Hardware Data Sheet Section III

ET1810 / ET1811 / ET1812

Ether CAT Slave Controller IP Core for Altera FPGAs Release 3.0.10

Section I – Technology (Online at http://www.beckhoff.com)

Section II - Register Description (Online at http://www.beckhoff.com)

Section III - Hardware Description
Installation, Configuration, Resource consumption, Interface specification

Version 1.0

Date: 2015-01-20

DOCUMENT ORGANIZATION

The Beckhoff EtherCAT Slave Controller (ESC) documentation covers the following Beckhoff ESCs:

- ET1200
- ET1100
- EtherCAT IP Core for Altera® FPGAs
- EtherCAT IP Core for Xilinx® FPGAs
- ESC20

The documentation is organized in three sections. Section I and section II are common for all Beckhoff ESCs, Section III is specific for each ESC variant.

The latest documentation is available at the Beckhoff homepage (http://www.beckhoff.com).

Section I - Technology (All ESCs)

Section I deals with the basic EtherCAT technology. Starting with the EtherCAT protocol itself, the frame processing inside EtherCAT slaves is described. The features and interfaces of the physical layer with its two alternatives Ethernet and EBUS are explained afterwards. Finally, the details of the functional units of an ESC like FMMU, SyncManager, Distributed Clocks, Slave Information Interface, Interrupts, Watchdogs, and so on, are described.

Since Section I is common for all Beckhoff ESCs, it might describe features which are not available in a specific ESC. Refer to the feature details overview in Section III of a specific ESC to find out which features are available.

Section II - Register Description (All ESCs)

Section II contains detailed information about all ESC registers. This section is also common for all Beckhoff ESCs, thus registers, register bits, or features are described which might not be available in a specific ESC. Refer to the register overview and to the feature details overview in Section III of a specific ESC to find out which registers and features are available.

Section III - Hardware Description (Specific ESC)

Section III is ESC specific and contains detailed information about the ESC features, implemented registers, configuration, interfaces, pinout, usage, electrical and mechanical specification, and so on. Especially the Process Data Interfaces (PDI) supported by the ESC are part of this section.

Additional Documentation

Application notes and utilities can also be found at the Beckhoff homepage. Pinout configuration tools for ET1100/ET1200 are available. Additional information on EtherCAT IP Cores with latest updates regarding design flow compatibility, FPGA device support and known issues are also available.

Trademarks

Beckhoff®, TwinCAT®, EtherCAT®, Safety over EtherCAT®, TwinSAFE® and XFC® are registered trademarks of and licensed by Beckhoff Automation GmbH & Co. KG. Other designations used in this publication may be trademarks whose use by third parties for their own purposes could violate the rights of the owners.

Patent Pending

The EtherCAT Technology is covered, including but not limited to the following German patent applications and patents: DE10304637, DE102004044764, DE102005009224, DE102007017835 with corresponding applications or registrations in various other countries.

Disclaimer

The documentation has been prepared with care. The products described are, however, constantly under development. For that reason the documentation is not in every case checked for consistency with performance data, standards or other characteristics. In the event that it contains technical or editorial errors, we retain the right to make alterations at any time and without warning. No claims for the modification of products that have already been supplied may be made on the basis of the data, diagrams and descriptions in this documentation.

Copyright

© Beckhoff Automation GmbH & Co. KG 01/2015.

The reproduction, distribution and utilization of this document as well as the communication of its contents to others without express authorization are prohibited. Offenders will be held liable for the payment of damages. All rights reserved in the event of the grant of a patent, utility model or design.

DOCUMENT HISTORY

Version	Comment
1.0	Initial release EtherCAT IP Core for Altera FPGAs 3.0.10

CONTENTS

1	Overview			1
	1.1	Frame pr	rocessing order	2
	1.2	Scope of	this document	3
	1.3	Scope of	Delivery	3
	1.4	Target FI	PGAs	4
	1.5	Designflo	ow requirements	4
	1.6	Tested F	PGA/Designflow combinations	5
	1.7	Release	Notes	6
		1.7.1	Major differences between V2.4.x and V3.0.x	12
		1.7.2	Reading IP Core version from device	12
	1.8	Design fl	ow	13
	1.9	OpenCor	e Plus Evaluation	14
	1.10	Simulation	on	15
2	Features ar	d Registe	rs	16
	2.1	Features		16
	2.2	Registers	S	19
	2.3	Extended	d ESC Features in User RAM	22
3	IP Core Inst	allation		26
	3.1	Installatio	on on Windows PCs	26
		3.1.1	System Requirements	26
		3.1.2	Installation	26
	3.2	Installatio	on on Linux PCs	27
		3.2.1	System Requirements	27
		3.2.2	Installation	27
	3.3	Files loca	ated in the lib folder	27
	3.4	License F	File	28
	3.5	IP Core \	/endor ID package	29
	3.6	Integratir	ng the EtherCAT IP Core into the Altera Designflow	30
		3.6.1	Software Templates for example designs with NIOS processor	30
	3.7	EtherCA	T Slave Information (ESI) / XML device description for example designs	30
4	IP Core Usa	age		31
	4.1	IP Catalo	og	31
	4.2	Qsys		31
5	IP Core Cor	•		32
	5.1	Documer		33
	5.2	Paramete		34
		5.2.1	Product ID tab	34
		5.2.2	Physical Layer tab	35
		5.2.3	Internal Functions tab	37

		5.2.4	Feature Details tab	39
		5.2.5	Process Data Interface tab	41
6	Example D	esigns		49
	6.1	EBV C	yclone III DBC3C40 with Digital I/O	50
		6.1.1	Configuration and resource consumption	50
		6.1.2	Functionality	50
		6.1.3	Implementation	50
		6.1.4	SII EEPROM	50
		6.1.5	Downloadable configuration file	51
	6.2	EBV C	yclone IV DBC4CE55 with NIOS	52
		6.2.1	Configuration and resource consumption	52
		6.2.2	Functionality	52
		6.2.3	Implementation	52
		6.2.4	SII EEPROM	53
		6.2.5	Downloadable configuration file	53
	6.3	Altera (Cyclone IV DE2-115 with NIOS and MII	54
		6.3.1	Configuration and resource consumption	54
		6.3.2	Functionality	54
		6.3.3	Implementation	55
		6.3.4	SII EEPROM	55
		6.3.5	Downloadable configuration file	55
	6.4	Altera (Cyclone IV DE2-115 with NIOS and RGMII	56
		6.4.1	Configuration and resource consumption	56
		6.4.2	Functionality	56
		6.4.3	Downloadable configuration file	56
7	FPGA Res	ource Co	nsumption	57
8	IP Core Sig	gnals		59
	8.1	Genera	al Signals	59
		8.1.1	Clock source example schematics	60
	8.2	SII EEF	PROM Interface Signals	61
	8.3	LED Si	ignals	61
	8.4	Distribu	uted Clocks SYNC/LATCH Signals	62
	8.5	Physica	al Layer Interface	63
		8.5.1	MII Interface	64
		8.5.2	RMII Interface	66
		8.5.3	RGMII Interface	67
	8.6	PDI Sig	gnals	70
		8.6.1	General PDI Signals	70
		8.6.2	Digital I/O Interface	70
		8.6.3	SPI Slave Interface	71
		8.6.4	Asynchronous 8/16 Bit µController Interface	71

		8.6.5	Avalon On-Chip Bus	72
		8.6.6	AXI3 On-Chip Bus	73
9	Ethernet Int	erface		74
	9.1	PHY Ma	anagement interface	74
		9.1.1	PHY Management Interface Signals	74
		9.1.2	PHY Address Configuration	74
		9.1.3	Separate external MII management interface	s 75
		9.1.4	MII management timing specifications	75
	9.2	MII Inter	rface	76
		9.2.1	MII Interface Signals	77
		9.2.2	TX Shift Compensation	78
		9.2.3	MII Timing specifications	79
		9.2.4	MII example schematic	80
	9.3	RMII Int	erface	81
		9.3.1	RMII Interface Signals	81
		9.3.2	RMII example schematic	82
	9.4	RGMII I	nterface	83
		9.4.1	RGMII Interface Signals	83
		9.4.2	RGMII example schematic	85
		9.4.3	RGMII RX timing options	85
		9.4.4	RGMII TX timing options	85
10	PDI Descrip	otion		87
	10.1	Digital I/	O Interface	88
		10.1.1	Interface	88
		10.1.2	Configuration	89
		10.1.3	Digital Inputs	89
		10.1.4	Digital Outputs	89
		10.1.5	Output Enable	90
		10.1.6	SyncManager Watchdog	90
		10.1.7	SOF	91
		10.1.8	OUTVALID	91
		10.1.9	Timing specifications	91
	10.2	SPI Slav	ve Interface	94
		10.2.1	Interface	94
		10.2.2	Configuration	94
		10.2.3	SPI access	95
		10.2.4	Address modes	95
		10.2.5	Commands	96
		10.2.6	Interrupt request register (AL Event register)	96
		10.2.7	Write access	96
		10.2.8	Read access	96

		10.2.9	SPI access errors and SPI status flag	97
		10.2.10	2 Byte and 4 Byte SPI Masters	98
		10.2.11	Timing specifications	99
	10.3	Asynchr	onous 8/16 bit µController Interface	105
		10.3.1	Interface	105
		10.3.2	Configuration	105
		10.3.3	μController access	106
		10.3.4	Write access	106
		10.3.5	Read access	106
		10.3.6	μController access errors	107
		10.3.7	Connection with 16 bit µControllers without byte addressing	107
		10.3.8	Connection with 8 bit µControllers	108
		10.3.9	Timing Specification	109
	10.4	Avalon S	Slave Interface	113
		10.4.1	Interface	113
		10.4.2	Configuration	114
		10.4.3	Interrupts	114
		10.4.4	Data Bus With and SyncManager Configuration	114
		10.4.5	Timing specifications	115
	10.5	AXI3 On	n-Chip Bus	117
		10.5.1	Interface	117
		10.5.2	Configuration	119
		10.5.3	Interrupts	119
		10.5.4	Timing specifications	120
11	Distributed (Clocks SY	YNC/LATCH Signals	122
	11.1	Signals		122
	11.2	Timing s	specifications	122
12	SII EEPROI	M Interfac	ce (I ² C)	123
	12.1	Signals		123
	12.2	EEPRO	M Emulation	123
	12.3	Timing s	specifications	123
13	Electrical Sp	oecificatio	ons	124
14	Synthesis C	onstraints	s	125
15	Appendix			129
	15.1	Support	and Service	129
		15.1.1	Beckhoff's branch offices and representatives	129
	15.2	Beckhof	f Headquarters	129

TABLES

Table 1: IP Core Main Features	
Table 2: Frame Processing Order	2
Table 3: Tested FPGA/Designflow combinations	5
Table 4: Release notes	
Table 5: Register Revision (0x0001)	
Table 6: Register Build (0x0002:0x0003)	
Table 7: IP Core Feature Details	16
Table 8: Legend	
Table 9: Register availability	
Table 10: Legend	
Table 11: Extended ESC Features (Reset values of User RAM – 0x0F80:0x0FFF)	
Table 12: Contents of lib folder	
Table 13: Resource consumption Digital I/O example design DBC3C40	50
Table 14: Resource consumption NIOS example design DBC4CE55	52
Table 15: Resource consumption NIOS example design DE2-115 MII	54
Table 16: Resource consumption NIOS example design DE2-115 RGMII	
Table 17: Typical need of Logic Cells (LE) for main configurable functions	
Table 18: EtherCAT IP Core configuration for typical EtherCAT Devices	50
Table 19: General Signals	59
Table 20: SII EEPROM Signals	
Table 21: LED Signals	
Table 22: DC SYNC/LATCH signals	
Table 23: Physical Layer General	
Table 24: PHY Interface MII	64
Table 25: PHY Interface RMII	66
Table 26: PHY Interface RGMII	67
Table 27: General PDI Signals	
Table 28: Digital I/O PDI	70
Table 29: SPI PDI	
Table 30: 8/16 Bit μC PDI	
Table 31: 8 Bit µC PDI	
Table 32: 16 Bit µC PDI	
Table 33: Avalon PDI	
Table 34: AXI3 PDI	
Table 35: PHY management Interface signals	
Table 36: MII management timing characteristics	75
Table 37: MII Interface signals	
Table 38: MII TX Timing characteristics	79
Table 39: MII timing characteristics	79
Table 40: RMII Interface signals	
Table 41: RGMII Interface signals	
Table 42: Available PDIs for EtherCAT IP Core	
Table 43: IP core digital I/O signals	
Table 44: Input/Output byte reference	
Table 45: Digital I/O timing characteristics IP Core	
Table 46: SPI signals	94
Table 47: Address modes	95
Table 48: SPI commands CMD0 and CMD1	96
Table 49: Interrupt request register transmission	
Table 50: Write access for 2 and 4 Byte SPI Masters	
Table 51: SPI timing characteristics IP Core	
Table 52: Read/Write timing diagram symbols	
Table 53: µController signals	
Table 54: 8 bit µController interface access types	
Table 55: 16 bit µController interface access types	
Table 56: µController timing characteristics IP Core	
Table 57: Avalon signals	
Table 58: Avalon timing characteristics	
Table 59: AXI3 signals	
Table 60: AXI timing characteristics	
•	

Table 61: Distributed Clocks signals	122
Table 62: DC SYNC/LATCH timing characteristics IP Core	
Table 63: I ² C EEPROM signals	123
Table 64: EEPROM timing characteristics IP Core	123
Table 65: AC Characteristics	124
Table 66: Forwarding Delays	124
Table 67: EtherCAT IP Core constraints	

