configuration.
- The IP Core supports an arbitrary PHY address offset.

For details about the ESC MII Interface refer to Section I.

9.2.1 MII Interface Signals

The MII interface of the IP Core has the following signals:

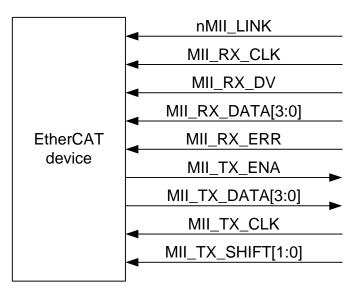


Figure 28: MII Interface signals

Table 35: MII Interface signals

Signal	Direction	Description
nMII_LINK	IN	Input signal provided by the PHY if a 100 Mbit/s (Full Duplex) link is established (alias LINK_MII)
MII_RX_CLK	IN	Receive Clock
MII_RX_DV	IN	Receive data valid
MII_RX_DATA[3:0]	IN	Receive data (alias RXD)
MII_RX_ERR	IN	Receive error (alias RX_ER)
MII_TX_ENA	OUT	Transmit enable (alias TX_EN)
MII_TX_DATA[3:0]	OUT	Transmit data (alias TXD)
MII_TX_CLK	IN	Transmit Clock for automatic TX Shift compensation
MII_TX_SHIFT[1:0]	IN	Manual TX Shift compensation with additional registers

9.2.2 TX Shift Compensation

Since IP Core and the Ethernet PHYs share the same clock source, TX_CLK from the PHY has a fixed phase relation to MII_TX_ENA/MII_TX_DATA from the IP Core. Thus, TX_CLK is not connected and the delay of a TX FIFO inside the IP Core is saved.

In order to fulfill the setup/hold requirements of the PHY, the phase shift between TX_CLK and MII_TX_ENA/MII_TX_DATA has to be controlled. There are several alternatives:

- TX Shift Compensation by specifying/verifying minimum and maximum clock-to-output times for MII_TX_ENA/MII_TX_DATA with respect to CLK_IN (PHY and PLL clock source).
- TX Shift compensation with additional delays for MII_TX_ENA/MII_TX_DATA of 10, 20, or 30 ns. Such delays can be added using the TX Shift feature and applying MII_TX_SHIFT[1:0].
 MII_TX_SHIFT[1:0] determine the delay in multiples of 10 ns for each port. For guaranteed timings, maximum clock-to-output times for MII_TX_ENA/MII_TX_DATA should be applied, too. Set MII_TX_CLK to 0 if manual TX Shift compensation is used.
- Automatic TX Shift compensation if the TX Shift feature is selected: connect MII_TX_CLK and the automatic TX Shift compensation will determine correct shift settings. For guaranteed timings, maximum clock-to-output times for MII_TX_ENA/MII_TX_DATA should be applied, too. Set manual TX Shift compensation to 0 in this case.

MII_TX_ENA and MII_TX_DATA are generated synchronous to CLK25, although the source registers are both CLK25 and CLK100 registers.

The PLL/DCM has to use a configuration which guarantees a fixed phase relation between clock input and CLK25/CLK100 output, in order to enable TX shift compensation for the MII TX signals.

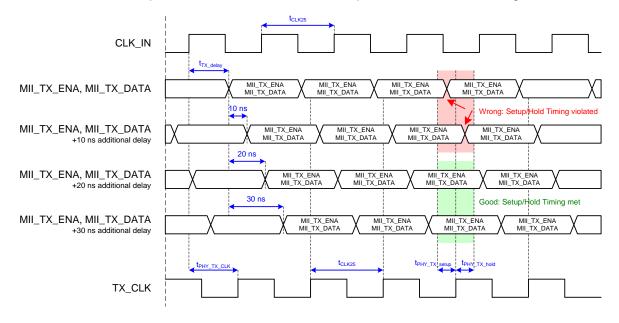


Figure 29: MII TX Timing Diagram

Parameter	Comment
t _{CLK25}	25 MHz quartz oscillator (CLK_IN)
t _{TX_delay}	MII_TX_ENA/MII_TX_DATA[3:0] delay after rising edge of CLK_IN, depends on synthesis results
tphy_tx_clk	Delay between PHY clock source and TX_CLK output of the PHY, PHY dependent
tPHY_TX_setup	PHY setup requirement: TX_ENA/TX_DATA with respect to TX_CLK (PHY dependent, IEEE802.3 limit is 15 ns)
$t_{PHY_TX_hold}$	PHY hold requirement: TX_ENA/TX_DATA with respect to TX_CLK (PHY dependent, IEEE802.3 limit is 0 ns)

Table 36: MII TX Timing characteristics

If the phase shift between CLK25 and TX_CLK should not be constant for a some special PHYs, additional FIFOs for MII_TX_ENA/MII_TX_DATA are necessary. The FIFO input uses CLK25, the FIFO output TX_CLK[0] or TX_CLK[1] respectively.

NOTE: The phase shift can be adjusted by displaying TX_CLK of a PHY and MII_TX_ENA/MII_TX_DATA[3:0] on an oscilloscope. MII_TX_ENA/MII_TX_DATA[3:0] is allowed to change between 0 ns and 25 ns after a rising edge of TX_CLK (according to IEEE802.3 – check your PHY's documentation). Setup phase shift so that MII_TX_ENA/MII_TX_DATA[3:0] change near the middle of this range. MII_TX_ENA/MII_TX_DATA[3:0] signals are generated at the same time.

9.2.3 MII Timing specifications

Table 37: MII timing characteristics

Parameter	Min	Тур	Max	Comment
t _{RX_CLK}	4	0 ns ± 100 ppm		RX_CLK period (100 ppm with maximum FIFO Size only)
t _{RX_setup}	Х ³			RX_DV/RX_DATA/RX_D[3:0] valid before rising edge of RX_CLK
t _{RX_hold}	Х ³			RX_DV/RX_DATA/RX_D[3:0] valid after rising edge of RX_CLK

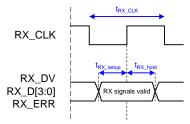


Figure 30: MII timing RX signals

³ EtherCAT IP Core: time depends on synthesis results

9.2.4 MII example schematic

Refer to chapter 8.4 for more information on special markings (!). Take care of proper compensation of the TX_CLK phase shift.

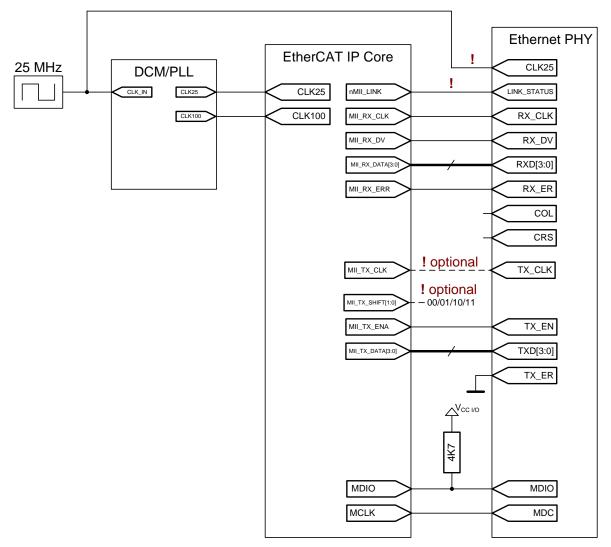


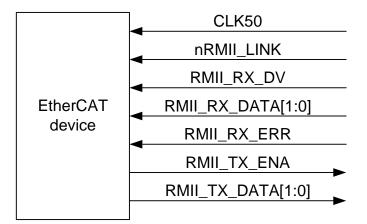
Figure 31: MII example schematic

9.3 RMII Interface

The IP Core supports RMII with 2 communication ports. Nevertheless, MII is recommended since the PHY delay (and delay jitter) is smaller in comparison to RMII.

The Beckhoff ESCs have additional requirements to Ethernet PHYs using RMII, which are easily accomplished by several PHY vendors.

Refer to "Section I – Technology" for Ethernet PHY requirements.


Additional information regarding the IP Core:

- The clock source of the PHYs is the same as for the FPGA (25 MHz quartz oscillator)
- The signal polarity of nRMII_LINK is not configurable inside the IP Core, nRMII_LINK is active low. If necessary, the signal polarity must be swapped outside the IP Core.
- The IP Core can be configured to use the MII management interface for link detection and link configuration.
- The IP Core supports an arbitrary PHY address offset.

For details about the ESC RMII Interface refer to Section I.

9.3.1 RMII Interface Signals

The RMII interface of the IP Core has the following signals:

Figure 32: RMII Interface signals

Table 38: RMII Interface signals

Signal	Direction	Description
CLK50	IN	RMII RX/TX reference clock (50 MHz)
nRMII_LINK	IN	Input signal provided by the PHY if a 100 Mbit/s (Full Duplex) link is established (alias LINK_MII)
RMII_RX_DV	IN	Carrier sense/receive data valid
RMII_RX_DATA[1:0]	IN	Receive data (alias RXD)
RMII_RX_ERR	IN	Receive error (alias RX_ER)
RMII_TX_ENA	OUT	Transmit enable (alias TX_EN)
RMII_TX_DATA[1:0]	OUT	Transmit data (alias TXD)

9.3.2 RMII example schematic

Refer to chapter 8.4 for more information on special markings (!). Take care of proper PHY address configuration.

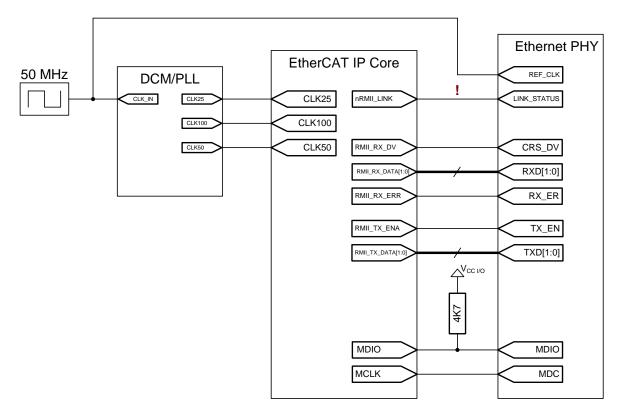


Figure 33: RMII example schematic

10 PDI Description

PDI number 0x0140	On-ch	ip bus	PDI name	IP Core
[7:0]	0x0150 [7:5]	0x0152 [10:8]		ЪО
0x00	-	-	Interface deactivated	х
0x01	-	-	4 Digital Input	
0x02	-	-	4 Digital Output	
0x03	-	-	2 Digital Input and 2 Digital Output	
0x04	-	-	Digital I/O	х
0x05	-	-	SPI Slave	х
0x06	-	-	Oversampling I/O	
0x07	-	-	EtherCAT Bridge (port 3)	
0x08	-	-	16 Bit asynchronous Microcontroller interface	х
0x09	-	-	8 Bit asynchronous Microcontroller interface	х
0x0A	-	-	16 Bit synchronous Microcontroller interface	
0x0B	-	-	8 Bit synchronous Microcontroller interface	
0x10	-	-	32 Digital Input/0 Digital Output	
0x11	-	-	24 Digital Input/8 Digital Output	
0x12	-	-	16 Digital Input/16 Digital Output	
0x13	-	-	8 Digital Input/24 Digital Output	
0x14	-	-	0 Digital Input/32 Digital Output	
0x80	000	-	On-chip bus (Avalon)	
	001	000	On-chip bus (AXI3)	
		001	On-chip bus (AXI4)	
		010	On-chip bus (AXI4LITE)	
	010	-	On-chip bus (PLB v4.6)	х
	100	-	On-chip bus (OPB)	х
Others			Reserved	

Table 39: Available PDIs for EtherCAT IP Core

10.1 Digital I/O Interface

10.1.1 Interface

The Digital I/O PDI is selected with PDI type 0x04. The signals of the Digital I/O interface are⁴:

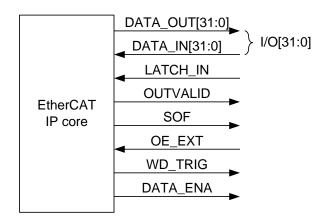


Figure 34: IP core digital I/O signals

Table 40: IP core digital I/O signals

Signal	Direction	Description	Signal polarity
DATA_OUT[31:0]	OUT	Output data	
DATA_IN[31:0]	IN	Input data	
LATCH_IN	IN	External data latch signal	act. high
OUTVALID	OUT	Output data is valid/Output event	act. high
SOF	OUT	Start of Frame	act. high
OE_EXT	IN	Output Enable	act. high
WD_TRIG	OUT	Watchdog Trigger	act. high
DATA_ENA	OUT	Enable external Output data driver	act. high

NOTE: Unsupported Digital I/O control signal OE_CONF is assumed to be low.