FIGURES

	Core Block Diagram	
	essing	
Figure 3: Design flow		13
Figure 4: Files installe	ed with EtherCAT IP Core setup	26
	up	
Figure 6: Qsys with E	therCAT IP Core	31
	Core Configuration Interface	
Figure 8: Documentat	tion	33
Figure 9: Product ID t	ab	34
Figure 10: Physical La	ayer tab	35
	nctions tab	
Figure 12: Feature De	etails tab	39
Figure 13: Available F	PDI Interfaces	41
Figure 14: Register P	rocess Data Interface	42
	DI – Digital I/O Configuration	
	DI – μC-Configuration	
Figure 17: Register P	DI – SPI Configuration	46
	DI – Avalon Interface Configuration	
	DI – AXI3 Interface Configuration	
	IP Core clock source (MII)	
	IP Core clock source (RMII)	
	IP Core clock source (RGMII)	
	agement Interface signals	
Figure 24: Example s	chematic with two individual MII management interfaces	75
	ce signals	
	ning Diagram	
	RX signals	
	le schematic	
	ace signals	
Figure 30: RMII exam	pple schematic	82
	erface signals	
	imple schematic	
	jital I/O signals	
	put Principle Schematic	
	ut: Input data sampled at SOF, I/O can be read in the same frame	
	ut: Input data sampled with LATCH_IN	
Figure 37: Digital Inpu	ut: Input data sampled with SYNC0/1	92
Figure 38: Digital Out	put timing	93
	timing	
	r and slave interconnection	
	_DI/SPI_DO timing (*refer to timing diagram for relevant edges of SPI_CLK) .	
	ccess (2 byte addressing, 1 byte read data) with Wait State byte	
	ccess (2 byte addressing, 2 byte read data) with Wait State byte	
	access (2 byte addressing, 1 byte write data)	
	access (3 byte addressing, 1 byte write data)	
	r interconnection	
	n with 16 bit µControllers without byte addressing	
	n with 8 bit µControllers (BHE and DATA[15:8] should not be left open)	
	ess (without preceding write access)	
	ess (write after rising edge nWR, without preceding write access)	
	of two write accesses and a read access	
	ss (write after falling edge nWR)	
_	nals	
	ad Access (W=1)	
	ad Access (W=1)	
	ite Access (4 accesses)	
	als	
	Access	
•	Access	
	l Clocks signals	
. igaio oo. Distributed	Cione digitale	

Figure 61: LatchSignal timing	. 12:
Figure 62: SyncSignal timing	
Figure 63: I ² C EEPROM signals	

ABBREVIATIONS

μC Microcontroller ADR Address

AL Application Layer

AMBA® Advanced Microcontroller Bus Architecture from ARM®

AXITM Advanced eXtensible Interface Bus, an AMBA interconnect. Used as On-Chip-bus

BHE Bus High Enable
CMD Command
CS Chip Select
DC Distributed Clock
DL Data Link Layer

ECAT EtherCAT

ESI EtherCAT Slave Information

EOF End of Frame

ESC EtherCAT Slave Controller

FMMU Fieldbus Memory Management Unit FPGA Field Programmable Gate Array

GPI General Purpose Input GPO General Purpose Output

HDL Hardware Description Language

IP Intellectual Property
IRQ Interrupt Request
LC Logic Cell
LE Logic Element

MAC Media Access Controller

MDIO Management Data Input / Output
MI (PHY) Management Interface
MII Media Independent Interface
MISO Master In – Slave Out

MOSI Master Out – Slave Out

MOSI Master Out – Slave In

PDI Process Data Interface

PLD Programmable Logic Device

PLL Phase Locked Loop RBF Raw Binary File

RD Read

RMII Reduced Media Independent Interface

SM SyncManager SoC System on a Chip SOF Start of Frame

SOPC System on a programmable Chip SPI Serial Peripheral Interface

VHDL Very High Speed Integrated Circuit Hardware Description Language

WR Write

1 Overview

The EtherCAT IP Core is a configurable EtherCAT Slave Controller (ESC). It takes care of the EtherCAT communication as an interface between the EtherCAT fieldbus and the slave application. The EtherCAT IP Core is delivered as a configurable system so that the feature set fits the requirements perfectly and brings costs down to an optimum.

Table 1: IP Core Main Features

Feature	IP Core configurable features		
Ports	1-3 MII ports or 1-3 RGMII ports 1-2 RMII ports		
FMMUs	0-8		
SyncManagers	0-8		
RAM	0-60 KB		
Distributed Clocks	Yes, 32 bit or 64 bit		
Process Data Interfaces	 32 Bit Digital I/O (unidirectional) SPI Slave 8/16 bit asynchronous µController Interface Avalon® on-chip bus AMBA® AXI3™ on-chip bus 		
Other features	 Example designs for easy start up included Slave applications can run on-chip if the appropriate FPGAs with sufficient resources are used 		

The general functionality of the EtherCAT IP Core is shown in Figure 1:

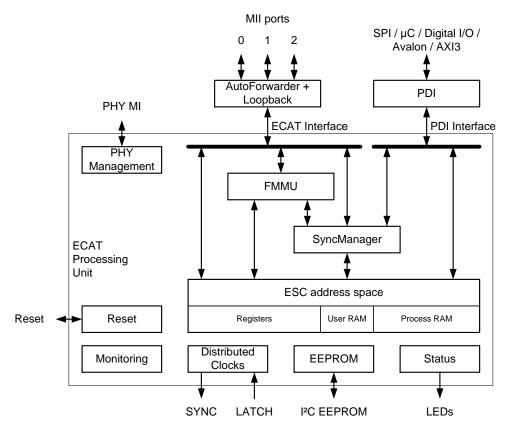


Figure 1: EtherCAT IP Core Block Diagram

1.1 Frame processing order

The frame processing order of the EtherCAT IP Core is as follows (logical port numbers are used):

Table 2: Frame Processing Order

Number of Ports	Frame processing order
1	0→EtherCAT Processing Unit→0
2	0→EtherCAT Processing Unit→1 / 1→0
3	0→EtherCAT Processing Unit→1 / 1→2 / 2→0 (log. Ports 0,1, and 2)

Figure 2 shows the frame processing in general:

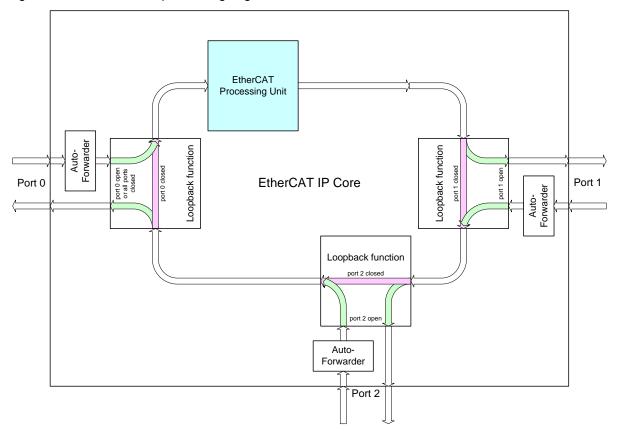


Figure 2: Frame Processing

Frame Processing Example with Ports 0 and 1

A frame received at port 0 goes via the Auto-Forwarder and the Loopback function to the EtherCAT Processing Unit which processes it. Then, the frame is sent to port 1. If port 1 is open, the frame is sent out at port 1. If it is closed, the frame is forwarded by the Loopback function to port 2. Since port 2 is not configured, the Loopback function of port 2 forwards the frame to the Loopback function of port 0, and then it is sent out at port 0 – back to the master.

1.2 Scope of this document

Purpose of this document is to describe the installation and configuration of the EtherCAT IP Core for Altera FPGAs. Furthermore, the signals and registers of the IP Core depending on the chosen configuration are described.

This documentation was made with the assumption that the user is familiar with the handling of the Altera Quartus® Development Environment.

1.3 Scope of Delivery

The EtherCAT IP Core installation file includes:

- EtherCAT IP Core (encrypted VHDL library)
- Example designs

The following files which contain customer specific information are required to synthesize the IP Core. They are delivered independently of the installation file.

- License File to decrypt EtherCAT IP Core: license_<company>_<Dongle/MAC ID>_<date>.dat
- Encrypted Vendor ID package: pk_ECAT_VENDORID_<company>_Altera.vhd

1.4 Target FPGAs

The EtherCAT IP Core for Altera® FPGAs is targeted at these FPGA families:

- Altera Cyclone® II, Cyclone III, Cyclone III LS, Cyclone IV E+GX, Cyclone V
- Altera Cyclone V SoC
- Altera Stratix®, Stratix II, Stratix III, Stratix IV, Stratix V
- Altera Arria[®] GX, Arria II GX, Arria II GZ, Arria V
- Altera Stratix® GX, Stratix II GX
- Intel[®] Atom[™] Processor E6x5C (formerly Stellarton)
- Altera MAX10

The EtherCAT IP Core is designed to support a wide range of FPGAs without modifications, because it does not instantiate dedicated FPGA resources, or rely on device specific features. Thus, the IP Core is easily portable to new FPGA families.

The complexity of the IP Core is highly configurable, so its demands for logic resources, memory blocks, and FPGA speed cover a wide range. Thus, it is not possible to run any IP Core configuration on any target FPGA with any speed grade. I.e., there are IP Core configurations requiring a faster speed grade, or a larger FPGA, or even a more powerful FPGA family.

It is necessary to run through the whole synthesis process – including timing checks –, to evaluate if the selected FPGA is suitable for a certain IP Core configuration before making the decision for the FPGA. Please consider a security margin for the logic resources to allow for minor enhancements and bug fixes of the IP Core and the user logic.

1.5 Designflow requirements

For synthesis of the EtherCAT IP Core for Altera FPGAs, at least one of the following Altera Quartus II versions is needed (with latest service pack):

- Altera Quartus II version 13.0
- Altera Quartus II version 13.1
- Altera Quartus II version 14.0
- Altera Quartus II version 14.1

Higher Quartus II versions are probably supported. Installation of the latest service pack is recommended. A free version ("Web Edition") is available from Altera (http://www.altera.com).

Optionally for using the EtherCAT IP Core with a NIOS® based Qsys design, you will need

Altera Nios II Embedded Design Suite

1.6 Tested FPGA/Designflow combinations

The EtherCAT IP Core has been synthesized successfully with different Quartus II versions and FPGA families. Table 3 lists combinations of FPGA devices and design tools versions which have been synthesized or even tested in real hardware. This list does not claim to be complete, it just illustrates that the EtherCAT IP Core is designed to comply with a broad spectrum of FPGAs.

Table 3: Tested FPGA/Designflow combinations

IP Core	Family	Device	Designflow	Test	Used Example Designs
	Cyclone III	EP3C40	Quartus II 13.1.4	Hardware	DBC3C40 Digital I/O
	Cyclone III LS	EP3CLS200	Quartus II 13.1.4	Synthesis	
	Cyclone IV E	EP4CE55	Quartus II 14.1	Hardware	DBC4CE55 Nios
	Cyclone IV E	EP4CE115	Quartus II 14.1	Hardware	DE2-115 Nios
	Cyclone V	5CEBA2	Quartus II 14.1	Synthesis	
	Cyclone V SoC	5CSEMA5	Quartus II 14.1	Synthesis	
	Stratix III	EP3SE50	Quartus II 13.1.4	Synthesis	
3.0.10	Stratix IV E	EP4SE230	Quartus II 14.1	Synthesis	
3.0.10	Stratix IV GT	EP4S40G	Quartus II 14.1	Synthesis	
	Stratix IV GX	EP4SGX70	Quartus II 14.1	Synthesis	
	Stratix V	5SGSMD4	Quartus II 14.1	Synthesis	
	Arria II GX	EP2AGX45	Quartus II 14.1	Synthesis	
	Arria V	5AGXMB3	Quartus II 14.1	Synthesis	
	Arria V GZ	5AGZME5	Quartus II 14.1	Synthesis	
	Intel Atom E6x5C	EP2AGXE 6XXFPGA	Quartus II 13.1.4	Synthesis	
	MAX10	10M40DA	Quartus II 14.1	Synthesis	

NOTE: Synthesis test means analysis, synthesis, fitter, and assembler. Hardware test means the design was operational using real hardware.

NOTE: Turn on Analysis & Synthesis option: Auto RAM Replacement, otherwise the RAM inside the IP Core will be implemented with individual registers.

Refer to the *Hardware Data Sheet Section III Addendum* available at the Beckhoff homepage (http://www.beckhoff.com) for latest updates regarding device support, design flow compatibility, and known issues.

1.7 Release Notes

EtherCAT IP Core updates deliver feature enhancements and removed restrictions. Feature enhancements are not mandatory regarding conformance to the EtherCAT standard. Restrictions have to be judged whether they are relevant in the user's configuration or not, or if workarounds are possible.

Table 4: Release notes

Version	Release notes
3.0.0	Update to Quartus II 11.0 with Qsys support
(3/2013)	Removed small/medium/large register sets, added updated preset configurations
	Enhancements:
	 Increased PDI performance Support for 8/16/32/64 bit Avalon and AXI3™ interface Support for RGMII ports (added DE2-115 RGMII example design) Native support for FX PHYs Support for individual PHY address configuration and reading out this configuration Support for static or dynamic PHY address configuration Support for 0 KB Process RAM, DC Sync/Latch signals individually configurable, LED test added Support for PDI SyncManager/IRQ acknowledge by Write command Device emulation is now configured in the GUI statically.
	Restrictions of this version, which are removed in V3.0.1:
	 Distributed Clocks are not available AXI PDI is not available RMII is not available A time limit of 1 hour for evaluation purposes is enabled even without OpenCore Plus The DBC3C40 and DBC4CE55 example designs are occasionally causing the PHY port 0 to fall into Isolate mode
	Restrictions of this version, which are removed in V3.0.2:
	EEPROM Emulation is not availableGeneral purpose output byte 7 is not available
	Restrictions of this version, which are removed in V3.0.5:
	 The AXI PDI may occasionally write incorrect data if simultaneous read and write accesses occur repeatedly. RX FIFO size is not initialized by SII EEPROM
	Restrictions of this version, which are removed in V3.0.6:
	 The ERR LED does not allow overriding using the ERR LED Override register 0x0139 while AL Status register Error Indication bit 0x0130[4] is set.
	Restrictions of this version, which are removed in V3.0.9:
	 The AXI PDI may not complete an access occasionally if overlapping read and write accesses occur, causing the processor to wait endlessly. The AXI PDI does not execute read accesses correctly if ARSIZE is smaller than the AXI bus width.
	Restrictions of this version, which are removed in V3.0.10:
	 The last 4 Kbyte Process Data RAM (0xF000:0xFFFF) cannot be used in the 60 Kbyte RAM configuration. The AXI PDI may write to wrong bytes if the write data is valid before the address,

Version	Release notes
	 which is typically true for AXI4LITE. The AXI PDI may read additional bytes after the intended bytes. The AXI PDI may write additional bytes to byte lanes without byte enable, if User RAM (0x0F80:0x0FFF) or Process Data RAM (0x01000 ff.) is written, if the actual write address on the bus is 32 bit aligned (AWADDR[1:0]=00), and if one or more of the lower byte enables/byte strobes (WSTRB) is not set.
3.0.1 (3/2013)	 Enhancements: Integration into Quartus II 13.0 added Removed PDI_AXI_IRQ_DC_SYNC0/1 signals to support Quartus II 12.1/13.0 (use Qsys IRQ bridge to use DC SyncSignals as interrupts)
	 Restrictions of previous versions which are removed in this version: Distributed Clocks are available AXI PDI is available RMII is available A time limit of 1 hour for evaluation purposes is only enabled with OpenCore Plus The DBC3C40 and DBC4CE55 example designs are preventing the PHY port 0 from falling into Isolate mode
	Restrictions of this version, which are removed in V3.0.2:
	EEPROM Emulation is not availableGeneral purpose output byte 7 is not available
	Restrictions of this version, which are removed in V3.0.5:
	 The AXI PDI may occasionally write incorrect data if simultaneous read and write accesses occur repeatedly. RX FIFO size is not initialized by SII EEPROM
	Restrictions of this version, which are removed in V3.0.6:
	 The ERR LED does not allow overriding using the ERR LED Override register 0x0139 while AL Status register Error Indication bit 0x0130[4] is set.
	Restrictions of this version, which are removed in V3.0.9:
	 The AXI PDI may not complete an access occasionally if overlapping read and write accesses occur, causing the processor to wait endlessly. The AXI PDI does not execute read accesses correctly if ARSIZE is smaller than the AXI bus width.
	Restrictions of this version, which are removed in V3.0.10:
	 The last 4 Kbyte Process Data RAM (0xF000:0xFFFF) cannot be used in the 60 Kbyte RAM configuration. The AXI PDI may write to wrong bytes if the write data is valid before the address, which is typically true for AXI4LITE. The AXI PDI may read additional bytes after the intended bytes. The AXI PDI may write additional bytes to byte lanes without byte enable, if User RAM (0x0F80:0x0FFF) or Process Data RAM (0x01000 ff.) is written, if the actual write address on the bus is 32 bit aligned (AWADDR[1:0]=00), and if one or more of the lower byte enables/byte strobes (WSTRB) is not set.

Version	Release notes
3.0.2 (5/2013)	 Enhancements: MI link detection: relaxed checking of PHY register 9 (1000Base-T Master-Slave Control register)
	Restrictions of previous versions which are removed in this version:
	EEPROM Emulation is availableGeneral purpose output byte 7 is available
	Restrictions of this version, which are removed in V3.0.5:
	The AXI PDI may occasionally write incorrect data if simultaneous read and write accesses occur repeatedly. BY FIFO size is not initialized by SII FERROM.
	RX FIFO size is not initialized by SII EEPROM Postrictions of this version, which are removed in V2.0.6:
	Restrictions of this version, which are removed in V3.0.6:
	 The ERR LED does not allow overriding using the ERR LED Override register 0x0139 while AL Status register Error Indication bit 0x0130[4] is set.
	Restrictions of this version, which are removed in V3.0.9:
	 The AXI PDI may not complete an access occasionally if overlapping read and write accesses occur, causing the processor to wait endlessly. The AXI PDI does not execute read accesses correctly if ARSIZE is smaller than the AXI bus width.
	Restrictions of this version, which are removed in V3.0.10:
	 The last 4 Kbyte Process Data RAM (0xF000:0xFFFF) cannot be used in the 60 Kbyte RAM configuration. The AXI PDI may write to wrong bytes if the write data is valid before the address, which is typically true for AXI4LITE. The AXI PDI may read additional bytes after the intended bytes.
	• The AXI PDI may write additional bytes to byte lanes without byte enable, if User RAM (0x0F80:0x0FFF) or Process Data RAM (0x01000 ff.) is written, if the actual write address on the bus is 32 bit aligned (AWADDR[1:0]=00), and if one or more of the lower byte enables/byte strobes (WSTRB) is not set.

Version	Release notes
3.0.5 (2/2014)	 Enhancements: Improved MegaWizard GUI: shows on-chip bus speed and configuration details Example designs using Qsys include .qip file instead of .qsys file (Qsys constraints are used now)
	Restrictions of previous versions which are removed in this version:
	 The AXI PDI writes correct data if simultaneous read and write accesses occur repeatedly. RX FIFO size is properly initialized by SII EEPROM
	Restrictions of this version, which are removed in V3.0.6:
	 The ERR LED does not allow overriding using the ERR LED Override register 0x0139 while AL Status register Error Indication bit 0x0130[4] is set.
	Restrictions of this version, which are removed in V3.0.9:
	 The AXI PDI may not complete an access occasionally if overlapping read and write accesses occur, causing the processor to wait endlessly. The AXI PDI does not execute read accesses correctly if ARSIZE is smaller than the AXI bus width.
	Restrictions of this version, which are removed in V3.0.10:
	 The last 4 Kbyte Process Data RAM (0xF000:0xFFFF) cannot be used in the 60 Kbyte RAM configuration. The AXI PDI may write to wrong bytes if the write data is valid before the address, which is typically true for AXI4LITE. The AXI PDI may read additional bytes after the intended bytes. The AXI PDI may write additional bytes to byte lanes without byte enable, if User RAM (0x0F80:0x0FFF) or Process Data RAM (0x01000 ff.) is written, if the actual write address on the bus is 32 bit aligned (AWADDR[1:0]=00), and if one or more of the lower byte enables/byte strobes (WSTRB) is not set.

Version	Release notes
3.0.6 (4/2014)	 Enhancements: The Sync/Latch PDI Configuration register 0x0151 shows the same value as previous IP Core versions. The actual configuration is not affected, since it is fixed by the IP Core configuration. Avalon/AXI timing: Quartus might infer an additional clock control buffer into the on-chip-bus clock signal, causing higher jitter/delay. This clock buffer is now avoided, leading to better timing results. Added support for unaligned AXI burst transfers.
	Restrictions of previous versions which are removed in this version:
	• The ERR LED allows overriding using the ERR LED Override register 0x0139 while AL Status register Error Indication bit 0x0130[4] is set. The override flag is now cleared upon a rising edge of 0x0130[4], and it can be set again afterwards.
	Restrictions of this version, which are removed in V3.0.9:
	 The AXI PDI may not complete an access occasionally if overlapping read and write accesses occur, causing the processor to wait endlessly. The AXI PDI does not execute read accesses correctly if ARSIZE is smaller than the AXI bus width.
	Restrictions of this version, which are removed in V3.0.10:
	 The last 4 Kbyte Process Data RAM (0xF000:0xFFFF) cannot be used in the 60 Kbyte RAM configuration. The AXI PDI may write to wrong bytes if the write data is valid before the address, which is typically true for AXI4LITE. The AXI PDI may read additional bytes after the intended bytes. The AXI PDI may write additional bytes to byte lanes without byte enable, if User RAM (0x0F80:0x0FFF) or Process Data RAM (0x01000 ff.) is written, if the actual write address on the bus is 32 bit aligned (AWADDR[1:0]=00), and if one or more of the lower byte enables/byte strobes (WSTRB) is not set.
3.0.9 (9/2014)	Enhancements:The Altera DE2-115 example designs have been updated to support Quartus 14.0
	 (connected PLL areset signal) The PDI watchdog status 0x0110[1] now shows value '1' (watchdog reloaded) if the PDI watchdog is configured to be not available. The ESI XML device description does not use special data types anymore.
	Restrictions of previous versions which are removed in this version:
	 The AXI PDI completes accesses if overlapping read and write accesses occur. The AXI PDI executes read accesses correctly if ARSIZE is smaller than the AXI bus width.
	Restrictions of this version, which are removed in V3.0.10:
	 The last 4 Kbyte Process Data RAM (0xF000:0xFFFF) cannot be used in the 60 Kbyte RAM configuration. The AXI PDI may write to wrong bytes if the write data is valid before the address, which is typically true for AXI4LITE. The AXI PDI may read additional bytes after the intended bytes. The AXI PDI may write additional bytes to byte lanes without byte enable, if User RAM (0x0F80:0x0FFF) or Process Data RAM (0x01000 ff.) is written, if the actual write address on the bus is 32 bit aligned (AWADDR[1:0]=00), and if one or more of the lower byte enables/byte strobes (WSTRB) is not set.

Version	Release notes				
3.0.10 (1/2015)	The EL9800/FB1122 example designs have been removed because these evaluation boards are no longer available.				
	 Enhancements: For EEPROM Emulation, the CRC error bit 0x0502[11] can be written via PDI to indicate CRC errors during a reload command. 				
	Restrictions of previous versions which are removed in this version:				
	 The last 4 Kbyte Process Data RAM (0xF000:0xFFFF) can be used in the 60 Kbyte RAM configuration. The AXI PDI does not write to wrong bytes if the write data is valid before the address. The AXI PDI does not read additional bytes after the intended bytes. The AXI PDI does not write to byte lanes without byte enable. 				

1.7.1 Major differences between V2.4.x and V3.0.x

The EtherCAT IP Core V3.0.x versions have these advantages compared with the V2.4.x versions:

- Increased PDI performance (average latency internally at least by a factor of 2 faster; worst case latency even better)
- Support for 8/16/32/64 bit Avalon and AXI3[™] interface
- Support for RGMII ports
- Native support for FX PHYs
- Flexible PHY address configuration
- Support for PDI SyncManager/IRQ acknowledge by Write command (required for wide on-chipbusses)
- More detailed configuration

The higher PDI performance increases the resource requirements of the V3.0.x versions compared with the V2.4.x versions. New development is focused on the V3.0.x versions.

1.7.2 Reading IP Core version from device

The IP Core version, denoted as X.Y.Z (e.g., 2.4.0), consists of three values X, Y, and Z. These values can be read out in registers 0x0001 and 0x0002.

Table 5: Register Revision (0x0001)

Bit	Description	ECAT	PDI	Reset Value
7:0	IP Core major version X	r/-	r/-	IP Core dep.

Table 6: Register Build (0x0002:0x0003)

Bit	Description	ECAT	PDI	Reset Value
3:0	IP Core maintenance version Z	r/-	r/-	IP Core dep.
7:4	IP Core minor version Y	r/-	r/-	IP Core dep.
15:8	Patch level: 0x00: original release 0x01-0x0F: patch level of original release	r/-	r/-	IP Core dep.

1.8 Design flow

The design flow for creating an EtherCAT Slave Controller based on the EtherCAT IP Core is shown in the following picture:

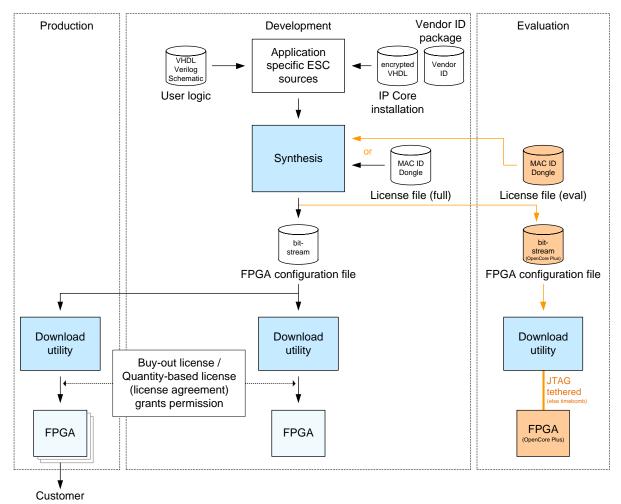


Figure 3: Design flow

1.9 OpenCore Plus Evaluation

The EtherCAT IP Core for Altera FPGAs supports OpenCore Plus evaluation. A special License File with OpenCore Plus support is issued for each user, together with the IP Core Vendor ID package. For further information on OpenCore Plus, refer to the Altera Application Note 320 "OpenCore Plus Evaluation of Megafunctions", available from Altera (http://www.altera.com).

A design with an OpenCore Plus EtherCAT IP Core is subject to some restrictions:

- Only a time limited programming file (<design_name>_time_limited.sof) for the Altera Quartus II Programmer is generated. Other programming files (e.g., .rbf, .pof) are not generated.
- For hardware testing, the ESC design has to be connected to the PC running the Altera Quartus II
 Programmer using a programming adapter with a JTAG connection. The EtherCAT IP Core is fully
 functional while the adapter is connected.
- If the connection is interrupted, the EtherCAT IP Core will discontinue its function after approximately 1 hour.
- The OpenCore Plus version slightly increases the resource consumption of the IP Core.
- The OpenCore Plus programming file must not be distributed/sold.

A vendor ID package is required for both evaluation and full license. It is recommended to use an evaluation vendor ID (package) for evaluation, and the original vendor ID for production. The evaluation vendor ID is beginning with "0xE......" and ends with the original vendor ID digits. Evaluation vendor IDs cannot pass the EtherCAT conformance tests.

OpenCore Plus Issues

Sometimes additional top-level pins appear in the OpenCore Plus design, these signals should be grounded externally if possible. This is a Quartus OpenCore Plus integration issue, not an EtherCAT IP Core issue. The signals will not appear if a full license is used. Additionally, do not use incremental synthesis together with OpenCore Plus, since this was found to produce defective designs similar to the OpenCore Plus integration issue.

Sometimes timing requirements are not met with OpenCore Plus. Experience shows that timing violations related to the clock *altera_reserved_tck* can be ignored.

Upgrading to a Full License

A design using an OpenCore Plus EtherCAT IP Core does not have to be changed when upgrading to a full license, only the full License File has to be installed instead of the OpenCore Plus License File. A re-generation of the EtherCAT IP Core (running through the MegaWizard) and a new synthesis run is necessary to generate the unlimited programming files.

1.10 Simulation

A behavioral simulation model of the EtherCAT IP core is not available because of its size and complexity. Thus, simulation of the entire EtherCAT IP Core is not supported, and the EDA Netlist Writer cannot be used for designs which contain the EtherCAT IP Core. In most cases, simulation of the EtherCAT IP Core is not necessary, as the IP Core was thoroughly tested and the interfaces are standardized (Ethernet, Avalon) or simple and well described. Problems at the interface level can often be solved with a scope shot of the interface signals.

Nevertheless, customer designs using the Avalon or AXI on-chip bus can easily be simulated using a Bus Functional Model of the on-chip bus slave interface instead of a simulation model of the entire EtherCAT IP Core.