The Digital I/O PDI supports 1-4 byte of digital I/O signals, with each byte individually configurable as either input or output. At the IP core interface, the I/O signals are separated in input signals (DATA_IN) and output signals (DATA_OUT). The corresponding I/O bytes and addresses are listed below.

Table 41: Input/Output byte reference

I/O Byte	I/O signal	Output signal	Output address	Input signal	Input address
0	I/O[7:0]	DATA_OUT[7:0]	0x0F00	DATA_IN[7:0]	0x1000
1	I/O[15:8]	DATA_OUT[15:8]	0x0F01	DATA_IN[15:8]	0x1001
2	I/O[23:16]	DATA_OUT[23:16]	0x0F02	DATA_IN[23:16]	0x1002
3	I/O[31:24]	DATA_OUT[31:24]	0x0F03	DATA_IN[31:24]	0x1003

⁴ The prefix `PDI_DIGI_` is added to the Digital I/O interface signals if the EtherCAT IP Core is used.

10.1.2 Configuration

The Digital I/O interface is selected with PDI type 0x04 in the PDI control register 0x0140. It supports different configurations, which are located in registers 0x0150 – 0x0153.

10.1.3 Digital Inputs

Digital input values appear in the process memory at address 0x1000:0x1003. EtherCAT devices use Little Endian byte ordering, so I/O[7:0] can be read at 0x1000 etc. Digital inputs are written to the process memory by the Digital I/O PDI using standard PDI write operations.

Digital inputs can be configured to be sampled by the ESC in four ways:

- Digital inputs are sampled at the start of each Ethernet frame, so that EtherCAT read commands to address 0x1000:0x1003 will present digital input values sampled at the start of the same frame. The SOF signal can be used externally to update the input data, because the SOF is signaled before input data is sampled.
- The sample time can be controlled externally by using the LATCH_IN signal. The input data is sampled by the ESC each time a rising edge of LATCH_IN is recognized.
- Digital inputs are sampled at Distributed Clocks SYNC0 events.
- Digital inputs are sampled at Distributed Clocks SYNC1 events.

For Distributed Clock SYNC input, SYNC generation must be activated (register 0x0981). SYNC output is not necessary (register 0x0151). SYNC pulse length (registers 0x0982:0x0983) should not be set to 0, because acknowledging of SYNC events is not possible with Digital I/O PDI. Sample time is the beginning of the SYNC event.

10.1.4 Digital Outputs

Digital Output values have to be written to register 0x0F00:0x0F03 (register 0x0F00 controls I/O[7:0] etc.). Digital Output values are not read by the Digital I/O PDI using standard read commands, instead, there is a direct connection for faster response times.

The process data watchdog (register 0x0440) has to be either active or disabled; otherwise digital outputs will not be updated. Digital outputs can be configured to be updated in four ways:

- Digital Outputs are updated at the end of each EtherCAT frame (EOF mode).
- Digital outputs are updated with Distributed Clocks SYNC0 events (DC SYNC0 mode).
- Digital outputs are updated with Distributed Clocks SYNC1 events (DC SYNC1 mode).
- Digital Outputs are updated at the end of an EtherCAT frame which triggered the Process Data Watchdog (with typical SyncManager configuration: a frame containing a write access to at least one of the registers 0x0F00:0x0F03). Digital Outputs are only updated if the EtherCAT frame was correct (WD_TRIG mode).

For Distributed Clock SYNC output, SYNC generation must be activated (register 0x0981). SYNC output is not necessary (register 0x0151). SYNC pulse length (registers 0x0982:0x0983) should not be set to 0, because acknowledging of SYNC events is not possible with Digital I/O PDI. Output time is the beginning of the SYNC event.

An output event is always signaled by a pulse on OUTVALID even if the digital outputs remain unchanged.

For output data to be visible on the I/O signals, the following conditions have to be met:

- SyncManager watchdog must be either active (triggered) or disabled.
- OE_EXT (Output enable) must be high,.
- Output values have to be written to the registers 0x0F00:0x0F03 within a valid EtherCAT frame.
- The configured output update event must have occurred.

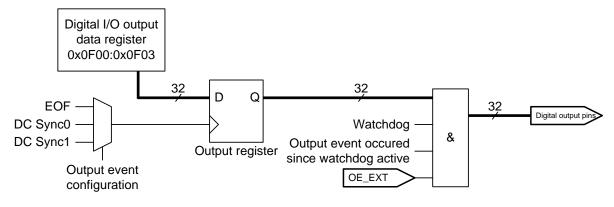


Figure 35: Digital Output Principle Schematic

NOTE: The Digital Outputs are not driven (high impedance) until the EEPROM is loaded. Depending on the FPGA configuration, Digital Outputs (like all other FPGA user pins) might have pull-up resistors until the FPGA has loaded its configuration. This behaviour has to be taken into account when using digital output signals.

10.1.5 Output Enable

The IP Core has an Output Enable signal OE_EXT. With the OE_EXT signal, the I/O signals can be cleared. The I/O signals will be driven low after the output enable signal OE_EXT is set to low or the SyncManager Watchdog is expired (and not disabled).

10.1.6 SyncManager Watchdog

The SyncManager watchdog (registers 0x0440:0x0441) must be either active (triggered) or disabled for output values to appear on the I/O signals. The SyncManager Watchdog is triggered by an EtherCAT write access to the output data registers.

If the output data bytes are written independently, a SyncManager with a length of 1 byte is used for each byte of 0x0F00:0x0F03 containing output bits (SyncManager N configuration: buffered mode, EtherCAT write/PDI read, and Watchdog Trigger enabled: 0x44 in register 0x0804+N*8). Alternatively, if all output data bits are written together in one EtherCAT command, one SyncManager with a length of 1 byte is sufficient (SyncManager N configuration: buffered mode, EtherCAT write/PDI read, and Watchdog Trigger 0x0804+N*8). The start address of the SyncManager should be one of the 0x0F00:0x0F03 bytes containing output bits, e.g., the last byte containing output bits.

The SyncManager Watchdog can also be disabled by writing 0 into registers 0x0420:0x0421.

The Watchdog Mode configuration bit is used to configure if the expiration of the SyncManager Watchdog will have an immediate effect on the I/O signals (output reset immediately after watchdog timeout) or if the effect is delayed until the next output event (output reset with next output event). The latter case is especially relevant for Distributed Clock SYNC output events, because any output change will occur at the configured SYNC event.

For external watchdog implementations, the WD_TRIG (watchdog trigger) signal can be used. A WD_TRIG pulse is generated if the SyncManager Watchdog is triggered. In this case, the internal SyncManager Watchdog should be disabled, and the external watchdog may use OE_EXT to reset the I/O signals if the watchdog is expired. For devices without the WD_TRIG signal, OUTVALID can be configured to reflect WD_TRIG.

10.1.7 SOF

SOF indicates the start of an Ethernet/EtherCAT frame. It is asserted shortly after RX_DV=1 or EBUS SOF. Input data is sampled in the time interval between tsoF_to_DATA_setup and tsoF_to_DATA_setup after the SOF signal is asserted.

10.1.8 OUTVALID

A pulse on the OUTVALID signal indicates an output event. If the output event is configured to be the end of a frame, OUTVALID is issued shortly after RX_DV=0 or EBUS EOF, right after the CRC has been checked and the internal registers have taken their new values. OUTVALID is issued independent of actual output data values, i.e., it is issued even if the output data does not change.

10.1.9 Timing specifications

Parameter	Min	Max	Comment
t _{DATA_setup}	x ⁵		Input data valid before LATCH_IN
t _{DATA_hold}	x ⁵		Input data valid after LATCH_IN
t _{LATCH_IN}	x ⁵		LATCH_IN high time
t _{SOF}	40 ns – x ⁵	40 ns + x ⁵	SOF high time
$t_{\text{SOF_to_DATA_setup}}$	0 ns	1,2 µs - x⁵	Input data valid after SOF, so that Inputs can be read in the same frame
$t_{\text{SOF}_{to}_{DATA}_{hold}}$	1,6 µs + x⁵		Input data invalid after SOF
tinput_event_delay	440 ns		Time between consecutive input events
toutvalid	80 ns – x ⁵	80 ns + x ⁵	OUTVALID high time
	80 ns – x ⁵		Output data valid before OUTVALID
twd_trig	40 ns – x ⁵	40 ns + x ⁵	WD_TRIG high time
tDATA_to_WD_TRIG		20 ns + x ⁵	Output data valid after WD_TRIG
$t_{\text{OE}_\text{EXT_to}_\text{DATA}_\text{invalid}}$	0 ns	X ⁵	Outputs zero or Outputs high impedance after OE_EXT set to low
toutput_event_delay	320 ns		Time between consecutive output events
tout_ena_valid	80 ns – x ⁵		OUT_ENA valid before OUTVALID
tout_ena_invalid	80 ns – x⁵		OUT_ENA invalid after OUTVALID

Table 42: Digital I/O timing characteristics IP Core

⁵ EtherCAT IP Core: time depends on synthesis results

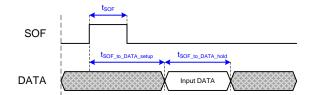


Figure 36: Digital Input: Input data sampled at SOF, I/O can be read in the same frame

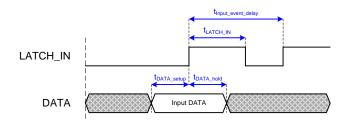
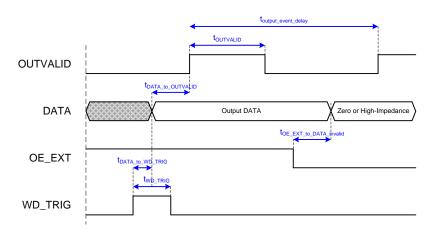



Figure 37: Digital Input: Input data sampled with LATCH_IN

10.2 SPI Slave Interface

10.2.1 Interface

An EtherCAT device with PDI type 0x05 is an SPI slave. The SPI has 5 signals: SPI_CLK, SPI_DI (MOSI), SPI_DO (MISO), SPI_SEL and SPI_IRQ⁶:

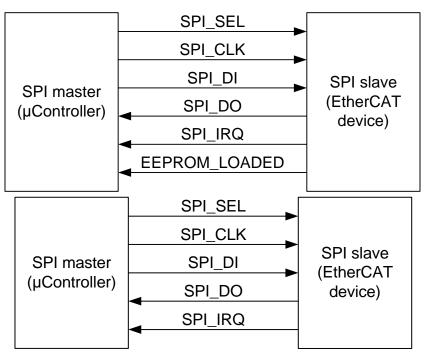


Figure 40: SPI master and slave interconnection

Table 43: SPI signals

Signal	Direction		Description	Signal polarity
SPI_SEL	IN	(master \rightarrow slave)	SPI chip select	Typical: act. low
SPI_CLK	IN	(master \rightarrow slave)	SPI clock	
SPI_DI	IN	(master \rightarrow slave)	SPI data MOSI	act. high
SPI_DO	OUT	(slave \rightarrow master)	SPI data MISO	act. high
SPI_IRQ	OUT	(slave \rightarrow master)	SPI interrupt	Typical: act. low

10.2.2 Configuration

The SPI slave interface is selected with PDI type 0x05 in the PDI control register 0x0140. It supports different timing modes and configurable signal polarity for SPI_SEL and SPI_IRQ. The SPI configuration is located in register 0x0150.

⁶ The prefix `PDI_` is added to the SPI signals if the EtherCAT IP Core is used.

10.2.3 SPI access

Each SPI access is separated into an address phase and a data phase. In the address phase, the SPI master transmits the first address to be accessed and the command. In the data phase, read data is presented by the SPI slave (read command) or write data is transmitted by the master (write command). The address phase consists of 2 or 3 bytes depending on the address mode. The number of data bytes for each access may range from 0 to N bytes. The slave internally increments the address for the following bytes after reading or writing the start address. The bits of both address/command and data are transmitted in byte groups.

The master starts an SPI access by asserting SPI_SEL and terminates it by taking back SPI_SEL (polarity determined by configuration). While SPI_SEL is asserted, the master has to cycle SPI_CLK eight times for each byte transfer. In each clock cycle, both master and slave transmit one bit to the other side (full duplex). The relevant edges of SPI_CLK for master and slave can be configured by selecting SPI mode and Data Out sample mode.

The most significant bit of a byte is transmitted first, the least significant bit last, the byte order is low byte first. EtherCAT devices use Little Endian byte ordering.

10.2.4 Address modes

The SPI slave interface supports two address modes, 2 byte addressing and 3 byte addressing. With two byte addressing, the lower 13 address bits A[12:0] are selected by the SPI master, while the upper 3 bits A[15:13] are assumed to be 000b inside the SPI slave, thus only the first 8 Kbyte in the EtherCAT slave address space can be accessed. Three byte addressing is used for accessing the whole 64 Kbyte address space of an EtherCAT slave.

For SPI masters which do only support consecutive transfers of more than one byte, additional Address Extension commands can be inserted.

Byte	2 Byte add	ress mode	3 Byte address mode		
0	A[12:5]	address bits [12:5]	A[12:5]	address bits [12:5]	
1	A[4:0] CMD0[2:0]	address bits [4:0] read/write command	A[4:0] CMD0[2:0]	address bits [4:0] 3 byte addressing: 110b	
2	D0[7:0]	data byte 0	A[15:13] CMD1[2:0] res[1:0]	address bits [15:13] read/write command two reserved bits, set to 00b	
3	D1[7:0]	data byte 1	D0[7:0]	data byte 0	
4 ff.	D2[7:0]	data byte 2	D1[7:0]	data byte 1	

Table 44: Address modes

10.2.5 Commands

The command CMD0 in the second address/command byte may be READ, READ with following Wait State bytes, WRITE, NOP, or Address Extension. The command CMD1 in the third address/command byte may have the same values:

CMD[2]	CMD[1]	CMD[0]	Command	
0	0	0	NOP (no operation)	
0	0	1	reserved	
0	1	0	Read	
0	1	1	Read with following Wait State bytes	
1	0	0	Write	
1	0	1	reserved	
1	1	0	Address Extension (3 address/command bytes)	
1	1	1	reserved	

Table 45: SPI commands CMD0 and CMD1

10.2.6 Interrupt request register (AL Event register)

During the address phase, the SPI slave transmits the PDI interrupt request registers 0x0220-0x0221 (2 byte address mode), and additionally register 0x0222 for 3 byte addressing on SPI_DO (MISO):

	2 Byte address mode			3 Byte address mode		
Byte	SPI_DI (MOSI)	SPI_DO (MISO)		SPI_DI (MOSI)	SPI_DO (MISO)	
0	A[12:5]	10[7:0]	interrupt request register 0x0220	A[12:5]	10[7:0]	interrupt request register 0x0220
1	A[4:0] CMD0[2:0]	l1[7:0]	interrupt request register 0x0221	A[4:0] CMD0[2:0]	l1[7:0]	interrupt request register 0x0221
2	(Data phase)		A[15:13] CMD1[2:0]	I2[7:0]	interrupt request register 0x0222

Table 46: Interrupt request register transmission

10.2.7 Write access

In the data phase of a write access, the SPI master sends the write data bytes to the SPI slave (SPI_DI/MOSI). The write access is terminated by taking back SPI_SEL after the last byte. The SPI_DO signal (MISO) is undetermined during the data phase of write accesses.

10.2.8 Read access

In the data phase of a read access, the SPI slave sends the read data bytes to the SPI master (SPI_DO/MISO).

10.2.8.1 Read Wait State

Between the last address phase byte and the first data byte of a read access, the SPI master has to wait for the SPI slave to fetch the read data internally. Subsequent read data bytes are prefetched automatically, so no further wait states are necessary.

The SPI master can choose between these possibilities:

- The SPI master may either wait for the specified worst case internal read time t_{read} after the last address/command byte and before the first clock cycle of the data phase.
- The SPI master inserts one Wait State byte after the last address/command byte. The Wait State byte must have a value of 0xFF transferred on SPI_DI.

10.2.8.2 Read Termination

The SPI_DI signal (MOSI) is used for termination of the read access by the SPI master. For the last data byte, the SPI master has to set SPI_DI to high (Read Termination byte = 0xFF), so the slave will not prefetch the next read data internally. If SPI_DI is low during a data byte transfer, at least one more byte will be read by the master afterwards.

10.2.9 SPI access errors and SPI status flag

The following reasons for SPI access errors are detected by the SPI slave:

- The number of clock cycles recognized while SPI_SEL is asserted is not a multiple of 8 (incomplete bytes were transferred).
- For a read access, a clock cycle occurred while the slave was busy fetching the first data byte.
- For a read access, the data phase was not terminated by setting SPI_DI to high for the last byte.
- For a read access, additional bytes were read after termination of the access.

A wrong SPI access will have these consequences:

- Registers will not accept write data (nevertheless, RAM will be written).
- Special functions are not executed (e.g., SyncManager buffer switching).
- The PDI error counter 0x030D will be incremented.
- A status flag will indicate the error until the next access (not for SPI mode 0/2 with normal data out sample)

A status flag, which indicates if the last access had an error, is available in any mode except for SPI mode 0/2 with normal data out sample. The status flag is presented on SPI_DO (MISO) after the slave is selected (SPI_SEL) and until the first clock cycle occurs. So the status can be read either between two accesses by assertion of SPI_SEL without clocking, or at the beginning of an access just before the first clock cycle. The status flag will be high for a good access, and low for a wrong access.

The reason of the access error can be read in the PDI error code register 0x030E.

10.2.10 2 Byte and 4 Byte SPI Masters

Some SPI masters do not allow an arbitrary number of bytes per access, the number of bytes per access must be a multiple of 2 or 4 (maybe even more). The SPI slave interface supports such masters. The length of the data phase is in control of the master and can be set to the appropriate length, the length of the address phase has to be extended. The address phase of a read access can be set to a multiple of 2/4 by using the 3 byte address mode and a wait state byte. The address phase of a write access can be enhanced to 4 bytes using 3 byte address mode and an additional address extension byte (byte 2) according to Table 47.

Byte	2 Byte SPI	master	4 Byte SPI	master
0	A[12:5]	address bits [12:5]	A[12:5]	address bits [12:5]
1	A[4:0] CMD0[2:0]	address bits [4:0] write command: 100b	A[4:0] CMD0[2:0]	address bits [4:0] 3 byte addressing: 110b
2	D0[7:0]	data byte 0	A[15:13] CMD1[2:0] res[1:0]	address bits [15:13] 3 byte addressing: 110b two reserved bits, set to 00b
3	D1[7:0]	data byte 1	A[15:13] CMD2[2:0] res[1:0]	address bits [15:13] write command: 100b two reserved bits, set to 00b
4	D2[7:0]	data byte 2	D0[7:0]	data byte 0
5	D3[7:0]	data byte 3	D1[7:0]	data byte 1
6	D4[7:0]	data byte 4	D2[7:0]	data byte 2
7	D5[7:0]	data byte 5	D3[7:0]	data byte 3

Table 47: Write access for 2 and 4 Byte SPI Masters

NOTE: The address phase of a write access can be further extended by an arbitrary number of address extension bytes containing 110b as the command. The address phase of a read access can also be enhanced with additional address extension bytes (the read wait state has to be maintained anyway). The address portion of the last address extension byte is used for the access.

10.2.11 Timing specifications

Parameter	Min	Max	Comment
tськ	33 ns+x ⁷		SPI_CLK frequency (f _{CLK} ≤ 30 MHz)
tsel_to_CLK	x ⁷		First SPI_CLK cycle after SPI_SEL asserted
tclk_to_SEL	a) x ⁷ b) t _{CLK} /2+ x ⁷		Deassertion of SPI_SEL after last SPI_CLK cycle a) SPI mode 0/2, SPI mode 1/3 with normal data out sample b) SPI mode 1/3 with late data out sample
t _{read}	240 ns		Only for read access between address/command and first data byte. Can be ignored if BUSY or Wait State Bytes are used.
tco_to_BUSY_OE	tськ		BUSY OUT Enable assertion after sample time of last command bit C0.
t _{BUSY_valid}		X ⁷	BUSY valid after BUSY OUT Enable
$t_{BUSY_OE_to_DO_valid}$		X ⁷	Only for SPI mode 0/2 with normal data out sampling: Data byte 0 bit 7 valid after deassertion of BUSY OUT Enable
tSEL_to_DO_valid		x ⁷	Status/Interrupt Byte 0 bit 7 valid after SPI_SEL asserted
tsel_to_DO_invalid	0 ns	x ⁷	Status/Interrupt Byte 0 bit 7 invalid after SPI_SEL deasserted
t _{STATUS_valid}	x ⁷		Time until status of last access is valid. Can be ignored if status is not used.
taccess_delay	X ⁷		Delay between SPI accesses
t _{DI_setup}	X ⁷		SPI_DI valid before SPI_CLK edge
t _{DI_hold}	X ⁷		SPI_DI valid after SPI_CLK edge
t _{CLK_to_DO_valid}		X ⁷	SPI_DO valid after SPI_CLK edge
tclk_to_DO_invalid	0 ns		SPI_DO invalid after SPI_CLK edge
t _{IRQ_delay}	160	ns	Internal delay between AL event and SPI_IRQ output to enable correct reading of the interrupt registers.