From the processor's view, the EtherCAT IP Core is a memory (or a bunch of registers). For processor bus verification, the EtherCAT IP Core can be substituted by another IP core with Avalon/AXI slave interface which behaves like a memory as well. The EtherCAT IP Core can be replaced for simulation by e.g.:

- Altera On-Chip Memory slave
- Avalon/AXI slave created with the Qsys

2 Features and Registers

2.1 Features

Table 7: IP Core Feature Details

Feature	IP Core Altera® V3.0.10	IP Core Altera® V3.0.0- 3.0.9
EtherCAT Ports	1-3	1-3
Permanent ports	1-3	1-3
Optional Bridge port 3 (EBUS or MII)	-	-
EBUS ports	-	-
MII ports	0-3	0-3
RMII ports	0-2	0-2
RGMII ports	0-3	0-3
Port 0	х	х
Ports 0, 1	х	х
Ports 0, 1, 2	х	х
Ports 0, 1, 3	-	-
Ports 0, 1, 2, 3	-	-
EtherCAT mode	Direct	Direct
Slave Category	Full Slave	Full Slave
Position addressing	X	х
Node addressing	X	X
Logical addressing	X	X
o o		
Broadcast addressing	Х	Х
Physical Layer General Features		
FIFO Size configurable (0x0100[18:16])	x	х
FIFO Size default from SII EEPROM	х	Х
Auto-Forwarder checks CRC and SOF	х	х
Forwarded RX Error indication, detection and Counter (0x0308:0x030B)	x	x
Lost Link Counter (0x0310:0x0313)	С	С
Prevention of circulating frames	Х	х
Fallback: Port 0 opens if all ports are closed	х	х
VLAN Tag and IP/UDP support	X	x
Enhanced Link Detection per port configurable	x	х
General Ethernet Features (MII/RMII/RGMII)		
MII Management Interface (0x0510:0x051F)	С	С
Supported PHY Address Offsets	any	any
Individual port PHY addresses	x	X
Port PHY addresses readable	x	X
Link Polarity configurable	User logic	User logic
Enhanced Link Detection supported	х	x
FX PHY support (native)	x	X
PHY reset out signals	х	x
Link detection using PHY signal (LED)	х	x
MI link status and configuration	С	С
MI controllable by PDI (0x0516:0x0517)	х	x
MI read error (0x0510.13)	x	x
MI PHY configuration update status (0x0518.5)	x	x
MI preamble suppression	х	х
Additional MCLK	x	х
Gigabit PHY configuration	x	х
Gigabit PHY register 9 relaxed check	х	x
FX PHY configuration	х	х

Feature	IP Core Altera [®] V3.0.10	IP Core Altera® V3.0.0- 3.0.9
MII Features		
CLK25OUT as PHY clock source	User logic	User logic
Bootstrap TX Shift settings	С	С
Automatic TX Shift setting (with TX_CLK)	С	С
TX Shift not necessary (PHY TX_CLK as clock source)	-	-
FIFO size reduction steps	2	2
PDI General Features		
Increased PDI performance	x	X
Extended PDI Configuration (0x0152:0x0153)	х	х
PDI Error Counter (0x030D)	С	С
PDI Error Code (0x030E)	С	С
CPU_CLK output (10, 20, 25 MHz)	User logic	User logic
SOF, EOF, WD_TRIG and WD_STATE independent of PDI	x	х
Available PDIs and PDI features depending on port configuration	-	-
PDI selection at run-time (SII EEPROM)	-	-
PDI active immediately (SII EEPROM settings ignored)	x	х
PDI function acknowledge by write	С	С
PDI Information register 0x014E:0x014F	С	С
Digital I/O PDI	x	x
Digital I/O width [bits]	8/16/24/32	8/16/24/32
PDI Control register value (0x0140:0x0141)	4	4
Control/Status signals:	7	7
LATCH_IN	х	Х
SOF	х	Х
OUTVALID	х	Х
WD_TRIG	х	Х
OE_CONF	-	-
OE_EXT	х	Х
EEPROM_ Loaded	x	x
WD_STATE	х	Х
EOF	х	х
Granularity of direction configuration [bits]	8	8
Bidirectional mode	- (User logic)	- (User logic)
Output high-Z if WD expired	User logic	User logic
Output 0 if WD expired	X	X
Output with EOF	X	X
Output with DC SyncSignals	X	X
Input with SOF Input with DC SyncSignals	×	X
SPI Slave PDI	x x	x x
Max. SPI clock [MHz]	30	30
SPI modes configurable (0x0150[1:0])	x	х
SPI_IRQ driver configurable (0x0150[3:2])	x	х
SPI_SEL polarity configurable (0x0150.4)	x	x
Data out sample mode configurable (0x0150.5)	x	х
ooringarable (one roots)		

Feature		IP Core Altera [®] V3.0.10	IP Core Altera® V3.0.0-
	Wait State byte(s)		3.0.9 X
	Number of address extension	any	any
	byte(s) 2/4 Byte SPI master support	x	x
	Extended error detection (read		
	busy violation)	Х	х
	SPI_IRQ delay	X	X
	Status indication EEPROM	Х	Х
	Loaded signal	X	X
Asynch	ronous µController PDI	8/16 bit	8/16 bit
	Extended µC configuration bits 0x0150[7:4], 0x0152:0x0153	х	х
	ADR[15:13] available (000 _b if not available)	х	x
	EEPROM_Loaded signal	х	x
	RD polarity configurable (0x0150.7)	-	-
	Read BUSY delay (0x0152.0)	х	х
	Write after first edge (0x0152.2)	х	x
Synchr	onous µController PDI	-	-
On-Chi	p Bus PDI	x	x
	Avalon®	Х	х
	OPB [®] PLB v4.6 [®]	-	
	AXI3 TM	x	X
	AXI4 TM	-	-
	AXI4 LITE™	-	-
	Bus clock [MHz] (N=1,2,3,)	any	any
	Data bus width [bits]	8/16/32/64	8/16/32/64
	Prefetch cycles DC SyncSignals available directly and as IRQ	1 x	1 x
	Bus clock multiplier in register 0x0150[6:0]	х	x
	EEPROM_ Loaded signal	х	х
	AT Bridge (port 3, EBUS/MII) I Purpose I/O	- x	- x
Genera	•	0/8/16/	0/8/16/
	GPO bits	32/64	32/64
	GPI bits	0/8/16/ 32/64	0/8/16/ 32/64
	GPIO available independent of PDI or port configuration	x	х
	GPIO available without PDI	x	х
E60:	Concurrent access to GPO by ECAT and PDI	x	х
ESC IN	ormation Basic Information		
	(0x0000:0x0006)	x	х
	Port Descriptor (0x0007)	x	х
	ESC Features supported (0x0008:0x0009)	х	х
	Extended ESC Feature Availability in User RAM (0x0F80 ff.)	х	х
	rotection (0x0020:0x0031)	С	С
Data Li	nk Layer Features		
	ECAT Reset (0x0040) PDI Reset (0x0041)	С	С
	ESC DL Control (0x0100:0x0103) bytes	4	4
	EtherCAT only mode (0x0100.0)	х	x
	Temporary loop control (0x0100.1)	x	х
	FIFO Size configurable (0x0100[18:16])	х	х
	Configured Station Address (0x0010:0x0011) Configured Station Alias	x	х

Feature	IP Core Altera® V3.0.10	IP Core Altera® V3.0.0- 3.0.9
Physical Read/Write Offset	С	С
(0x0108:0x0109) Application Layer Features		
Extended AL Control/Status bits	x	х
(0x0120[15:5], 0x0130[15:5]) AL Status Emulation (0x0140.8)	x	x
AL Status Code (0x0134:0x0135)	c	c
Interrupts		
ECAT Event Mask (0x0200:0x0201)	x	x
AL Event Mask (0x0204:0x0207)	С	С
ECAT Event Request (0x0210:0x0211)	х	х
AL Event Request (0x0220:0x0223)	x	x
SyncManager activation changed (0x0220.4)	x	x
SyncManager watchdog expiration (0x0220.6)	x	x
Error Counters		
RX Error Counter (0x0300:0x0307)	x	x
Forwarded RX Error Counter (0x0308:0x030B)	x	x
ECAT Processing Unit Error Counter (0x030C)	С	С
PDI Error Counter (0x030D)	С	С
Lost Link Counter (0x0310:0x0313)	С	С
Watchdog		
Watchdog Divider configurable (0x0400:0x0401)	С	С
Watchdog Process Data	х	x
Watchdog PDI	Х	Х
Watchdog Counter Process Data (0x0442)	x	x
Watchdog Counter PDI (0x0443) SII EEPROM Interface (0x0500:0x050F)	Х	х
	1 Kbyte-	1 Kbyte-
EEPROM sizes supported EEPROM size reflected in	4 Mbyte	4 Mbyte
0x0502.7	Х	Х
EEPROM controllable by PDI	X	X
EEPROM Emulation by PDI EEPROM Emulation CRC error	С	С
0x0502[11] PDI writable	X	-
Read data bytes (0x0502.6)	4	4
Internal Pull-Ups for EEPROM_CLK and EEPROM_DATA	User logic	User logic
FMMUs	0-8	0-8
Bit-oriented operation	х	х
SyncManagers	0-8	0-8
Watchdog trigger generation for 1 Byte Mailbox configuration independent of reading access	х	x
SyncManager Event Times (+0x8[7:6])	С	С
Buffer state (+0x5[7:6])	x	x
Distributed Clocks	С	С
Width	32/64	32/64
Sync/Latch signals	4 (0-2 Sync- Signals, 0- 2 Latch- Signals)	4 (0-2 Sync- Signals, 0- 2 Latch- Signals)
SyncManager Event Times (0x09F0:0x09FF)	С	С
DC Receive Times	С	С
DC Time Loop Control controllable by PDI	С	С
DC activation by EEPROM (0x0140[11:10])	-	-

Feature	IP Core Altera® V3.0.10	IP Core Altera® V3.0.0- 3.0.9
Propagation delay measurement with traffic (BWR/FPWR 0x900 detected at each port)	x	x
LatchSignal state in Latch Status register (0x09AE:0x09AF)	x	x
SyncSignal Auto-Activation (0x0981.3)	x	x
SyncSignal 32 or 64 bit Start Time (0x0981.4)	x	x
SyncSignal Late Activation (0x0981[6:5])	x	x
SyncSignal debug pulse (0x0981.7)	x	x
SyncSignal Activation State 0x0984)	x	х
Reset filters after writing filter depth	x	x
ESC Specific Registers (0x0E00:0x0EFF)		
Product and Vendor ID	х	х
POR Values	-	-
FPGA Update (online)	-	-
Process RAM and User RAM		
Process RAM (0x1000 ff.) [Kbyte]	0-60	0-60
User RAM (0x0F80:0x0FFF)	х	х
Extended ESC Feature Availability in User RAM	x	x
Additional EEPROMs	1-2	1-2
SII EEPROM (I ² C)	c (EEPROM of µC used)	c (EEPROM of µC used)
FPGA configuration EEPROM	Х	Х
LED Signals		
RUN LED	С	С
RUN LED override	С	С
Link/Activity(x) LED per port	х	х
PERR(x) LED per port	-	-
Device ERR LED	С	С
STATE_RUN LED	С	С
Optional LED states		
RUN LED: Bootstrap	х	х
RUN LED: Booting	С	С
RUN LED: Device identification	С	С
RUN LED: loading SII EEPROM	С	С
Error LED: SII EEPROM loading error	С	С
Error LED: Invalid hardware configuration	-	-
Error LED: Process data watchdog timeout	С	С
Error LED: PDI watchdog timeout	С	С
Link/Activity: local auto- negotiation error	-	-

Feature	IP Core Altera® V3.0.10	IP Core Altera [®] V3.0.0- 3.0.9
Link/Activity: remote auto- negotiation error	-	-
Link/Activity: unknown PHY auto- negotiation error	-	-
LED test	С	С
Clock supply		
Crystal	-	-
Crystal oscillator	Х	x
TX_CLK from PHY	х	x
25ppm clock source accuracy	Х	х
Internal PLL	User logic	User logic
Power Supply Voltages	FPGA dep.	FPGA dep.
I/O Voltage	FPGA dep.	FPGA dep.
Core Voltage	FPGA dep.	FPGA dep.
Internal LDOs	-	-
Package	FPGA dep.	FPGA dep.
Original Release date	1/2015	3/2013
Configuration and Pinout calculator (XLS)	-	-
Register Configuration	individual	individual
Complete IP Core evaluation	х	х
License device required	-	-
Example designs/ pre-synthesized time-limited evaluation core included	4/4	6/6
FB1120 Digital I/O	-	-
FB1120 SPI	-	-
FB1122 Digital I/O	-	x/x
FB1122 SPI	-	x/x
DBC2C20 Digital I/O	-	-
DBC2C20 NIOS®	-	-
DBC3C40 Digital I/O	x/x	x/x
DBC3C40 NIOS	-	-
DBC4CE55 NIOS	x/x	x/x
DE2-115 NIOS MII	x/x	x/x
DE2-115 NIOS RGMII	x/x	x/x

Table 8: Legend

Symbol	Description
Х	available
-	not available
С	configurable
User logic	Functionality can be added by user logic inside the FPGA
red	Feature changed in this version

2.2 Registers

An EtherCAT Slave Controller (ESC) has an address space of 64Kbyte. The first block of 4Kbyte (0x0000:0x0FFF) is dedicated for registers. The process data RAM starts at address 0x1000, its size is configurable.

Some registers are implemented depending on the configuration.

Table 9 gives an overview of the available registers.

Table 9: Register availability

Address	Length	Description	IP Core V3.0.0-
	(Byte)		V3.0.0- V3.0.10
0x0000	1	Туре	х
0x0001	1	Revision	Х
0x0002:0x0003	2	Build	Х
0x0004	1	FMMUs supported	Х
0x0005	1	SyncManagers supported	Х
0x0006	1	RAM Size	Х
0x0007	1	Port Descriptor	Х
0x0008:0x0009	2	ESC Features supported	Х
0x0010:0x0011	2	Configured Station Address	Х
0x0012:0x0013	2	Configured Station Alias	Х
0x0020	1	Write Register Enable	С
0x0021	1	Write Register Protection	С
0x0030	1	ESC Write Enable	С
0x0031	1	ESC Write Protection	С
0x0040	1	ESC Reset ECAT	С
0x0041	1	ESC Reset PDI	С
0x0100:0x0101	2	ESC DL Control	Χ
0x0102:0x0103	2	Extended ESC DL Control	Х
0x0108:0x0109	2	Physical Read/Write Offset	С
0x0110:0x0111	2	ESC DL Status	Х
0x0120	5 bits [4:0]	AL Control	X
0x0120:0x0121	2	AL Control	Х
0x0130	5 bits [4:0]	AL Status	Х
0x0130:0x0131	2	AL Status	Х
0x0134:0x0135	2	AL Status Code	С
0x0138	1	RUN LED Override	С
0x0139	1	ERR LED Override	С
0x0140	1	PDI Control	Х
0x0141	1	ESC Configuration	Х
0x014E:0x014F	2	PDI Information	С
0x0150	1	PDI Configuration	Х
0x0151	1	DC Sync/Latch Configuration	Х
0x0152:0x0153	2	Extended PDI Configuration	X
0x0200:0x0201	2	ECAT Event Mask	Х
0x0204:0x0207	4	PDI0 AL Event Mask	r/c

0x0210:0x0211 2 ECAT Event Request x 0x0220:0x0223 4 AL Event Request x 0x0300:0x0307 4x2 Rx Error Counter[3:0] x 0x0308:0x030B 4x1 Forwarded Rx Error counter[3:0] x 0x030C 1 ECAT Processing Unit Error counter c 0x030D 1 PDI Error Counter c 0x030E 1 PDI Error Code c
0x0300:0x0307 4x2 Rx Error Counter[3:0] x 0x0308:0x030B 4x1 Forwarded Rx Error counter[3:0] x 0x030C 1 ECAT Processing Unit Error counter c 0x030D 1 PDI Error Counter c
0x0308:0x030B 4x1 Forwarded Rx Error counter[3:0] 0x030C 1 ECAT Processing Unit Error counter 0x030D 1 PDI Error Counter
counter[3:0] 0x030C
Counter 0x030D 1 PDI Error Counter c
0x030E 1 PDI Error Code c
0x0310:0x0313 4x1 Lost Link Counter[3:0] c
0x0400:0x0401 2 Watchdog Divider r/c
0x0410:0x0411 2 Watchdog Time PDI c
0x0420:0x0421 2 Watchdog Time Process Data x
0x0440:0x0441 2 Watchdog Status Process Data x
0x0442 1 Watchdog Counter Process c Data
0x0443 1 Watchdog Counter PDI c
0x0500:0x050F 16 SII EEPROM Interface x
0x0510:0x0515 6 MII Management Interface c
0x0516:0x0517 2 MII Management Access State c
0x0518:0x051B 4 PHY Port Status[3:0] c
0x0600:0x06FC 16x13 FMMU[15:0] 0-8
0x0800:0x087F 16x8 SyncManager[15:0] 0-8
0x0900:0x090F 4x4 DC – Receive Times[3:0] rt
0x0910:0x0917 8 DC – System Time dc
0x0918:0x091F 8 DC – Receive Time EPU dc
0x0920:0x0935 24 DC – Time Loop Control Unit dc
0x0936 1 DC – Receive Time Latch - mode
0x0980 1 DC – Cyclic Unit Control dc
0x0981 1 DC – Activation dc
0x0982:0x0983 2 DC – Pulse length of dc SyncSignals
0x0984 1 DC – Activation Status dc
0x098E:0x09A7 26 DC – SYNC Out Unit dc
0x09A8 1 DC – Latch0 Control dc
0x09A9 1 DC – Latch1 Control dc
0x09AE 1 DC – Latch0 Status dc
0x09B0:0x09B7 8 DC – Latch0 Positive Edge dc
0x09B8:0x09BF 8 DC – Latch0 Negative Edge dc
0x09C0:0x09C7 8 DC – Latch1 Positive Edge dc
0x09C7:0x09CF 8 DC – Latch1 Negative Edge dc
0x09F0:0x09F3
0x0E00:0x0E03 4 Power-On Values (Bits) -
0x0E00:0x0E07 8 Product ID x

Address	Length (Byte)	Description	IP Core V3.0.0- V3.0.10
0x0E08:0x0E0F	8	Vendor ID	Х
0x0F00:0x0F03	4	Digital I/O Output Data	io
0x0F10:0x0F17	8	General Purpose Outputs [Byte]	0-8
0x0F18:0x0F1F	8	General Purpose Inputs [Byte]	0-8
0x0F80:0x0FFF	128	User RAM	Х
0x1000:0x1003	4	Digital I/O Input Data	io
0x1000 ff.		Process Data RAM [Kbyte]	1-60

Table 10: Legend

Symbol	Description
х	Available
-	Not available
r	Read only
С	Configurable
dc	Available if Distributed Clocks with all Sync/Latch signals are enabled
rt	Available if Receive Times or Distributed Clocks are enabled (always available for 3-4 ports)
io	Available if Digital I/O PDI is selected
red	Register changed in this version

2.3 Extended ESC Features in User RAM

Table 11: Extended ESC Features (Reset values of User RAM – 0x0F80:0x0FFF)

Addr.	Bit	Feat.	Description	Reset Value
0F80	7:0	=	Number of extended feature bits	Depends on ESC
			IP Core extended features:	Depends on ESC: 0: Not available 1: Available c: Configurable
0F81	0	0	Extended DL Control Register (0x0102:0x0103)	1
	1	1	AL Status Code Register (0x0134:0x0135)	С
	2	2	ECAT Interrupt Mask (0x0200:0x0201)	1
	3	3	Configured Station Alias (0x0012:0x0013)	1
	4	4	General Purpose Inputs (0x0F18:0x0F1F)	С
	5	5	General Purpose Outputs (0x0F10:0x0F17)	С
	6	6	AL Event Mask (0x0204:0x0207)	С
	7	7	Physical Read/Write Offset (0x0108:0x0109)	С
0F82	0	8	Watchdog divider writeable (0x0400:0x04001) and Watchdog PDI (0x0410:0x0f11)	С
	1	9	Watchdog counters (0x0442:0x0443)	С
	2	10	Write Protection (0x0020:0x0031)	С
	3	11	Reset (0x0040:0x0041)	С
	4	12	Reserved	0
	5	13	DC SyncManager Event Times (0x09F0:0x09FF)	С
	6	14	ECAT Processing Unit/PDI Error Counter (0x030C:0x030D)	С
	7	15	EEPROM Size configurable (0x0502.7): 0: EEPROM Size fixed to sizes up to 16 Kbit 1: EEPROM Size configurable	1
0F83	0	16	Reserved	1
	1	17	Reserved	0
	2	18	Reserved	0
	3	19	Lost Link Counter (0x0310:0x0313)	С
	4	20	MII Management Interface (0x0510:0x0515)	С
	5	21	Enhanced Link Detection MII	С
	6	22	Enhanced Link Detection EBUS	0
	7	23	Run LED (DEV_STATE LED)	С
0F84	0	24	Link/Activity LED	1
	1	25	Reserved	0
	2	26	Reserved	1
	3	27	DC Latch In Unit	С
	4	28	Reserved	0
	5	29	DC Sync Out Unit	С
	6	30	DC Time loop control assigned to PDI	С
	7	31	Link detection and configuration by MI	С

Addr.	Bit	Feat.	Description	Reset Value
0F85	0	32	MI control by PDI possible	1
	1	33	Automatic TX shift	С
	2	34	EEPROM emulation by μController	С
	3	35	Reserved	0
	4	36	Reserved	0
	5	37	Disable Digital I/O register (0x0F00:0x0F03)	С
	6	38	Reserved	0
	7	39	Reserved	0
0F86	0	40	Reserved	0
	1	41	Reserved	0
	2	42	RUN/ERR LED Override (0x0138:0x0139)	С
	3	43	Reserved	0
	4	44	Reserved	1
	5	45	Reserved	0
	6	46	Reserved	0
	7	47	Reserved	0
0F87	0	48	Reserved	0
	1	49	Reserved	0
	2	50	Reserved	0
	3	51	DC Sync1 disable	С
	4	52	Reserved	0
	5	53	Reserved	0
	6	54	DC Receive Times (0x0900:0x090F)	С
	7	55	DC System Time (0x0910:0x0936)	С
0F88	0	56	DC 64 bit	С
	1	57	Reserved	0
	2	58	PDI clears error counter	0
	3	59	Avalon PDI	С
	4	60	Reserved	0
	5	61	PLB PDI	0
	6	62	Reserved	0
	7	63	Reserved	0
0F89	0	64	Reserved	0
	1	65	Reserved	0
	2	66	Reserved	0
	3	67	Reserved	0
	4	68	Reserved	0
	5	69	Reserved	0
	6	70	Reserved	0
	7	71	Direct RESET	0

Addr.	Bit	Feat.	Description	Reset Value
0F8A	0	72	Reserved	0
	1	73	Reserved	1
	2	74	DC Latch1 disable	С
	3	75	AXI PDI	С
	4	76	Reserved	0
	5	77	Reserved	0
	6	78	PDI function acknowledge by PDI write	С
	7	79	Reserved	0
0F8B	0	80	Reserved	1
	1	81	Reserved	1
	2	82	Reserved	0
	3	83	LED test	С
	4	84	Reserved	0
	5	85	Reserved	0
	6	86	Reserved	0
	7	87	Reserved	0
0F8C	3:0	91:88	Reserved	0
	7:4	95:92	Reserved	0
0F8D	3:0	99:96	Reserved	0
	7:4	103:100	Reserved	0
0F8E	3:0	107:104	Reserved	0
	4	108	Reserved	0
	5	109	Reserved	0
	7:6	111:110	Digital I/O PDI byte size	С
0F8F	0	112	Reserved	0
	1	113	Reserved	0
	2	114	Digital I/O PDI	С
	3	115	SPI PDI	С
	4	116	Asynchronous μC PDI	С
	5	117	Reserved	0
	6	118	Reserved	1
	7	119	Reserved	1
0F90	0	120	Reserved	0
	1	121	Reserved	0
	2	122	Reserved	0
	3	123	Reserved	0
	4	124	Reserved	0
	5	125	Reserved	0
	6	126	Reserved	0
	7	127	Reserved	0

Addr.	Bit	Feat.	Description	Reset Value
0F91	0	128	Reserved	0
	1	129	Reserved	0
	2	130	Reserved	0
	3	131	Reserved	0
	4	132	Reserved	0
	5	133	Reserved	0
	6	134	Reserved	0
	7	135	Reserved	0
0F92	0	136	Reserved	0
	1	137	Reserved	0
	2	138	Reserved	0
	3	139	Reserved	0
	4	140	Reserved	0
	5	141	Reserved	0
	6	142	Reserved	0
	7	143	Reserved	0
0F93	0	144	RGMII	С
	1	145	Individual PHY address read out (0x0510[7:3])	С
	2	146	CLK_PDI_EXT is asynchronous	С
	3	147	Reserved	0
	4	148	Use RGMII GTX_CLK phase shifted clock input	1
	5	149	RMII	С
	6	150	Reserved	0
	7	151	Reserved	0

3 IP Core Installation

3.1 Installation on Windows PCs

3.1.1 System Requirements

The system requirements of Altera Quartus II are applicable.

3.1.2 Installation

For installation of the EtherCAT IP Core on your system run the setup program

"EtherCAT IP core for Altera FPGAs <version>Setup.exe"

and follow the instructions of the installation wizard.

The EtherCAT IP Core, example designs, and documentation are typically installed in the directory C:\BECKHOFF\ethercat_altera_v<version>

This folder is further referenced to as <IPInst_dir>.

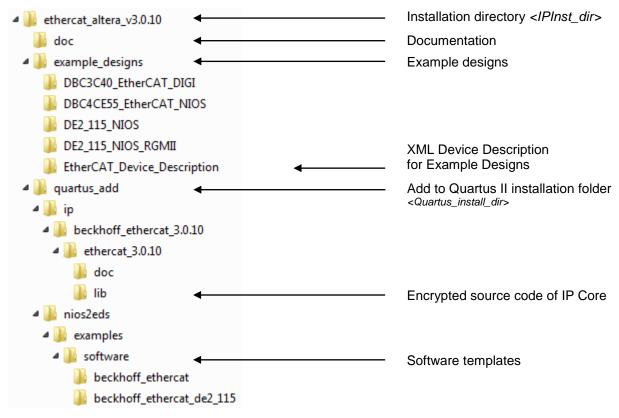


Figure 4: Files installed with EtherCAT IP Core setup

3.2 Installation on Linux PCs

3.2.1 System Requirements

The system requirements of Altera Quartus II are applicable.

3.2.2 Installation

For installation of the EtherCAT IP Core extract the archive to any folder on your Linux PC (same contents as on windows PCs):

- 1. Create installation directory, , e.g. /opt/beckkhoff/:
 - # mkdir /opt/beckhoff
- 2. Change to installation directory
 - # cd /opt/beckhoff
- 3. Copy EtherCAT IP Core archive to installation folder
- 4. Extract the EtherCAT IP Core:

```
# tar -xf EtherCAT_IP_core_for_Altera_FPGAs_<version>_Linux__ 
<region>.tar.gz
```

5. Continue with the following installation chapters.

The folder

ethercat_<version>

created inside this directory is further referenced to as <IPInst_dir>.

3.3 Files located in the lib folder

Table 12: Contents of lib folder

File name	Description
beckhoff.jpg	BECKHOFF image used in MegaWizard
ethercat_ <version>.qprs</version>	Quartus MegaWizard presets
ethercat_ <version>_hw.tcl</version>	Quartus MegaWizard and Qsys IP hardware configuration TCL
ethercat_ <version>_wizard.lst</version>	Quartus MegaWizard list
ETHERCAT_IPCORE.VHD	Encrypted EtherCAT IP Core source code (core)
ETHERCAT_IPCORE_TOP.VHD	Encrypted EtherCAT IP Core soruce code (top level)
ETHERCAT_IPCORE_V2.ocp	OpenCorePlus description for EtherCAT IP Core
ETHERCAT_VENDORID.VHD	Vendor ID package (added during installation, not part of setup)

3.4 License File

The license file for the EtherCAT IP Core (license_<company>_<Dongle/MAC ID>.dat) has to be linked to the Altera Quartus Development environment. The EtherCAT IP Core can only be used with a license file.

The location of your Altera license file can be found in the Altera Quartus License Setup ("Tools – License Setup..." from the menu.:

There are three options:

- Add the path of the license file (separated by a semicolon) to the License file input box in the Altera Quartus License Setup.
- Add the path of the license file to the LM_LICENSE_FILE environment variable (separated by a semicolon) if the LM_LICENSE_FILE variable is used.
- c) Add the content of the EtherCAT IP Core license file to an existing license file.