Table 48: SPI timing characteristics IP Core

⁷ EtherCAT IP Core: time depends on synthesis results

Symbol	Comment
A15A0	Address bits [15:0]
D0_7D0_0	Data bits byte 0 [7:0]
D1_7D1_0	Data bits byte 1 [7:0]
I0_7I0_0	Interrupt request register 0x0220 [7:0]
I1_7I1_0	Interrupt request register 0x0221 [7:0]
I2_7I2_0	Interrupt request register 0x0222 [7:0]
C0_2C0_0	Command 0 [2:0]
C1_2C1_0	Command 1 [2:0] (3 byte addressing)
Status	0: last SPI access had errors 1: last SPI access was correct
BUSY OUT	0: No Busy output, tread is relevant
Enable	1: Busy output on SPI_DO (edge sensitive)
BUSY	0: SPI slave has finished reading first byte1: SPI slave is busy reading first byte

Table 49: Read/Write timing diagram symbols

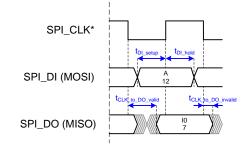
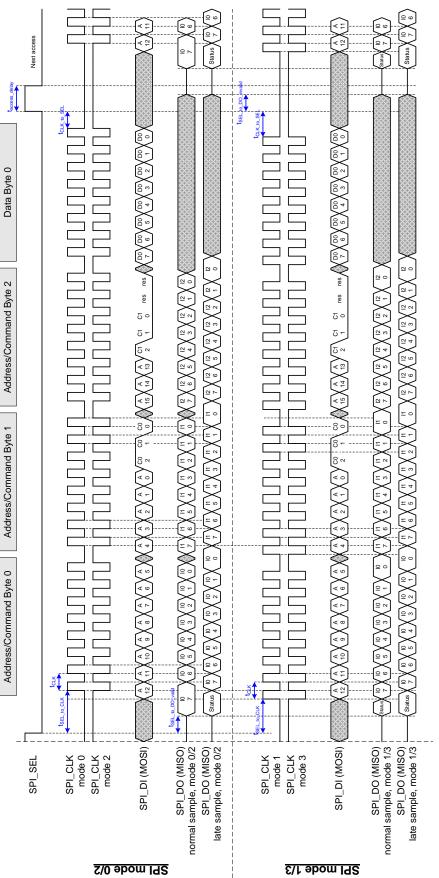



Figure 41: Basic SPI_DI/SPI_DO timing (*refer to timing diagram for relevant edges of SPI_CLK)

					SEL 0 D0 hould			
Data Byte 0			Read Termination byte	$\left(\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\right) \left(\begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\right) \left(\begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\right) \left(\begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\right) \left(\begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\right) \left(\begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\right) \left(\begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \\ \end{array}\right) \left(\begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \\ \end{array}\\ \\ \end{array}\right) \left(\begin{array}{c} \end{array}\\ \end{array}\\ \\ \end{array}\\ \\ \end{array}\right) \left(\begin{array}{c} \end{array}\\ \\ \end{array}\\ \\ \end{array}\\ \\ \\ \end{array}\right) \left(\begin{array}{c} \end{array}\\ \\ \end{array}\\ \\ \end{array}\\ \\ \\ \end{array}\right) \left(\begin{array}{c} \end{array}\\ \\ \end{array}\\ \\ \\ \end{array}\right) \left(\begin{array}{c} \\\\ \end{array}\\ \\ \end{array}\\ \\ \\ \end{array}\right) \left(\begin{array}{c} \\\\ \end{array}\\ \\ \\ \\ \\ \end{array}\right) \left(\begin{array}{c} \\\\ \end{array}\\ \\ \\ \\ \end{array}\right) \left(\begin{array}{c} \\\\ \end{array}\\ \\ \\ \\ \end{array}\right) \left(\begin{array}{c} \\\\ \end{array}\\ \\ \\ \\ \\ \end{array}\right) \left(\begin{array}{c} \\\\ \end{array}\\ \\ \\ \\ \end{array}\right) \left(\begin{array}{c} \\\\ \end{array}\\ \\ \\ \\ \end{array}\right) \left(\begin{array}{c} \\\\ \end{array}\\ \\ \\ \end{array}\right) \left(\begin{array}{c} \\\\ \end{array}\\ \\ \\ \end{array}\right) \left(\begin{array}{c} \\\\ \end{array}\\ \\ \end{array}\right) \left(\begin{array}{c} \\\\ \end{array}\\ \\ \end{array}\\ \\ \\ \end{array}\right) \left(\begin{array}{c} \\\\ \end{array}\\ \\ \\ \end{array}\right) \left(\begin{array}{c} \\\\ \end{array}\\ \\ \\ \\ \end{array}$ \\\left(\begin{array}{c} \\\\ \end{array}\\ \\ \end{array}\right) \left(\begin{array}{c} \\\\ \end{array}\\ \\ \\ \end{array} \\\left(\begin{array}{c} \\\\ \end{array}\\ \\ \\ \end{array}\right) \left(\begin{array}{c} \\\\ \end{array}\\ \\ \\ \end{array} \\\bigg) \left(\begin{array}{c} \\\\ \end{array}\\ \\ \\ \end{array} \\\bigg) \left(\begin{array}{c} \\\\ \end{array}\\ \\ \\ \end{array} \\\left(\begin{array}{c} \\\\ \end{array}\\ \\ \\ \end{array} \\\left(\begin{array}{c} \\\\ \end{array}\\ \\ \end{array} \\\bigg) \left(\begin{array}{c} \\\\ \end{array}\\ \\ \end{array} \\\bigg) \left(\begin{array}{c} \\\\ \end{array}\\ \\ \\ \end{array} \\\bigg) \left(\begin{array}{c} \\\\ \end{array}\\ \\\\ \end{array}\\ \\ \\ \end{array} \\\bigg) \left(\begin{array}{c} \\\\ \end{array}\\ \\\\ \end{array} \\\bigg \\\bigg) \left(\begin{array}{c} \\\\ \end{array}\\ \\\\ \end{array} \\\bigg) \left(\begin{array}\\ \\\\ \end{array} \\\bigg \\\bigg) \left(\begin{array}\\ \\\\ \end{array} \\\bigg) \left(\begin{array}\\ \\\\ \end{array}\\ \\\\ \end{array} \\\bigg) \left(\begin{array}\\ \\\\ \end{array}\\ \\\\ \end{array} \\\bigg) \left(\begin{array}\\ \\\\ \end{array}\\ \\\\ \\\\ \end{array} \\\bigg) \left(\end{array}\\ \\\\ \\\\ \\\\ \\\\ \end{array} \\\bigg) \left(\end{array}\\ \\\\ \\\\ \\\\ \\\\\\ \end{array} \\\bigg) \left(\end{array}\\ \\\\ \\\\ \\\\ \\\\\\ \\\\\\ \\\\\\ \end{array} \\\bigg \\\bigg \\\bigg) \left(\end{array}\\ \\\\ \\\\ \\\\ \\\\\\ \\\\\\ \\\\\\ \\\\\\\\\\ \end{array} \\\bigg \\\bigg		Read Termination byte	$\left(\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\right) \left(\begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\right) \left(\begin{array}{c} \end{array}\\ \end{array}\right) \left(\begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\right) \left(\begin{array}{c} \end{array}\\ \end{array}\right) \left(\begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\right) \left(\begin{array}{c} \end{array}\end{array}\right) \left(\begin{array}{c} \end{array}\bigg) \left(\begin{array}{c} \end{array}\end{array}\right) \left(\begin{array}{c} \end{array}\end{array}\right) \left(\begin{array}{c} \end{array}\end{array}\right) \left(\begin{array}{c} \end{array}\end{array}\right) \left(\begin{array}{c} \end{array}\end{array}$ \left) \left(\begin{array}{c} \end{array}\end{array}\right) \left(\begin{array}{c} \end{array}\end{array}\right) \left(\begin{array}{c} \end{array}\end{array}\left) \left(\begin{array}{c} \end{array}\end{array}\right) \left(\begin{array}{c} \end{array}\end{array}\left) \left(\begin{array}{c} \end{array}\end{array}\left) \left(\begin{array}{c} \end{array}\end{array}\right) \left(\begin{array}{c} \end{array}\end{array}\left) \left(\begin{array}{c} \end{array}\end{array}\left) \left(\begin{array}{c} \end{array}\end{array}\left) \left(\begin{array}{c} \end{array}\end{array}\right) \left(\begin{array}{c} \end{array}\end{array}\left) \left(\begin{array}{c} \end{array}\end{array}\right) \left(\begin{array}{c} \end{array}\end{array}\left) \left(\begin{array}{c} \end{array}\end{array}\left) \left(\begin{array}{c} \end{array}\end{array}\left) \left(\end{array}\\\\ \end{array}\right) \left(\end{array} \end{array}\left) \left(\end{array}\\ \end{array}\left) \left(\end{array}\\ \end{array}\right) \left(\end{array}\\ \end{array}\left) \left(\end{array}\\ \end{array}\right) \left(\end{array}\\ \end{array}\left) \left(\end{array}\\ \end{array}\left) \left(\end{array}\\ \end{array}\left) \left(\end{array} \\\\ \end{array}\right) \left(\end{array}\\ \end{array}\left) \left(\end{array}\\ \\\left) \left(\end{array}\\ \end{array}\left) \left(\end{array}\\ \\\\ \end{array}\left) \left(\end{array}\\ \end{array}\left) \left(\end{array}\\ \\\\ \end{array}\left) \left(\end{array}\\ \\\\ \end{array}\left) \left(\end{array}\\ \\\\ \\ \left(\end{array}\\ \end{array}\left) \left(\\\\ \end{array}\\ \\\\ \left) \left(\end{array}\\ \\\\ \\\\ \end{array}\left) \left(\\\\ \end{array}\left) \left(\\\\ \\ \\ \\ \\ \left) \left(\end{array}\\ \\ \\ \left) \left(\\\\ \\ \end{array}\left) \left(\\ \end{array} \left) \left(\\\\ \\ \\ \\ \left) \left(\end{array}\\ \\\\ \\ \left) \left(\end{array}\\ \\\\ \\ \left) \left(\\ \\ \\ \\ \\ \left) \left(\end{array} \\ \\ \\ \\ \left) \left(\\ \\ \\ \\ \\ \\ \left) \left(\end{array} \\ \\ \\ \\ \left) \left(\\ \\ \\ \\ \\ \\ \\ \left) \left(\end{array} \\ \\ \\ \\ \\ \\ \\ \left) \left(\end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \left) \left(\end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	e
Wait State byte			Wait State byte			Wait State byte		ad data) with Wait State by
Address/Command Byte 1			$\begin{array}{c c} A \\ \hline 4 \\ \hline 4 \\ \hline 3 \\ \hline 2 \\ \hline 4 \\ \hline 3 \\ \hline 2 \\ \hline 4 \\ \hline 0 \\ \hline 2 \\ \hline 1 \\ \hline 0 \\ \hline 2 \\ \hline 1 \\ \hline 0 \hline$			$\frac{1}{4} \left(\frac{1}{2} \right) \left(1$	1 1 1 1 1 1 7 6 5 4 3 2 1 7 6 5 4 3 2 1	access (2 byte addressing, 1 byte read data) with Wait State byte
Address/Command Byte 0			$\left(\begin{array}{c} A \\ A \\ A \\ A \\ C \\ C \\ C \\ C \\ C \\ C \\$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$\left(\frac{A}{12}\right)\left(\frac{A}{11}\right)\left(\frac{A}{10}\right)\left(\frac{A}{2}\right)\left(\frac{A}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Figure 42: SPI read access
-	SPI_SEL	SPI_CLK mode 0 SPI_CLK mode 2	SPI_DI (NOSI)	SPI_DO (MISO) normal sample, mode 0/2 SPI_DO (MISO) late sample, mode 0/2	SPI_CLK mode 1 mode 3 SPI_CLK	(ISOM) IQ_IAS	SPI_DO (MISO) normal sample, mode 1/3 SPI_DO (MISO) late sample, mode 1/3	
		<u>2/0 ə</u>	Pom I9	S	e 1/3	oom I92		

Data Byte 0 Data Byte 1			Read Termination byte	$ \begin{array}{c} \left\langle \begin{matrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$		Read Termination byte	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	t State byte
Address/Command Byte 1 Wait State byte D:			$\left(\frac{A}{3}\right)\left(\frac{A}{2}$			$\left(\frac{1}{3}\sqrt{2}\sqrt{\frac{1}{3}}\sqrt{\frac{1}{6}}\sqrt{\frac{2}{60}}\sqrt{\frac{20}{10}}$ Wait State byte		Figure 43: SPI read access (2 byte addressing, 2 byte read data) with Wait State byte
Address/Command Byte 0	SPI_SEL	SPI_CLK mode 0 SPI_CLK mode 2 SPI_CLK mode 2	SPI_DI (MOSI) $\left(\sum_{12} \left\langle \frac{1}{12} \right\rangle_{11}^{4} \left\langle \frac{1}{10} \right\rangle_{\frac{3}{2}}^{\frac{3}{2}} \left\langle \frac{3}{8} \right\rangle_{\frac{3}{2}} \left\langle $	SPI_DO (MISO) $\xrightarrow{\text{tar. a. poyede}}{7} \xrightarrow{0}{0} \xrightarrow{0}{1} \xrightarrow{0}{1} \xrightarrow{0}{0} \xrightarrow{0}{1} \xrightarrow{1}{1} \xrightarrow{0}{1} \xrightarrow{0}{1} \xrightarrow{1}{1} \xrightarrow{1} \xrightarrow$	SPL_CLK mode 1 mode 3 PL_CLK SPL_CLK mode 3		$\left(\begin{array}{c} \left(\left(\begin{array}{c} \left(\left(\begin{array}{c} \left(\left(\begin{array}{c} \left($	Figure 43: SPI read
		<u>2/0 əb</u>		nor	<u>5/1 əb</u>	om I92	nor	

nd Byte 0 Address/Command Byte 1 Data Byte 0	Next access		$ \begin{array}{c} A \\ A \\ A \\ A \\ B \\ A \\ B \\ A \\ B \\ C \\ C$	$\begin{bmatrix} 0 & 0 & 0 & 0 \\ 6 & 5 & 4 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 5 & 4 & 3 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 &$			0 10 <t< th=""><th>Figure 44: SPI write access (2 byte addressing, 1 byte write data)</th></t<>	Figure 44: SPI write access (2 byte addressing, 1 byte write data)
Address/Command Byte 0		2 X 0		Status			Status	Figure 44: SPI write a
	SPI_SEL	SPI_CLK mode 0 SPI_CLK mode 2	SPI_DI (MOSI)	SPI_DO (MISO) normal sample, mode 0/2 SPI_DO (MISO) late sample, mode 0/2	SPI_CLK mode 1 SPI_CLK SPI_CLK mode 3	SPI_DI (MOSI)	SPI_DO (MISO) normal sample, mode 1/3 SPI_DO (MISO) late sample, mode 1/3	

10.3 Asynchronous 8/16 bit µController Interface

10.3.1 Interface

The asynchronous μ Controller interface uses demultiplexed address and data busses. The bidirectional data bus can be either 8 bit or 16 bit wide. The signals of the asynchronous μ Controller interface of EtherCAT devices are⁸:

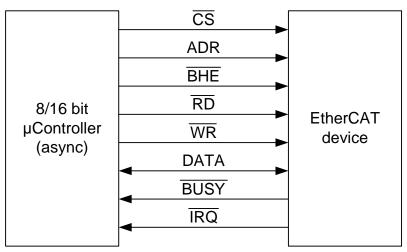


Figure 46: µController interconnection⁹

Table 50: µController signals

Signal async	Direction		Description	Signal polarity
CS	IN	$(\mu C \to ESC)$	Chip select	Typical: act. low
ADR[15:0]	IN	$(\mu C \to ESC)$	Address bus	Typical: act. high
BHE	IN	$(\mu C \to ESC)$	Byte High Enable (16 bit µController interface only)	Typical: act. low
RD	IN	$(\mu C \to ESC)$	Read command	Typical: act. low
WR	IN	$(\mu C \to ESC)$	Write command	Typical: act. low
DATA[15:0]	BD	$(\mu C \leftrightarrow ESC)$	Data bus for 16 bit µController interface	act. high
DATA[7:0]	BD	$(\mu C \leftrightarrow ESC)$	Data bus for 8 bit µController interface	act. high
BUSY	OUT	$(\text{ESC} \rightarrow \mu\text{C})$	EtherCAT device is busy	Typical: act. low
IRQ	OUT	$(\text{ESC} \rightarrow \mu\text{C})$	Interrupt	Typical: act. low

Some μ Controllers have a READY signal, this is the same as the BUSY signal, just with inverted polarity.

10.3.2 Configuration

The 16 bit asynchronous μ Controller interface is selected with PDI type 0x08 in the PDI control register 0x0140, the 8 bit asynchronous μ Controller interface has PDI type 0x09. It supports different configurations, which are located in registers 0x0150 – 0x0153.

⁸ The prefix `PDI_uC_` or `PDI_uC_8` is added to the μController signals if the EtherCAT IP Core is used. ⁹ All signals are denoted with typical polarity configuration.

10.3.3 µController access

The 8 bit μ Controller interface reads or writes 8 bit per access, the 16 bit μ Controller interface supports both 8 bit and 16 bit read/write accesses. For the 16 bit μ Controller interface, the least significant address bit together with Byte High Enable (BHE) are used to distinguish between 8 bit low byte access, 8 bit high byte access and 16 bit access.

EtherCAT devices use Little Endian byte ordering.

Table 51: 8 bit µController interface access types

ADR[0]	Access	DATA[7:0]
0	8 bit access to ADR[15:0] (low byte, even address)	low byte
1	8 bit access to ADR[15:0] (high byte, odd address)	high byte

ADR[0]	BHE (act. low)	Access	DATA [15:8]	DATA [7:0]
0	0	16 bit access to ADR[15:0] and ADR[15:0]+1 (low and high byte)	high byte	low byte
0	1	8 bit access to ADR[15:0] (low byte, even address)	(RD only: copy of low byte)	low byte
1	0	8 bit access to ADR[15:0] (high byte, odd address)	high byte	(RD only: copy of high byte)
1	1	invalid access	-	-

Table 52: 16 bit µController interface access types

10.3.4 Write access

A write access starts with assertion of Chip Select (CS), if it is not permanently asserted. Address, Byte High Enable and Write Data are asserted with the falling edge of WR (active low). Once the μ Controller interface is not BUSY, a rising edge on WR completes the μ Controller access. A write access can be terminated either by deassertion of WR (while CS remains asserted), or by deassertion or CS (while WR remains asserted), or even by deassertion of WR and CS simultaneously. Shortly after the rising edge of WR, the access can be finished by deasserting ADR, BHE and DATA. The μ Controller interface indicates its internal operation with the BUSY signal. Since the BUSY signal is only driven while CS is asserted, the BUSY driver will be released after CS deassertion.

Depending on the configuration, the internal write access is either performed after the falling edge of WR, or after the rising edge of WR. If the falling edge is selected, the internal write operation begins with the falling edge of WR, and BUSY indicates when the write operation is finished. The internal write operation is performed during the external write access.

If the rising edge of WR is selected, the internal operation begins with the rising edge of WR, i.e., after the external write access. Thus, the external write access is very fast, but an access immediately following will be delayed by the preceding write access. The maximum access time is higher in this case.

10.3.5 Read access

A read access starts with assertion of Chip Select (CS), if it is not permanently asserted. Address and BHE have to be valid before the falling edge of RD, which signals the start of the access. The μ Controller interface will show its BUSY state afterwards – if it is not already busy executing a preceding write access – and release BUSY when the read data are valid. The read data will remain valid until either ADR, BHE, RD or CS change. The data bus will be driven while CS and RD are asserted. BUSY will be driven while CS is asserted.

With read busy delay configuration, BUSY deassertion for read accesses can be additionally delayed for 15 ns, so external DATA setup requirements in respect to BUSY can be met.

10.3.6 µController access errors

These reasons for μ Controller access errors are detected by the μ Controller interface:

- Read or Write access to the 16 bit interface with A[0]=1 and BHE(act. low)=1, i.e. an access to an
 odd address without Byte High Enable.
- Deassertion of WR (or deassertion of CS while WR remains asserted) while the µController interface is BUSY.
- Deassertion of RD (or deassertion of CS while RD remains asserted) while the µController interface is BUSY (read has not finished).

A wrong µController access will have these consequences:

- The PDI error counter 0x030D will be incremented.
- For A[0]=1 and BHE(act. low)=1 accesses, no access will be performed internally.
- Deassertion of WR (or CS) while the µController interface is BUSY might corrupt the current and the preceding transfer (if it is not completed internally). Registers might accept write data and special functions (e.g., SyncManager buffer switching) might be performed.
- If RD (or CS) is deasserted while the µController interface is BUSY (read has not finished), the access will be terminated internally. Although, internal byte transfers might be completed, so special functions (e.g., SyncManager buffer switching) might be performed.

The reason of the access error can be read in the PDI error code register 0x030E.

10.3.7 Connection with 16 bit µControllers without byte addressing

If the ESC is connected to 16 bit μ Controllers/DSPs which only support 16 bit (word) addressing, ADR[0] and BHE of the EtherCAT device have to be tied to GND, so the ESC will always perform 16 bit accesses. All other signals are connected as usual. Please note that ESC addresses have to be divided by 2 in this case.

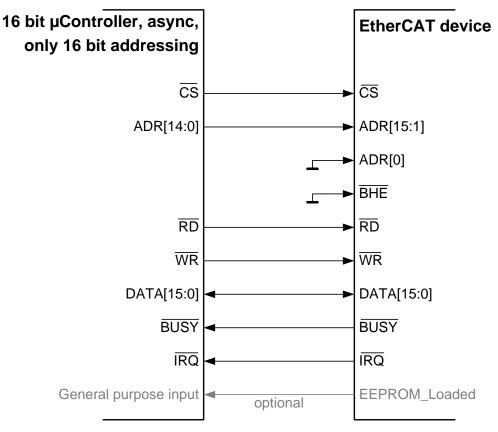


Figure 47: Connection with 16 bit µControllers without byte addressing

10.3.8 Connection with 8 bit µControllers

If the ESC is connected to 8 bit μ Controllers, the BHE signal as well as the DATA[15:8] signals are not used.