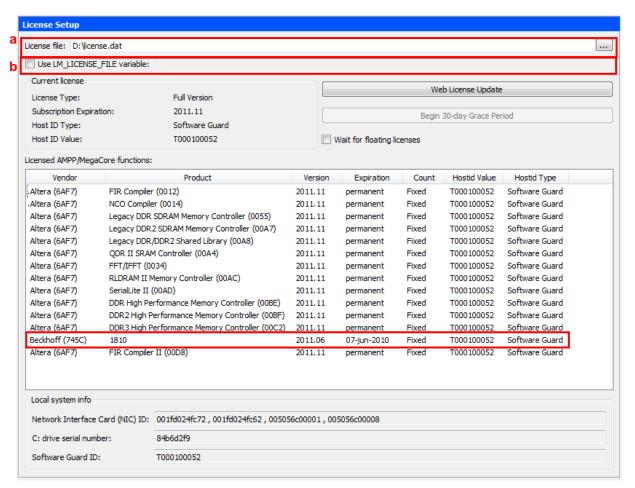


Figure 5: License Setup

The EtherCAT IP Core license is shown in Licensed AMPP/MegaCore® functions list: the Vendor is Beckhoff (745C), and the Product number is 1810.

For further information regarding license setup, refer to Altera Application Note 340 "Altera Software Licensing", found at the Altera homepage http://www.altera.com.

3.5 IP Core Vendor ID package

The Vendor ID Package (VHDL file) is part of the EtherCAT IP Core source code, and it contains your company's unique vendor ID. The vendor ID package is not part of the IP Core setup, it is delivered separately.

Copy the IP Core Vendor ID package (*pk_ECAT_VENDORID_<company>_Altera.vhd*) to the lib folder in the IP Core Directory.

<IPInst_dir>\quartus_add\ip\beckhoff_ethercat_<version>\ethercat_<version>\lib

Rename (or copy) the Vendor ID package to

ETHERCAT VENDORID.VHD

(exact naming and upper case is necessary).

The steps of adding the IP Core Vendor ID package into the IP Core installation folder can also be performed by the EtherCAT IP Core Setup program (Windows PCs only). Just check the appropriate option and select the path to your *pk_ECAT_VENDORID_*<*company>_Altera.vhd* file, and the Setup program will perform all necessary steps.

A vendor ID package is required for both evaluation and full license. It is recommended to use an evaluation vendor ID (package) for evaluation, and the original vendor ID for production. The evaluation vendor ID is beginning with "0xE......" and ends with the original vendor ID digits. Evaluation vendor IDs cannot pass the EtherCAT conformance tests.

3.6 Integrating the EtherCAT IP Core into the Altera Designflow

Quartus II expects all IP cores to be installed into

<Quartus installation folder>\ip\

This can be done by the windows setup program automatically if it recognizes the Quartus II installations on the disk. The EtherCAT IP core can also be integrated into Quartus II installations manually by copying the contents of the

<IPInst_dir>\quartus_add\

folder to the Quartus installation folder.

3.6.1 Software Templates for example designs with NIOS processor

Software example templates are available for example designs with NIOS processor. The templates are part of the *quartus_add* folder, they will be copied to your NIOS II installation folder.

Source folder:

<IPInst Dir>\quartus add\nios2eds\examples\software

Destination folder:

<Quartus_Install_Dir>\nios2eds\examples\software

The NIOS demo applications are not suitable for production, they cannot be certified. Use the EtherCAT Slave Stack Code (SSC, available from the ETG) for products.

3.7 EtherCAT Slave Information (ESI) / XML device description for example designs

If you want to use the example designs, add the ESI to your EtherCAT master/EtherCAT configuration tool/network configurator.

The ESI is located at

<IPInst_dir>\example_designs\EtherCAT_Device_Description\BECKHOFF ET1810.xml

If you are using TwinCAT, add the ESI to the appropriate folder of your TwinCAT installation before the System Manager is started:

- TwinCAT 2: <TwinCAT installation folder>\lo\EtherCAT
- TwinCAT 3: <TwinCAT installation folder>\<TwinCAT version>\Config\lo\EtherCAT

4 IP Core Usage

4.1 IP Catalog

The EtherCAT IP Core is integrated in the Quartus II IP Catalog, you can add it to your Quartus II project like any other IP and configure it with the MegaWizard.

The output of the MegaWizard is a VHDL or Verilog wrapper for the EtherCAT IP Core. The wrapper file makes only those signals and interfaces visible, which are required, and it configures the EtherCAT IP Core using generics as desired.

A synthesizable EtherCAT IP Core consists of the user generated VHDL wrapper, the encrypted EtherCAT IP Core files, and the vendor ID package (*ECAT_VENDORID.vhd*). These files, together with a PLL, represent the minimum source set for a fully functional EtherCAT slave. Typically, additional user logic is added inside the FPGA.

4.2 Qsys

The EtherCAT IP Core can also be integrated into a System on a Programmable Chip (SoPC) with a processor inside the FPGA (e.g., Altera NIOS II processor). The EtherCAT IP Core and the processor can communicate via an Avalon or AXI3 on-chip bus system.

For building an SoPC including the EtherCAT IP Core, Altera Qsys is used (Figure 6). The NIOS processor and the EtherCAT IP Core as well as other resources which might be used for an SOPC are listed under the System Resources (Figure 6). Signal Routing is done automatically. The interrupts used by the EtherCAT IP Core (Avalon_ethercat_sync0, Avalon_ethercat_sync1, and PDI collector interrupt Avalon_ethercat_slave) are listed and signal routing is shown.

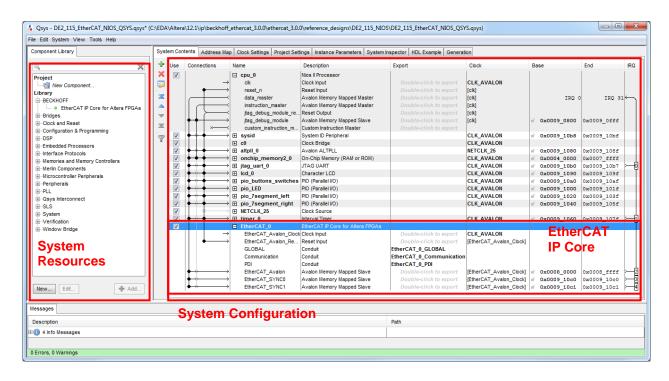


Figure 6: Qsys with EtherCAT IP Core

5 IP Core Configuration

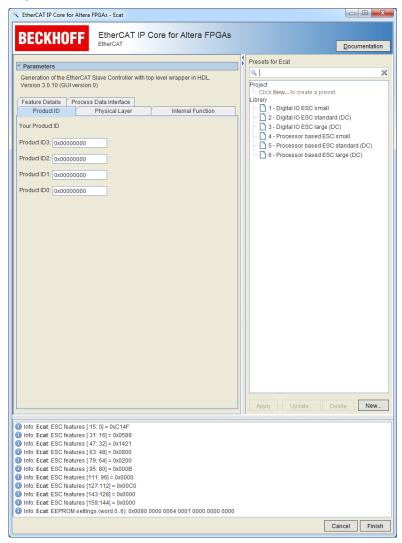


Figure 7: EtherCAT IP Core Configuration Interface

Documentation button

Documentation on the MegaWizard, the EtherCAT IP Core and the configuration options

Parameters pane (left)

The configuration options for the EtherCAT IP Core are available in the IP Core parameters pane on the left side.

Presets pane (right)

Depending on the IP Core functionality that should be implemented and the available resources (Les) in the FPGA, the internal features can be chosen. Several common feature presets are available. Based upon these presets, individual functions can be enabled/disabled in the parameter pane.

Message pane (bottom)

In the lower box additional information like warnings and errors are displayed.

5.1 Documentation

Figure 8: Documentation

General information

Name and version of the IP Core, as well as links to the datasheet and online support are given.

Parameters

Short descriptions on the various parameters of the parameters pane can be found here.

5.2 Parameters

5.2.1 Product ID tab

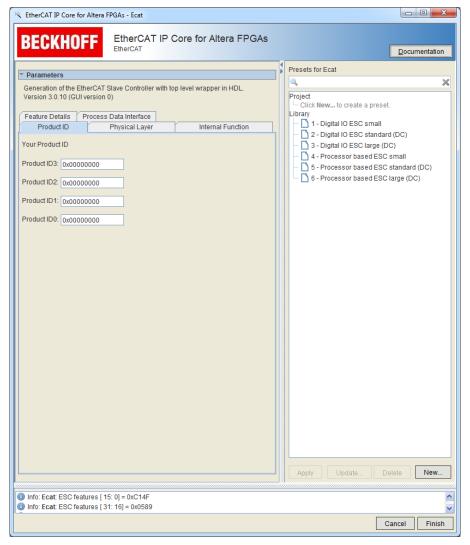


Figure 9: Product ID tab

PRODUCT_ID input in hexadecimal groups

The Product ID can be chosen freely and is for vendor issues. It can be read out in register 0x0E08:0x0E0F.

The PRODUCT_ID has to be entered in hexadecimal format for each of the four 16 bit fields (representing a 16 bit part of the 64 bit Product ID each).

The Product ID is meant to identify special configurations of the IP Core. It does not have to reflect the EtherCAT slave product code, which is part of the EEPROM/XML device description.

NOTE: The current GUI seems to allow 32 bit entries for each of the 4 16 bit fields, but this is not true. This is an Altera MegaWizard configuration restriction.

5.2.2 Physical Layer tab

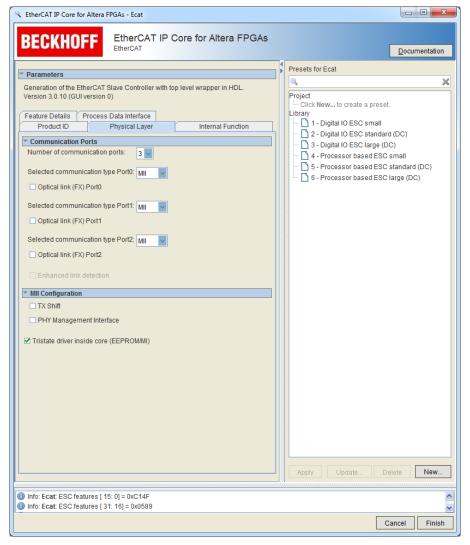


Figure 10: Physical Layer tab

Communication Ports

The number of communication ports by default is two. As PHY interface MII/RGMII (1, 2, or 3 ports) or RMII (1 or 2 ports only) can be selected. It is recommended to use MII as for accuracy of the distributed clocks is much better with MII.

Optical link (FX) Port

Each port can be configured to be an FX (fiber optic) port which has influence on Enhanced Link Detection and MI link detection and configuration, since FX connections do not use Auto-negotiation.

Enhanced link detection

Enhanced MII link detection is a mechanism of informing link partners of receive errors.

TX Shift

Automatic or manual TX Shift is available if TX Shift is selected. TX Shift delays MII TX signals to comply to Ethernet PHY setup and hold timing. Automatic TX Shift uses the TX_CLK signals of the PHYs to detect appropriate TX Shift settings automatically. Manual TX Shift configuration allows for delaying the MII TX signals by 0, 10, 20, or 30 ns.

PHY Management Interface

The PHY Management Interface function can be selected or deselected. If it deselected, the other MII Configuration options are not available.

LINK state and PHY configuration through MI

MI link detection and configuration is available if checked. Ethernet PHYs are configured and link status is polled via the MII Management Interface. Enhanced link detection has to be activated if MI link detection and configuration is used and the nMII_LINKO/1/2 signals are not used.

Export PHY address as signals

Enable for dynamically changing PHY addresses (the PHY address configuration is exported as signals), otherwise the PHY address configuration is static.

Independent PHY addresses

Enable if the PHY addresses are not consecutive. If enabled, the PHY addresses of each port can be configured individually.

PHY address offset

Configure the base PHY address (belonging to port 0) if the PHY addresses are consecutive.

PHY address port n

Configure the individual PHY address of port n

Tristate Driver inside core (EEPROM/MI)

If selected tri-state drivers of the core are used for access to EEPROM and PHY Management signals.

5.2.3 Internal Functions tab

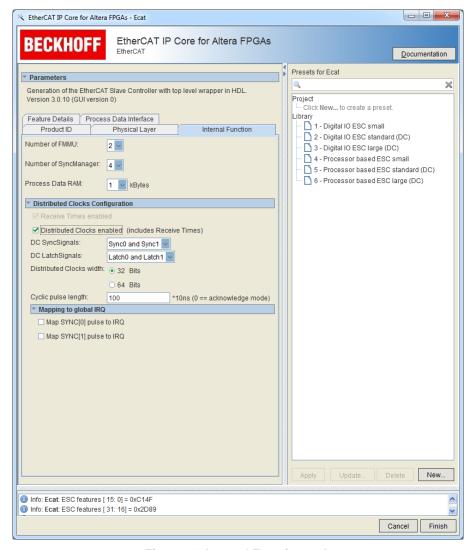


Figure 11: Internal Functions tab

FMMUs

Number of FMMU instances. Between 0 and 8 FMMUs are possible.

SyncManager

Number of SyncManager instances. Between 0 and 8 SyncManagers are possible.

Process Data RAM

The size of the Process data memory can be determined in this dialog. Minimum memory size is 0 Kbyte, maximum memory size is 60 Kbyte.

Receive Times enabled

The Distributed Clocks receive time feature for propagation delay calculation can be enabled without using all DC features.

Distributed Clocks enabled

The Distributed Clocks feature comprises synchronized distributed clocks, receive times, SyncSignal generation, and LatchSignal time stamping.

DC SyncSignals

Select the number of SyncSignals.

DC LatchSignals

Select the number of LatchSignals.

Distributed Clocks Width

The width of the Distributed Clocks can be selected to be either 32 bit or 64 bit. DC with 64 bit require more FPGA resources. DC with 32 bit and DC with 64 bit are interoperable.

Cyclic pulse length

Determines the length of SyncSignal output (register 0x0982:0x0983).

Mapping to global IRQ

Sync0 and Sync1 can additionally be mapped internally to the global IRQ. This might be a good solution if a microcontroller interface is short on IRQs. However, the sync signals will remain available on Sync0 and Sync1 outputs.

5.2.4 Feature Details tab

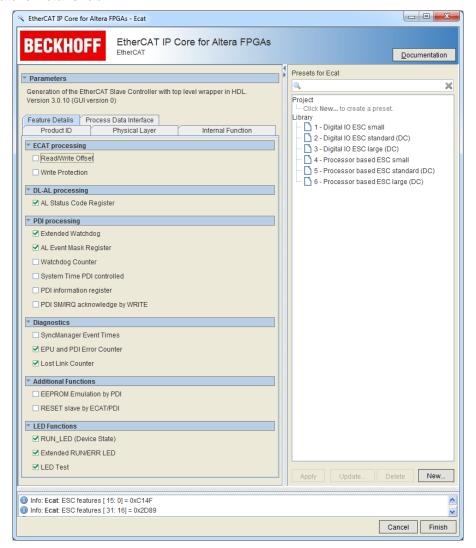


Figure 12: Feature Details tab

Read/Write Offset

Physical Read/Write Offset (0x00108:0x0109) is available if checked.

Write Protection

Register write protection and ESC write protection (0x0020:0x0031) are available if checked.

AL Status Code Register

AL Status Code register (0x0134:0x0135) is available if checked.

Extended Watchdog

Watchdog Divider (0x0400:0x0401) is configurable and PDI Watchdog (0x0410:0x0411, and 0x0100.1) is available if checked.

AL Event Mask Register

AL Event Mask register (0x0204:0x0207) is available if checked.

Watchdog Counter

Watchdog Counters (0x0442:0x0443) are available if checked. Watchdog Counter PDI is only used if Extended Watchdog feature is selected.

System Time PDI controlled

Distributed Clocks Time Loop Control Unit is controlled by PDI (µController) if selected. EtherCAT access is not possible. Used for synchronization of secondary EtherCAT busses.

PDI information register

PDI information register 0x014E:0x014F is available. Required if PDI SM/IRQ acknowledge by WRITE is selected.

PDI SM/IRQ acknowledge by WRITE

Some ESC functions are triggered by reading from the PDI. Since PDI data bus widths are increasing up to 64 bit and beyond, it is not possible to read individual bytes anymore because most μ Controllers do not support byte enable signals for read commands. In order to prevent accidentally reading of trigger addresses (like SyncManager buffer end or IRQ acknowledge registers), this option allows to use write commands (with byte enables) to trigger the functions.

SyncManager Event Times

Distributed Clocks SyncManager Event Times (0x09F0:0x09FF) are available if checked. Used for debugging SyncManager interactions.

EPU and PDI Error Counter

EtherCAT Processing Unit (EPU) and PDI Error counters (0x030C:0x030D) are available if checked.

Lost Link Counter

Lost Link Counters (0x0310:0x0313) are available if checked.

EEPROM Emulation by PDI

EEPROM is and has to be emulated by a μ Controller with access to a NVRAM. I²C EEPROM is not necessary if EEPROM Emulation is activated, I²C interface is deactivated. Only usable with PDIs for μ Controller connection.

RESET slave by ECAT/PDI

The reset registers (0x0040:0x0041) and the RESET_OUT signal is available if this feature is checked.

RUN LED (Device State)

RUN LED output indicates AL Status (0x0130) if activated. Otherwise RUN LED has to be controlled by a µController. Always activated if no PDI is selected or if Digital I/O PDI is selected.

Extended RUN/ERR LED

Support for ERR LED and STATE LED, direct control of RUN/ERR LED via RUN/ERR LED Override register (0x0138:0x0139).

LED Test

A short LED flash after reset for all LED signals is enabled if this feature is selected.

5.2.5 Process Data Interface tab

Several interfaces between ESC and the application are available:

- Digital I/O
- 8 Bit asynchronous μController
- 16 Bit asynchronous μController
- SPI slave
- Avalon MM slave
- AXI3 slave
- General Purpose I/O

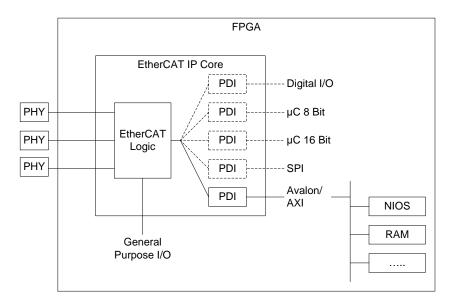


Figure 13: Available PDI Interfaces

The PDI can be selected from the pull down menu. After selection settings for the selected PDI are shown and can be changed. If the EtherCAT IP Core is used in Qsys, only Avalon and AXI on-chip busses are selectable.

5.2.5.1 No Interface and General Purpose I/O

If there is no interface selected no communication with the application is possible (except for general purpose I/O).

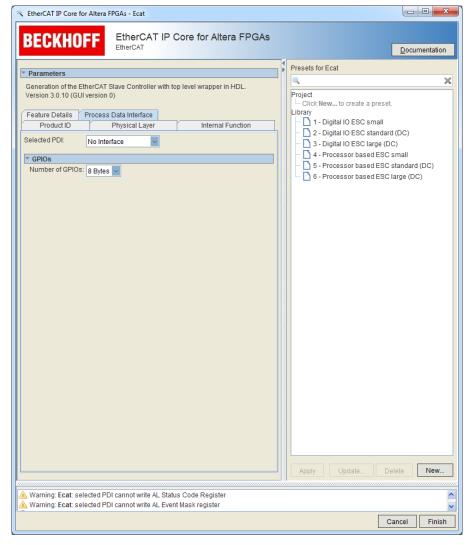


Figure 14: Register Process Data Interface

Number of GPIOs

General purpose I/O signals can be added to any selected PDI. The number of GPIO bytes is configurable to 0, 1, 2, 4, or 8 Bytes. Both general purpose outputs and general purpose inputs of the selected width are available.

5.2.5.2 Digital I/O Configuration

The Digital I/O PDI supports up to 4 Bytes of digital I/O signals. Each byte can be assigned as input or output byte.

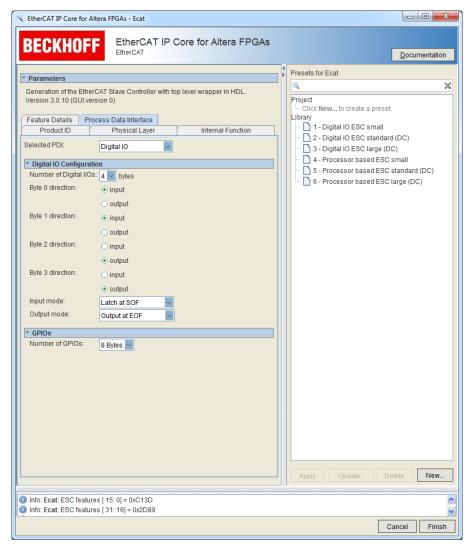


Figure 15: Register PDI – Digital I/O Configuration

Number of digital I/Os

Total number of I/Os. Possible values are 1, 2, 3 or 4 Bytes.

Byte 0-3 direction

Defining byte-wise if digital I/Os are used as input or output byte

Input Mode

Defines the latch signal which is used to take over input data.

- Latch at SOF (Start of Frame)
 - The inputs are latched just before the data have to be written in the frame.
- Latch with ext. signal
 - Connected to DIGI_LATCH_IN. Application controls latching
- Latch at Dist-Sync0
 - Latch input data with distributed clock Sync0 signal
- Latch at Dist-Sync1
 - Latch input data with distributed clock Sync1 signal

Output Mode

Defines the trigger signal for data output.

- Output at EOF (End of Frame)
 - The outputs will be set if the frame containing the data is received complete and error free.
- Output at Dist-Sync0
 - Outputs will be set with Sync0 signal if distributed clocks are enabled.
- Output at Dist-Sync1
 - Outputs will be set with Sync1 signal if distributed clocks are enabled.

5.2.5.3 µController Configuration (8/16Bit)

The 8/16 Bit μ Controller interface is an asynchronous parallel interface for μ Controllers. The difference between 8 and 16 bit interface is the extended data bus and the BHE signal which enables access to the upper byte.

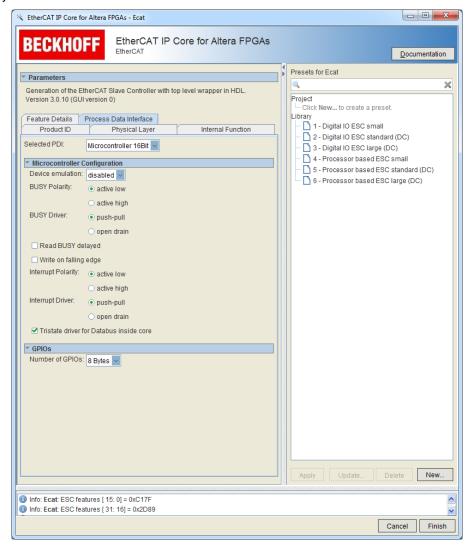


Figure 16: Register PDI – μC-Configuration

Device emulation

Enable Device emulation (0x0141[0]=1). This feature should be disabled in most use cases.

BUSY Polarity, BUSY Driver

Electrical definition of the busy signal driver

Read BUSY delayed

Delay the output of the BUSY signal by ~20 ns (refer to register 0x00152.0).

Write on falling edge

Start write access earlier with falling edge of nWR. Single write accesses will become slower, but maximum write access time becomes faster.

Interrupt Polarity, Interrupt Driver

Electrical definition of the interrupt signal driver

Tristate driver for data bus inside core

If Tristate drivers for the data bus should be integrated into the IP Core already activate the check box.

5.2.5.4 SPI Configuration

The SPI interface is a serial slave interface for µControllers.

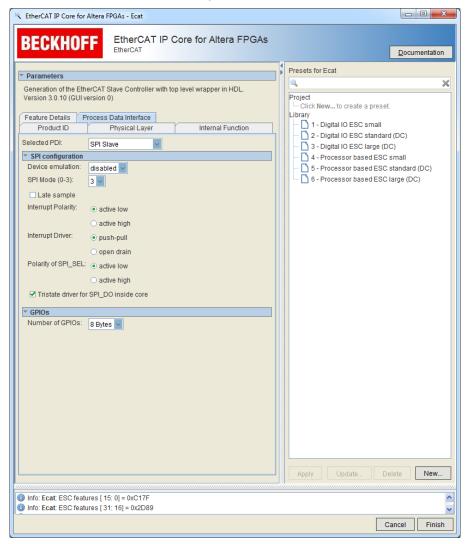


Figure 17: Register PDI - SPI Configuration

Device emulation

Enable Device emulation (0x0141[0]=1). This feature should be disabled in most use cases.

SPI Mode

The SPI mode determines the SPI timing. Refer to SPI PDI description for details. Mode 3 is recommended for slave sample code.

Late Sample

The Late Sample configuration determines the SPI timing. Refer to SPI PDI description for details. It is recommended to leave this unchecked for slave sample code.

Interrupt Polarity, Interrupt Driver

SPI_IRQ output driver configuration.

Polarity of SPI_SEL

SPI_SEL signal polarity.

Tristate driver for SPI_DO inside core

Include tri-state driver for SPI Data Out. With tri-state driver, SPI_DO is either driven actively or high impedance output.

5.2.5.5 Avalon Configuration

The Avalon PDI connects the IP Core with an Avalon Master (e.g., Altera NIOS). The Avalon PDI uses memory addressing/dynamic bus sizing.

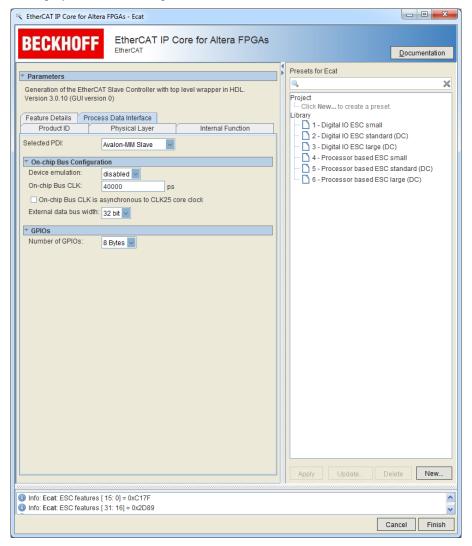


Figure 18: Register PDI – Avalon Interface Configuration

Device emulation

Enable Device emulation (0x0141[0]=1). This feature should be disabled in most use cases.

On-chip Bus CLK

This is the clock period of the Avalon bus clock for communication between ESC and the Avalon master. This configuration option is not available if the clock period can be derived from the Qsys clock connections.

On-Chip Bus CLK is asynchronous to CLK25 core clock

Enable if the On-chip BUS CLK is asynchronous to CLK25. Additional synchronization stages are added in this case.

External data bus width

Select the Avalon data bus width (8/16/32/64 bit) of the Avalon slave interface.

5.2.5.6 AXI3 Configuration

The AXI3 PDI connects the IP Core with an AXI Master. The AXI3 PDI uses memory addressing/dynamic bus sizing.

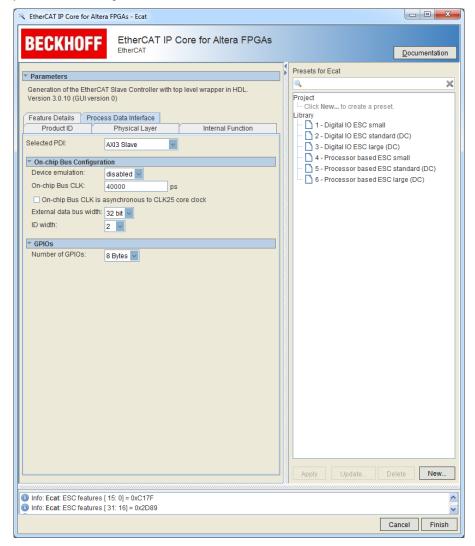


Figure 19: Register PDI - AXI3 Interface Configuration

Device emulation

Enable Device emulation (0x0141[0]=1). This feature should be disabled in most use cases.

On-chip Bus CLK

This is the clock period of the AXI bus clock for communication between ESC and the AXI master. This configuration option is not available if the clock period can be derived from the Qsys clock connections.

On-Chip Bus CLK is asynchronous to CLK25 core clock

Enable if the On-chip BUS CLK is asynchronous to CLK25. Additional synchronization stages are added in this case.

External data bus width

Select the AXI data bus width (8/16/32/64 bit) of the AXI slave interface.

ID width

Width of the access ID signals.