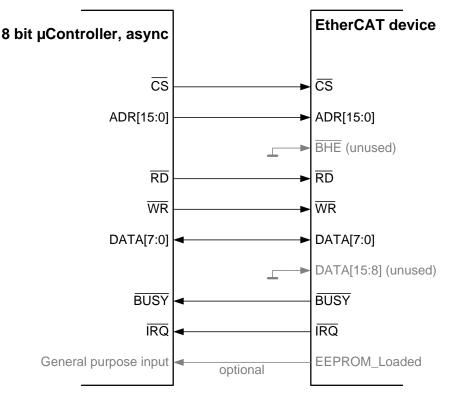


Figure 48: Connection with 8 bit µControllers (BHE and DATA[15:8] should not be left open)

10.3.9 Timing Specification

Parameter	Min	Max	Comment
tcs_to_BUSY		X ¹⁰	BUSY driven and valid after CS assertion
tADR_BHE_setup	x ¹⁰		ADR and BHE valid before RD assertion
$t_{\text{RD_to_DATA_driven}}$	0 ns ¹¹		DATA bus driven after RD assertion
tRD_to_BUSY	0 ns ¹¹	x ¹⁰	BUSY asserted after RD assertion
t _{read}			External read time (RD assertion to BUSY deassertion) with normal read busy output (0x0152[0]). Additional 20 ns if delayed read busy output is configured.
		a) t _{read_int} 11	a) without preceding write access or t _{WR_to_RD} ≥t _{prec_write} + t _{Coll} or configuration: write after falling edge of WR
		b) t _{read_int} + t _{prec_write} +t _{Coll} -t _{WR_to_RD¹¹}	b) with preceding write access and $t_{WR_{to}_{RD}} < t_{prec_{write}} + t_{Coll}$
		c) 420 ns ¹¹	c) 8 bit access, absolute worst case with preceding write access (t _{WR_to_RD} =min, t _{prec_write} =max, t _{Coll} =max)
		d) 560 ns ¹¹	d) 16 bit access, absolute worst case with preceding write access (t _{WR_to_RD} =min, t _{prec_write} =max, t _{Coll} =max)
t_{read_int}		a) 220 ns ¹¹ b) 300 ns ¹¹	Internal read time a) 8 bit access b) 16 bit access
tprec_write		a) 180 ns b) 260 ns	Time for preceding write access a) 8 bit access b) 16 bit access
tBUSY_to_DATA_valid		a) x ¹⁰ -5 ns b) x ¹⁰ -20 ns	DATA bus valid after device BUSY is deasserted a) normal read busy output b) delayed read busy output
$t_{\text{ADR}_\text{BHE}_\text{to}_\text{DATA}_\text{invalid}}$	0 ns ¹¹		DATA invalid after ADR or BHE change
$t_{CS_RD_to_DATA_release}$	0 ns ¹¹	x ¹⁰	DATA bus released after CS deassertion or RD deassertion
tcs_to_BUSY_release	0 ns ¹¹	X ¹⁰	BUSY released after CS deassertion
tcs_delay	0 ns ¹¹		Delay between CS deassertion an assertion
t _{RD_delay}	x ¹⁰		Delay between RD deassertion and assertion
tADR_BHE_DATA_setup	x ¹⁰		ADR, BHE and Write DATA valid before WR deassertion

Table 53: µController timing characteristics IP Core

¹⁰ EtherCAT IP Core: time depends on synthesis results

¹¹ EtherCAT IP Core: time depends on synthesis results, specified value has to be met anyway

Parameter	Min	Max	Comment	
$t_{\text{ADR_BHE_DATA_hold}}$	X ¹⁰		ADR, BHE and Write DATA valid after WR deassertion	
t _{WR_active}	X ¹⁰		WR assertion time	
t _{BUSY_to_WR_CS}	0 ns ¹¹		WR or CS deassertion after BUSY deassertion	
twr_to_BUSY		X ¹⁰	BUSY assertion after WR deassertion	
t _{write}	0 ns		External write time (WR assertion to BUSY deassertion)	
		a) t _{write_int}	a) Configuration: write after falling edge of WR (act. low)	
		b) t _{write_int} -t _{WR_delay} 11	b) with preceding write access and t_{WR_delay} < t_{write_int} (Write after rising edge of WR)	
		c) 0 ns ¹¹	c) without preceding write access or t _{WR_delay} ≥ t _{write_int} (Write after rising edge of WR)	
		d) 180 ns ¹¹	d) 8 bit access, absolute worst case with preceding write access (t _{WR_delay} = min, t _{WR_int} =max, Write after rising edge of WR)	
		e) 260 ns ¹¹	e) 16 bit access, absolute worst case with preceding write access (t _{WR_delay} =min, t _{WR_int} =max, Write after rising edge of WR)	
t _{write_int}		a) 180 ns ¹¹ b) 260 ns ¹¹	Internal write time a) 8 bit access b) 16 bit access	
twR_delay	X ¹⁰		Delay between WR deassertion and assertion	
t _{Coll}		a) 20 ns	Extra read delay a) RD access directly follows WR access with the same address (8 bit accesses or 8 bit WR and 16 bit RD) b) different addresses or 16 bit accesses	
	•	b) 0 ns	b) different addresses or 16 bit accesses	
t _{WR_to_RD}	0 ns		Delay between WR deassertion and RD assertion	
tcs_wr_overlap	X ¹⁰		Time both CS and WR have to be deasserted simultaneously (only if CS is deasserted at all)	
t _{CS_RD_overlap}	x ¹⁰		Time both CS and RD have to be deasserted simultaneously (only if CS is deasserted at all)	

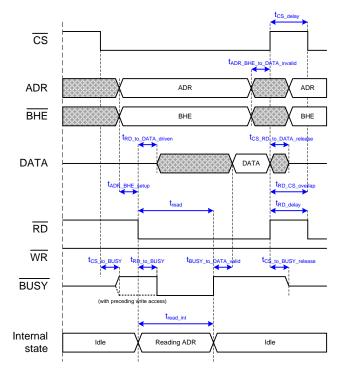


Figure 49: Read access (without preceding write access)

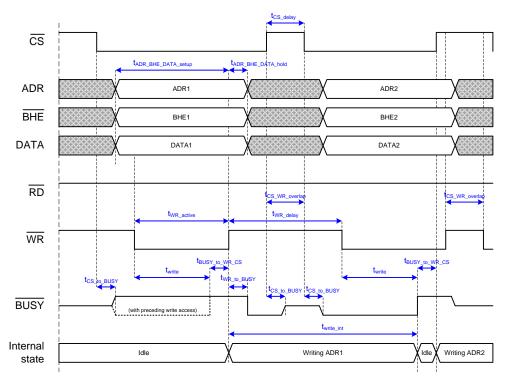


Figure 50: Write access (write after rising edge nWR, without preceding write access)



Figure 51: Sequence of two write accesses and a read access

Note: The first write access to ADR1 is performed after the first rising edge of WR. After that, the ESC is internally busy writing to ADR1. After CS is deasserted, BUSY is not driven any more, nevertheless, the ESC is still writing to ADR1.

Hence, the second write access to ADR2 is delayed because the write access to ADR1 has to be completed first. So, the second rising edge of WR must not occur before BUSY is gone. After the second rising edge of WR, the ESC is busy writing to ADR2. This is reflected with the BUSY signal as long as CS is asserted.

The third access in this example is a read access. The ESC is still busy writing to ADR2 while the falling edge of RD occurs. In this case, the write access to ADR2 is finished first, and afterwards, the read access to ADR3 is performed. The ESC signals BUSY during both write and read access.

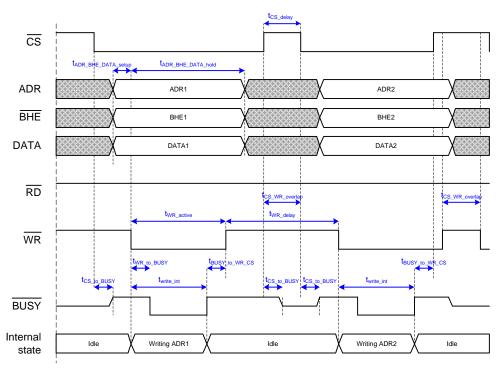


Figure 52: Write access (write after falling edge nWR)

10.4 PLB Slave Interface

10.4.1 Interface

The PLB v4.6 slave PDI is selected during the IP Core configuration. The main signals of the PLB interface are¹²:

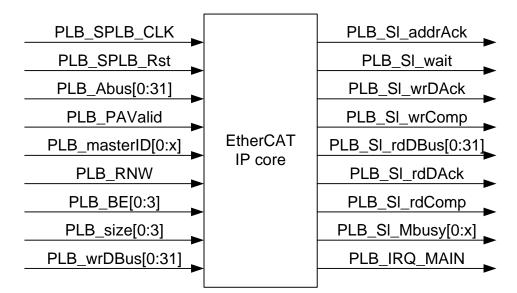


Figure 53: PLB signals

Table 54: PLB signals

Signal	Direction	Description	Signal polarity
PLB_SPLB_Clk	IN	PLB bus clock	olghai polarity
PLB_SPLB_Rst	IN	PLB reset	act. high
PLB_ABus[0:31]	IN	PLB address bus	
PLB_PAValid	IN	PLB primary address valid	act. high
PLB_masterID [0:PLB_MID_WIDTH-1]	IN	PLB current master identifier	
PLB_RNW	IN	PLB read not write	0: Write 1: Read
PLB_BE[0:3]	IN	PLB byte enable	
PLB_size[0:3]	IN	PLB transfer size (must be 0000)	
PLB_wrDBus[0:31]	IN	PLB write data bus	
PLB_SI_addrAck	OUT	Slave address acknowledge	act. high
PLB_SI_wait	OUT	Slave wait	act. high
PLB_SI_wrDAck	OUT	Slave write data acknowledge	act. high
PLB_SI_wrComp	OUT	Slave write transfer complete	act. high
PLB_SI_rdDBus[0:31]	OUT	Slave read data bus	
PLB_SI_rdDAck	OUT	Slave read data acknowledge	act. high
PLB_SI_rdComp	OUT	Slave read transfer complete	act. high
PLB_SI_MBusy [0: SPLB_NUM_MASTERS-1]	OUT	Slave busy	

¹² The prefix `PDI_` is added to the PLB interface signals for the IP Core interface. Additional signals are part of the PLB interface, but they are not used according to Xilinx PLB v4.6 interface simplifications.

Signal	Direction	Description	Signal polarity
PLB_IRQ_MAIN	OUT	Interrupt	act. high

Please refer to the "128-bit Processor Local Bus Architecture Specifications" from IBM (publication number SA-14-2538-04) for details about the PLB bus (<u>http://www.ibm.com</u>).

10.4.2 Configuration

The PLB v4.6 interface has PDI type 0x80 in the PDI control register 0x0140. The PLB PDI has no configuration options in the IP Core configuration utility. Some parameters are passed to the PLB PDI via VHDL generics, they are typically configured in the Xilinx EDK. The PLB PDI supports a fixed data bus width of 32 and it requires byte enables.

Address Range (C_BASEADDR and C_HIGHADDR)

The address range of the EtherCAT IP Core PLB slave is defined with two VHDL generics C_BASEADDR (holding the base address) and C_HIGHADDR (containing the end address). The address range of the EtherCAT IP core should span at least 64 Kbyte (e.g., C_BASEADDR = 0x00010000 and C_HIGHADDR=0x0001FFFF). A larger address range results in less address decoding logic.

Bus Clock Period (C_SPLB_CLK_PERIOD_PS)

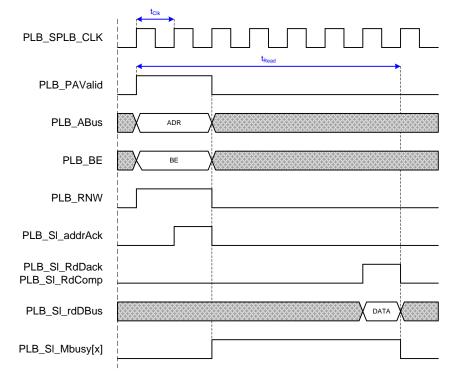
The PLB bus clock period is set by the Xilinx EDK depending on the clock source configuration. This value is passed to the EtherCAT IP core with the VHDL generic C_SPLB_CLK_PERIOD_PS.

There are two options for the PLB bus clock, either it is synchronous with the IP core or asynchronous. If it is synchronous, the PLB bus clock has to be an integer multiple of 25 MHz, and the rising edges of CLK25 and PLB_SPLB_Clk have to by synchronized. In the asynchronous case, the PLB bus clock has to be faster than CLK25.

The EtherCAT IP Core distinguishes between synchronous and asynchronous PLB bus clock based on the value of C_SPLB_CLK_PERIOD_PS. If this value corresponds with a synchronous frequency (N*25 MHz), synchronous clocking is assumed, otherwise asynchronous clocking is assumed.

The following table gives an overview of C_SPLB_CLK_PERIOD_PS values which make the EtherCAT IP Core assume synchronous clocking.

C_SPLB_CLK_PERIOD_PS	PLB_SPLB_Clk frequency
40,000	25 MHz
20,000	50 MHz
13,333 or 13,334	75 MHz
10,000	100 MHz
8,000	125 MHz
6,666 or 6,667	150 MHz
5,714 or 5,715	175 MHz
5,000	200 MHz


Table 55: PLB clock period values for synchronous clocking

10.4.3 Timing specifications

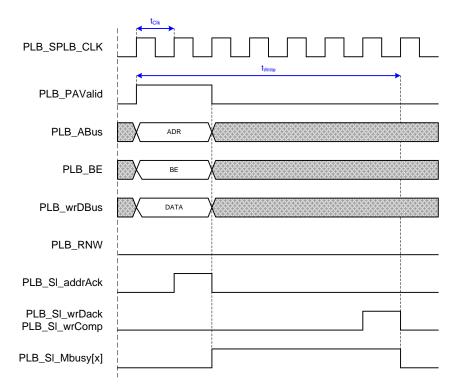
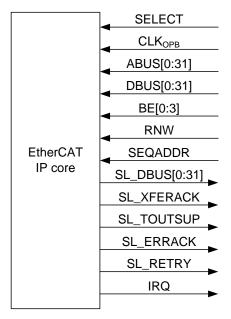

Parameter	Min	Max	Comment
t _{Clk}	X ¹³	40 ns	PLB bus clock (f _{Clk} ≥25 MHz)
t _{Read}	a) 520 ns b) 400 ns + 4*t _{Clk} c) 460 ns + 3*t _{Clk}	a) 600 ns b) 500 ns + 4*t _{Clk} c) 620 ns + 4*t _{Clk}	32 Bit read access time a) PLB_SPLB_CLK = 25 MHz b) PLB_SPLB_CLK = N*25 MHz (N>1) c) PLB_SPLB_CLK asynchronous
	a) 360 ns b) 240 ns + 4*t _{Clk} c) 300 ns + 3*t _{Clk}	a) 440 ns b) 340 ns + 4*t _{Clk} c) 460 ns + 4*t _{Clk}	16 Bit read access time a) PLB_SPLB_CLK = 25 MHz b) PLB_SPLB_CLK = N*25 MHz (N>1) c) PLB_SPLB_CLK asynchronous
	a) 280 ns b) 160 ns + 4*t _{Clk} c) 220 ns + 3*t _{Clk}	a) 360 ns b) 260 ns + 4*t _{Clk} c) 380 ns + 4*t _{Clk}	8 Bit read access time a) PLB_SPLB_CLK = 25 MHz b) PLB_SPLB_CLK = N*25 MHz (N>1) c) PLB_SPLB_CLK asynchronous
twrite	a) 440 ns b) 320 ns + 4*t _{Clk} c) 400 ns + 3*t _{Clk}	a) 520 ns b) 420 ns + 4*t _{Clk} c) 560 ns + 4*t _{Clk}	32 Bit write access time a) PLB_SPLB_CLK = 25 MHz b) PLB_SPLB_CLK = N*25 MHz (N>1) c) PLB_SPLB_CLK asynchronous
	a) 280 ns b) 160 ns + 4*t _{Clk} c) 240 ns + 3*t _{Clk}	a) 360 ns b) 260 ns + 4*t _{Clk} c) 400 ns + 4*t _{Clk}	16 Bit write access time a) PLB_SPLB_CLK = 25 MHz b) PLB_SPLB_CLK = N*25 MHz (N>1) c) PLB_SPLB_CLK asynchronous
	a) 200 ns b) 80 ns + 4*t _{Clk} c) 160 ns + 3*t _{Clk}	a) 280 ns b) 180 ns + 4*t _{Clk} c) 320 ns + 4*t _{Clk}	8 Bit write access time a) PLB_SPLB_CLK = 25 MHz b) PLB_SPLB_CLK = N*25 MHz (N>1) c) PLB_SPLB_CLK asynchronous

Table 56: PLB timing characteristics

¹³ EtherCAT IP Core: time depends on synthesis results



10.5 OPB Slave Interface

10.5.1 Interface

The OPB Slave PDI is selected during the IP Core configuration. The OPB interface is deprecated by Xilinx and its support in the EDK software will be removed. The signals of the OPB interface are¹⁴:

Figure 56: OPB signals

Table 57: OPB signals

Signal	Direction	Description	Signal polarity
SELECT	IN	OPB Select	act. high
СLКорв	IN	OPB bus clock (rising edge synchronous with rising edge of CLK25 of the IP Core)	
ABUS[0:31]	IN	OPB address bus	
DBUS[0:31]	IN	OPB data bus	
BE[0:3]	IN	OPB Byte Enable	act. high
RNW	IN	OPB Read/Write access	0: Write 1: Read
SEQADDR	IN	OPB sequential address	act. high
SL_DBUS[0:31]	OUT	Slave data bus	
SL_XFERACK	OUT	Slave transfer acknowledge	act. high
SL_TOUTSUP	OUT	Slave timeout suppress	act. high
SL_ERRACK	OUT	Slave error acknowledge (not used, always low)	act. high
SL_RETRY	OUT	Slave retry (not used, always low)	act. high
IRQ	OUT	Interrupt	act. high

Please refer to the On-Chip Peripheral Bus Architecture Specification from IBM (publication number SA-14-2528-02) for details about the OPB bus (<u>http://www.ibm.com</u>).

¹⁴ The prefix `PDI_OPB_` is added to the OPB interface signals for the IP Core interface.

10.5.2 Configuration

The OPB interface has PDI type 0x80 in the PDI control register 0x0140. The OPB bus clock speed is configurable in the OPB PDI configuration dialog. If the EtherCAT IP Core is used in a Xilinx EDK design, the address range can be specified there and the reset polarity can be configured to be active high.

OPB Bus Clock Multiplier

The OPB clock frequency is a multiple of 25 MHz:

OPB clock frequency = N * 25 MHz (N=1...31)

The maximum clock speed depends on the FPGA and the synthesis. The rising edge of OPB clock has to be synchronous with the rising edge of CLK25 of the EtherCAT IP Core.

OPB Bus Data Width

The width of the OPB data bus can be W = 1, 2, or 4 Bytes. Select W = 4 Bytes for the Xilinx Microblaze processor.

NOTE: Independent of the OPB bus data width, DBUS width remains [0:31] and BE width remains [0:3]. Use bits [0:7] or [0:15] for DBUS, and [0] or [0:1] for BE respectively, if width is reduced.

Address Range (C_BASEADDR and C_HIGHADDR)

The address range of the EtherCAT IP Core OPB slave is defined with two VHDL generics C_BASEADDR (holding the base address) and C_HIGHADDR (containing the end address). The address range of the EtherCAT IP core should span at least 64 Kbyte (e.g., C_BASEADDR = 0x00010000 and C_HIGHADDR=0x0001FFFF). A larger address range results in less address decoding logic.

RESET Polarity (RESET_POL_ACT_HIGH)

The Xilinx EDK assumes the OPB reset signal to be active high, so the polarity of the EtherCAT IP Core can be configured to be active high with this generic. A value of 0 means active low, a value of 1 means active high. The reset polarity will be automatically set to active high by the configuration tool, if the OPB PDI is selected.

10.5.3 Byte Enable (BE)

The Byte Enable signal specifies active byte lanes for an access. These values are allowed for BE[0:3]: 0000, 0001, 0010, 0100, 1000, 0011, 1100, and 1111.

10.5.4 Timing specifications

Parameter	Min	Max	Comment
Ν	1	31	OPB bus clock factor
t _{Clk}	$\frac{1}{N*25MHz}^{15}$	40 ns	OPB bus clock (OPB clock frequency: N*25 MHz)
t _{Read}	440 ns	a) 560 ns b) 560 ns+ <mark>80ns</mark>	32 Bit read access time a) N=1 b) N>1
	280 ns	a) 400 ns b) 400 ns+ <mark>80ns</mark>	16 Bit read access time a) N=1 b) N>1
	200 ns	a) 320 ns b) 320 ns+ <mark>80ns</mark> N	8 Bit read access time a) N=1 b) N>1
twrite	360 ns	a) 440 ns b) 440ns+ <mark>80ns</mark> N	32 Bit write access time a) N=1 b) N>1
	200 ns	a) 280 ns b) 280ns+ <mark>80ns</mark> N	16 Bit write access time a) N=1 b) N>1
	120 ns	a) 200 ns b) 200ns+ <mark>80ns</mark> N	8 Bit write access time a) N=1 b) N>1

Table 58: OPB timing characteristics

¹⁵ EtherCAT IP Core: time depends on synthesis results

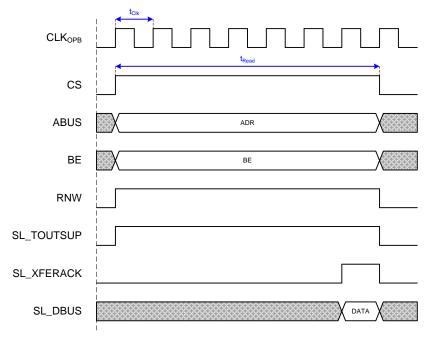
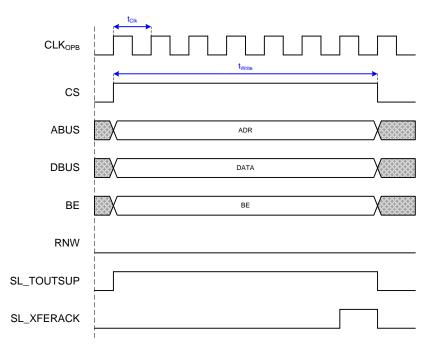



Figure 57: OPB Read Access

11 Distributed Clocks SYNC/LATCH Signals

For details about the Distributed Clocks refer to Section I.

11.1 Signals

The Distributed Clocks unit of the IP Core has the following external signals (depending on the ESC configuration):

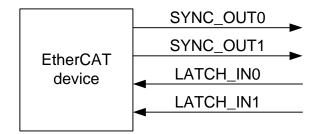
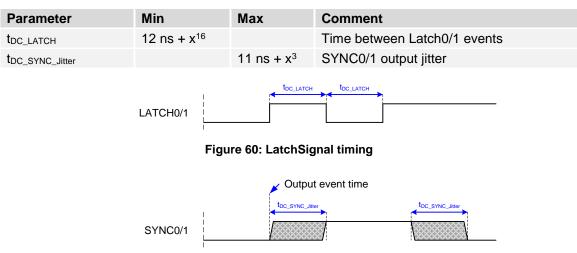


Figure 59: Distributed Clocks signals


Table 59: Distributed Clocks signals

Signal	Direction	Description
SYNC_OUT0/1	OUT	SyncSignals (alias SYNC[1:0])
LATCH_IN0/1	IN	LatchSignals (alias LATCH[1:0])

NOTE: SYNC_OUT0/1 are active high/push-pull outputs.

11.2 Timing specifications

Table 60: DC SYNC/LATCH timing characteristics IP Core

¹⁶ EtherCAT IP Core: time depends on synthesis results

12 SII EEPROM Interface (I²C)

For details about the ESC SII EEPROM Interface refer to Section I. The SII EEPROM Interface is intended to be a point-to-point interface between IP Core and I²C EEPROM. If other I²C masters are required to access the I²C bus, the IP Core must be held in reset state (e.g. for in-circuit-programming of the EEPROM).

12.1 Signals

The EEPROM interface of the IP Core has the following signals:

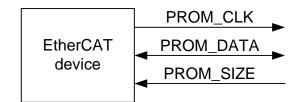


Figure 62: I²C EEPROM signals

Table 61: I ² C EEPROM signals	Table	61: I ² C	EEPROM	signals
---	-------	----------------------	--------	---------

Signal	Direction	Description
PROM_CLK	OUT	I ² C clock (alias EEPROM_CLK)
PROM_DATA	BIDIR	I ² C data (alias EEPROM_DATA)
PROM_SIZE	IN	EEPROM size configuration (alias EEPROM_SIZE)

Both EEPROM_CLK and EEPROM_DATA must have a pull-up resistor (4.7 k Ω recommended for ESCs), either integrated into the ESC or externally.

12.2 EEPROM Emulation

EEPROM_SIZE has to be 0 for EEPROM emulation (EEPROM emulation with EEPROM_SIZE=1 is for testing only: all commands are acknowledged automatically).

12.3 Timing specifications

Parameter	Typical		Comment	
	Up to 16 kBit 32 kBit-4 MBit			
t _{Clk}	~ 6.7	72 µs	EEPROM clock period (f _{Clk} ≈ 150 kHz)	
twrite	~ 250 us	~ 310 µs	Write access time (without errors)	
t _{Read}	a) ~ 440 µs b) ~ 1.16 ms	a) ~ 500 µs b) ~ 1.22 ms	Read access time (without errors): a) 2 words b) configuration (8 Words)	
t _{Delay}	~ 60 µs		Time until configuration loading begins after Reset is gone	

Table 62: EEPROM timing characteristics IP Core

13 Electrical Specifications

Table 63: AC Characteristics

Symbol	Parameter	Min	Тур	Max	Units
fclk25	Clock source (CLK25) with initial	2	25 MHz ± 25 ppn	n	
	accuracy				

Table 64: Forwarding Delays

Symbol	Parameter	Min	Average	Max	Units
t _{Diff}	Average difference processing delay minus forwarding delay (without RX FIFO jitter)		40		ns
tмм	MII port to MII port delay: a) Through ECAT Processing Unit (processing) b) Alongside ECAT Processing Unit (forwarding) Conditions: FIFO size 7, no TX Shift compensation or manual TX Shift configuration with MII_TX_SHIFT = 00	a) 320+x ¹⁷ b) 280+x ¹⁷	a) 340+x ¹⁷ b) 300+x ¹⁷	a) 360+x ¹⁷ b) 320+x ¹⁷	ns

NOTE: Average timings are used for DC calculations.

¹⁷ EtherCAT IP Core: time depends on synthesis results

14 Synthesis Constraints

The following table contains basic IP Core constraints.

Signal	Requirement	Value	Clock reference	Description	
CLK25	period	40 ns		Reference clock (25 MHz)	
CLK50	a) period b) phase shift	a) 20 ns b) 0 ns	CLK25	Derived clock (50 MHz). Phase shift is rising edge to rising edge.	
CLK100	a) period b) phase shift	a) 10 ns b) 0 ns	CLK25	Derived clock (100 MHz). Phase shift is rising edge to rising edge.	
nRESET	Ignore timing			nRESET is asynchronous to any clock	
MCLK	min. period	400 ns		IEEE802.3 requirement (2.5 MHz)	
MDIO	a) setup b) hold at PHY input	a) 10 ns b) 10 ns	MCLK (rising edge)	MDIO is changed with falling edge of MCLK, max. output skew of MCLK and MDIO is 190 ns. Constraining is usually not required. IEEE802.3 requirement.	
MII_RX_CLK0-2	period	40 ns		MII receive reference clock (25 MHz). IEEE802.3 requirement.	
MII_RX_DATA0-2[3:0] MII_RX_DV0-2 MII_RX_ERR0-2	a) setup b) hold	a) 10 ns b) 10 ns	MII_RX_CLK0-2 (rising edge)	IEEE802.3 requirement	
MII_TX_CLK0-2	period	40 ns		MII transmit reference clock (25 MHz). Only used for automatic TX Shift compensation. IEEE802.3 requirement.	
MII_TX_DATA0-2[3:0] MII_TX_ENA0-2	Clock-to-Pin a) min b) max	a) 0 ns b) 25 ns	TX_CLK0-2 from PHY (rising edge)	IEEE802.3 requirement	
	Clock-to-Pin a) min b) max	a) 0 ns b) 10 ns	CLK25 (rising edge)	Incomplete alternative to IEEE802.3 requirement, keeps margin if TX Shift has been determined and compensated. Refer to section III for details.	
PROM_CLK	period	App. dep.		I²C clock. Actual ESC output clock is 6.72 μs (≈ 150 kHz). Min. 2.5μs (400 Khz) for example I²C EEPROM chip.	
PROM_DATA	a) setup b) hold	a) 250 ns b) 0 ns	PROM_CLK a) rising edge b) falling edge	PROM_DATA is changed in the middle of the low phase of PROM_CLOCK, i.e., max. output skew of PROM_CLK/PROM_DATA is 1.43 µs. Constraining is usually not required. Example I ² C EEPROM chip requirement.	
RMII_RX_DATA0/1[1:0] RMII_RX_DV0/1 RMII_RX_ERR0/1 RMII_TX_DATA0/1[1:0] RMII_TX_ENA0/1	a) setup b) hold	a) 4 ns b) 2 ns	CLK50 (rising edge)	RMII specification requirement	
Other signals, especially PDI signals	application dependent				

Table 65: EtherCAT IP Core constraints

###

###

###

###

###

###

Example User Constraints File (UCF)

Global CLK/Reset ### ### Clock source 25 MHz/40 ns ### TIMESPEC TS REF CLK = PERIOD TM REF CLK 40000 ps; Net REF CLK TNM NET = TM REF CLK; ### Reset ### Net nRESET TIG; ### MII Port 0 ### ### Receive clock period 40 ns/25 MHz ### TIMESPEC TS RX CLK0 = PERIOD TM RX CLK0 40000 ps; Net MII RX CLK0 TNM NET = TM RX CLK0; ### RX DV/RX DATA setup 10 ns, hold 10 ns ### OFFSET = IN 10 ns VALID 20 ns BEFORE MII RX CLK0; ### TX ENA/TX DATA maximum clock-to-pad 10 ns ### (manually check minimum clock-to-pad = 0 ns) ### TX CLK from PHY to REF CLK phase shift has to be ### determined and compensated using TX-Shift or registers ### TIMEGRP TM TX0 OFFSET = OUT 10 ns AFTER REF CLK; Net MII TX ENAO TNM NET=TM TXO; Net MII TX DATAO<0> TNM NET=TM TX0; Net MII TX DATAO<1> TNM NET=TM TX0; Net MII TX DATA0<2> TNM NET=TM TX0; Net MII TX DATA0<3> TNM NET=TM TX0; Net MII TX ERRO TNM NET=TM TX0; ### MII Port 1 ### ### Receive clock period 40 ns/25 MHz ### TIMESPEC TS RX CLK1 = PERIOD TM RX CLK1 40000 ps; Net MII RX CLK1 TNM NET = TM RX CLK1; ### RX DV/RX DATA setup 10 ns, hold 10 ns ### OFFSET = IN 10 ns VALID 20 ns BEFORE MII RX CLK1; ### TX ENA/TX DATA maximum clock-to-pad 10 ns ### (manually check minimum clock-to-pad = 0 ns) ### TX_CLK from PHY to REF_CLK phase shift has to be ### determined and compensated using TX-Shift or registers ### TIMEGRP TM TX1 OFFSET = OUT 10 ns AFTER REF CLK; Net MII TX ENA1 TNM NET=TM TX1; Net MII TX DATA1<0> TNM NET=TM TX1; Net MII_TX_DATA1<1> TNM_NET=TM TX1; Net MII_TX_DATA1<2> TNM_NET=TM_TX1; Net MII_TX_DATA1<3> TNM NET=TM TX1;

Net MII TX ERR1 TNM NET=TM TX1;

###

###

###

#################### ### MII Port 2 ### #################### ### Receive clock period 40 ns/25 MHz ### TIMESPEC TS RX CLK2 = PERIOD TM RX CLK2 40000 ps; Net MII_RX_CLK2 TNM_NET = TM_RX_CLK2; ### RX DV/RX DATA setup 10 ns, hold 10 ns ### OFFSET = IN 10 ns VALID 20 ns BEFORE MII RX CLK2; ### TX ENA/TX DATA maximum clock-to-pad 10 ns ### (manually check minimum clock-to-pad = 0 ns) ### TX_CLK from PHY to REF_CLK phase shift has to be ### determined and compensated using TX-Shift or registers ### TIMEGRP TM_TX2 OFFSET = OUT 10 ns AFTER REF CLK; Net MII TX ENA2 TNM NET=TM TX2;

Net MII_TX_DATA2<0> TNM_NET=TM_TX2; Net MII_TX_DATA2<1> TNM_NET=TM_TX2; Net MII_TX_DATA2<1> TNM_NET=TM_TX2; Net MII_TX_DATA2<2> TNM_NET=TM_TX2; Net MII_TX_DATA2<3> TNM_NET=TM_TX2; Net MII TX ERR2 TNM NET=TM TX2;

15 Appendix

15.1 Support and Service

Beckhoff and their partners around the world offer comprehensive support and service, making available fast and competent assistance with all questions related to Beckhoff products and system solutions.

15.1.1 Beckhoff's branch offices and representatives

Please contact your Beckhoff branch office or representative for local support and service on Beckhoff products!

The addresses of Beckhoff's branch offices and representatives round the world can be found on her internet pages: <u>http://www.beckhoff.com</u>

You will also find further documentation for Beckhoff components there.

15.2 Beckhoff Headquarters

Beckhoff Automation GmbH & Co. KG Huelshorstweg 20 33415 Verl Germany phone: + 49 (0) 5246/963-0 fax: + 49 (0) 5246/963-198 e-mail: info@beckhoff.com web: www.beckhoff.com

Beckhoff Support

Support offers you comprehensive technical assistance, helping you not only with the application of individual Beckhoff products, but also with other, wide-ranging services:

- world-wide support
- design, programming and commissioning of complex automation systems
- and extensive training program for Beckhoff system components

hotline: + 49 (0) 5246/963-157

fax: + 49 (0) 5246/963-9157

e-mail: <u>support@beckhoff.com</u>

Beckhoff Service

The Beckhoff Service Center supports you in all matters of after-sales service:

- on-site service
- repair service
- spare parts service
- hotline service

hotline: + 49 (0) 5246/963-460

fax: + 49 (0) 5246/963-479

e-mail: <u>service@beckhoff.com</u>