6 Example Designs

Example designs are available for:

- EBV Cyclone III Evaluation Board DBC3C40 with RMII and 16 bit input/16 bit output Digital I/O
- EBV Cyclone IV Evaluation Board DBC4CE55 with RMII and NIOS processor
- Altera Cyclone IV DE2-115 Development and Education Board/Industrial Networking Kit (INK) with MII and NIOS processor
- Altera Cyclone IV DE2-115 Development and Education Board/Industrial Networking Kit (INK) with RGMII and NIOS processor

The EtherCAT master uses an XML file which describes the device and its features. The XML device description file for all example designs and its schema can be found in the installation directory.

<IPInst_dir>\example_designs\EtherCAT_Device_Description\

Projects have to be compiled and then can be loaded to the configuration devices of the Evaluation board.

The EtherCAT IP core example design resource consumption figures are based on EtherCAT IP Core for Altera FPGAs Version 3.0.2 and Altera Quartus II 12.1 SP1.

6.1 EBV Cyclone III DBC3C40 with Digital I/O

6.1.1 Configuration and resource consumption

Table 13: Resource consumption Digital I/O example design DBC3C40

Configuration					
Physical layer	2x RMII				
Internal Function	2x FMMU 4x SyncManager 1 KB RAM				
Distributed clocks	none				
Feature details	RUN_LED, LED Test				
PDI	Digital I/O: 2 Byte IN, 2 Byte OUT				

Resources	EP3C40		
Les	8,626	22 %	
Registers	4,120	10 %	
M9K	2	2 %	
PLLs	1	25 %	
Multiplier elements	0	0 %	

NOTE: The board uses two individual PHY management interfaces, with both PHYs having the same PHY addresses. Additionally, some of the PHY address bits have to be configured by extra logic inside the FPGA. Because of the identical PHY addresses, the management interfaces on the board cannot be combined to one, and thus, the EtherCAT IP Core cannot make use of the MII management interfaces of the PHY.

The Ethernet PHYs used on the DBC3C40 require Enhanced link detection for proper link loss reaction times. Due to the hardware restrictions, it cannot be enabled on this board. This is suitable for evaluation purposes, but not for production.

It is probably possible to change the PHY addresses on the board, combine the two management interfaces inside the FPGA and add extra logic for proper configuration of the PHY address bits which are strapped on signals connected to the FPGA. If this can be done, the PHY management interface as well as the Enhanced Link Detection should be enabled.

6.1.2 Functionality

Functionality of the Digital I/O example design:

- Digital input data from the buttons and the joystick is available in the Process Data RAM (0x1000:0x1001).
- Digital output data from Digital Output register (0x0F00:0x0F01) is visualized with IO LEDs.

6.1.3 Implementation

The EtherCAT IP Core MegaFunction needs to be completed before implementing the example design (copy library files to the project folder). Perform the following steps for implementation:

- 1. Open Altera Quartus II
- 2. Open example design from <IPInst dir>\example designs\DBC3C40 EtherCAT DIGI
- Open MegaWizard Plug-In Manager, select "Edit and existing custom megafunction variation"
- 4. Select "ethercat digitalio.vhd"
- 5. In the MegaWizard, select Finish. This will complete the EtherCAT IP Core MegaFunction.
- 6. Start compilation (Menu Processing Start compilation).
- 7. Download bitstream into FPGA

6.1.4 SII EEPROM

Use this ESI for the SII EEPROM:

Beckhoff Automation GmbH (Evaluation)/ IP Core example designs ET1810 (Altera)/ ET1810 IP Core 16 Ch. Dig. In-/Output (HW: DBC3C40)

6.1.5 Downloadable configuration file

An already synthesized time limited OpenCore Plus configuration file

DBC3C40_EtherCAT_DIGI_time_limited.sof

based on this digital I/O example design can be found in the

<IPInst_dir>\example_designs\DBC3C40_EtherCAT_DIGI\

folder. After expiration of about 1 hour the design quits its operation unless the JTAG connection to Quartus remains active. This file must only be used for evaluation purposes, any distribution is not allowed.

6.2 EBV Cyclone IV DBC4CE55 with NIOS

6.2.1 Configuration and resource consumption

Table 14: Resource consumption NIOS example design DBC4CE55

Configuration					
Physical layer	2x RMII				
Internal Function	2x FMMU 4x SyncManager 1 KB RAM				
Distributed clocks	none				
Feature details	RUN_LED, LED Test				
PDI	Digital I/O: 2 Byte IN, 2 Byte OUT				

Resources	EP4CE55	
Les	15,614	28 %
Registers	7,476	13 %
M9K	136	52 %
PLLs	1	25 %
Multiplier elements	0	0 %

NOTE: The board uses two individual PHY management interfaces, with both PHYs having the same PHY addresses. Additionally, some of the PHY address bits have to be configured by extra logic inside the FPGA. Because of the identical PHY addresses, the management interfaces on the board cannot be combined to one, and thus, the EtherCAT IP Core cannot make use of the MII management interfaces of the PHY.

The Ethernet PHYs used on the DBC3C40 require Enhanced link detection for proper link loss reaction times. Due to the hardware restrictions, it cannot be enabled on this board. This is suitable for evaluation purposes, but not for production.

It is probably possible to change the PHY addresses on the board, combine the two management interfaces inside the FPGA and add extra logic for proper configuration of the PHY address bits which are strapped on signals connected to the FPGA. If this can be done, the PHY management interface as well as the Enhanced Link Detection should be enabled.

6.2.2 Functionality

The NIOS demo application performs the following tasks:

- Accept any EtherCAT Slave State request (copying AL Control to AL Status register)
- Visualize EtherCAT Slave State (7-segment displays and running IO light in Operational mode).

The NIOS demo application is not suitable for production, it cannot be certified. Use the EtherCAT Slave Stack Code (SSC, available from the ETG) for products.

6.2.3 Implementation

The SOPC needs to be generated before implementing the example design. Perform the following steps for implementation:

- 1. Open Altera Quartus II
- 2. Open example design from <IPInst_dir>\example_designs\DBC4CE55_EtherCAT_NIOS
- 3. Choose Tools on the menu bar and select Qsvs...
- 4. Open Qsys system "DBC4CE55_EtherCAT_NIOS_QSYS.qsys" and view IP configurations
- 5. Select Generate on the Generation tab to generate system
- 6. Choose "Tools" on the menu bar and select "NIOS II Software Build Tools for Eclipse"
- 7. Select workspace, e.g. create </PInst_dir>\example_designs\DBC4CE55_EtherCAT_NIOS\workspace
- 8. Choose File on the menu bar and select New "NIOS II Application and BSP from Template"
- 9. Select SOPC information file "DBC4CE55_EtherCAT_NIOS_QSYS.sopcinfo", project template "BECKHOFF EtherCAT" and enter project name the "EtherCAT Demo"
- 10. Select Finish
- 11. Choose Project on the menu bar and select "Build all" to build the software project

 → "EtherCAT_Demo.elf" file is generated in the Debug-Folder of your workspace directory
- 12. Select "Make Targets Build..." from the context menu of the "EtherCAT_Demo" project.
- 13. Select "mem_init_generate" and press "Build" button. This will generate the memory initialization files.

- 14. Switch over to Quartus II window
- 15. Select menu "Project Add/Remove Files in Project..." and add file "<IPInst_dir>\example_designs\DBC4CE55_EtherCAT_NIOS\EtherCAT_Demo\mem_init\meminit. qip" to project
- 16. Start compilation (Menu Processing Start compilation)
- 17. Download bitstream into FPGA

6.2.4 SII EEPROM

Use this ESI for the SII EEPROM:

Beckhoff Automation GmbH (Evaluation)/ IP Core example designs ET1810 (Altera)/ ET1810 IP Core NIOSII (HW: DBC4CE55)

6.2.5 Downloadable configuration file

An already synthesized time limited OpenCore Plus configuration file

DBC4CE55_EtherCAT_NIOS_time_limited.sof

based on this digital I/O example design can be found in the

<IPInst_dir>\example_designs\DBC4CE55\

folder. After expiration of about 1 hour the design quits its operation unless the JTAG connection to Quartus remains active. This file must only be used for evaluation purposes, any distribution is not allowed.

6.3 Altera Cyclone IV DE2-115 with NIOS and MII

6.3.1 Configuration and resource consumption

Table 15: Resource consumption NIOS example design DE2-115 MII

Configuration		Resources	Resources		
Physical layer	2x MII, TX Shift, MIIM, Link state and PHY configuration through MI	Les	19,062	17 %	
Internal Function	3x FMMU 4x SyncManager 1 KB RAM	Registers	9,039	8 %	
Distributed clocks	32 bit, 2x Sync, 2x Latch	M9K	264	61 %	
Feature details	AL Status Code register, Extended Watchdog, AL Event Mask register, Watchdog counter, EPU and PDI Error counter, Lost Link Counter, RUN_LED, LED Test	PLLs	1	25 %	
PDI	Avalon 32 bit	Multiplier elements	0	0 %	

6.3.2 Functionality

Configure ETHERNET0 and ETHERNET1 for MII mode by setting jumpers JP1 and JP2 to 2-3.

Master is connected to Port ETHERNET0 of DE2-115 (left side, next to VGA). Port ETHERNET1 (right side) can be used to connect other EtherCAT slaves.

The NIOS demo application performs the following tasks:

- Accept any EtherCAT Slave State request (copying AL Control to AL Status register)
- Display EtherCAT IP Core version and slave state on LCD
- RUN LED is LEDG8
- Link/Activity LEDs are LEDG6 and LEDG7
- LEDG0 LEDG5 are showing a running light if the slave is in OPERATIONAL mode
- Digital input data from the switches SW0-SW17 is available in the Process Data RAM (0x1000:0x1003).
- Digital input data from the push buttons KEY0-KEY3 is available in the Process Data RAM (0x1004).
- Digital output data from Digital Output register (0x1100:0x1103) is visualized with LEDR0-LEDR17
- Digital output data from Digital Output register (0x1104:0x1107) is visualized with the 7-segment LED displays

The NIOS demo application is not suitable for production, it cannot be certified. Use the EtherCAT Slave Stack Code (SSC, available from the ETG) for products.

6.3.3 Implementation

The SOPC needs to be generated before implementing the example design. Perform the following steps for implementation:

- 1. Open Altera Quartus II
- 2. Open example design from <IPInst_dir>\example_designs\DE2_115_NIOS
- 3. Choose Tools on the menu bar and select Qsys...
- 4. Open Qsys system "DE2_115_EtherCAT_NIOS_QSYS.gsys" and view IP configurations
- 5. Select Generate on the Generation tab to generate system
- 6. Choose "NIOS II" on the menu bar and select "NIOS II Software Build Tools for Eclipse"
- 7. Select workspace, e.g. create <IPInst dir>\example designs\DE2 115 NIOS\workspace
- 8. Choose File on the menu bar and select New "NIOS II Application and BSP from Template"
- 9. Select SOPC information file "DE2_115_EtherCAT_NIOS_QSYS.sopcinfo", project template "EtherCAT DE2-115" and enter project name "EtherCAT Demo"
- 10. Select Finish
- 11. Choose Project on the menu bar and select "Build all" to build the software project → "EtherCAT Demo.elf" file is generated in the Debug-Folder of your workspace directory
- 12. Select "Make Targets Build..." from the context menu of the "EtherCAT_Demo" project.
- 13. Select "mem_init_ generate" and press "Build" button. This will generate the memory initialization files which will be added to the project later.
- 14. Switch over to Quartus II window
- 15. Select menu "Project Add/Remove Files in Project..." and add file
 "<IPInst_dir>\example_designs\DE2_115_NIOS\software\EtherCAT_Demo\mem_init\meminit.qip"
 to project
- 16. Start compilation (Menu Processing Start compilation)
- 17. Download bitstream into FPGA

6.3.4 SII EEPROM

Use this ESI for the SII EEPROM:

Beckhoff Automation GmbH (Evaluation)/ IP Core example designs ET1810 (Altera)/ ET1810 IP Core NIOSII (HW: DE2-115)

6.3.5 Downloadable configuration file

An already synthesized time limited OpenCore Plus configuration file

DE2 115 EtherCAT NIOS time limited.sof

based on this digital I/O example design can be found in the

<IPInst_dir>\example_designs\DE2_115_NIOS\

folder. After expiration of about 1 hour the design quits its operation unless the JTAG connection to Quartus remains active. This file must only be used for evaluation purposes, any distribution is not allowed.

6.4 Altera Cyclone IV DE2-115 with NIOS and RGMII

6.4.1 Configuration and resource consumption

Table 16: Resource consumption NIOS example design DE2-115 RGMII

Configuration		Resources	Resources		
Physical layer	2x RGMII, MIIM, Link state and PHY configuration through MI	Les	19,182	17 %	
Internal Function	3x FMMU 4x SyncManager 1 KB RAM	Registers	9,106	8 %	
Distributed clocks	32 bit, 2x Sync, 2x Latch	M9K	264	61 %	
Feature details	AL Status Code register, Extended Watchdog, AL Event Mask register, Watchdog counter, EPU and PDI Error counter, Lost Link Counter, RUN_LED, LED Test	PLLs	1	25 %	
PDI	Avalon 32 bit	Multiplier elements	0	0 %	

6.4.2 Functionality

Configure ETHERNET0 and ETHERNET1 for RGMII mode by setting jumpers JP1 and JP2 to 1-2.

The DE2-115 example design with RGMII ports is equal to the DE2-115 example design with MII, except for the PHY connection. Refer to DE2-115 example design with MII for more details.

6.4.3 Downloadable configuration file

An already synthesized time limited OpenCore Plus configuration file

DE2 115 EtherCAT NIOS RGMII time limited.sof

based on this digital I/O example design can be found in the

<IPInst_dir>\example_designs\DE2_115_NIOS_RGMII\

folder. After expiration of about 1 hour the design quits its operation unless the JTAG connection to Quartus remains active. This file must only be used for evaluation purposes, any distribution is not allowed.

7 FPGA Resource Consumption

The resource consumption figures shown in this chapter reflect results of example synthesis runs and can only be used for rough resource estimations. The figures are subject to quite large variations depending on design tools and version, FPGA type, constraints (e.g., area vs. speed), total FPGA utilization (design tools typically stop optimization if the timing goal is reached), etc. No extra effort was undertaken to achieve optimum results, i.e. by sophisticated constraining and design flow setting.

For accurate resource consumption figures, please use the evaluation license of the EtherCAT IP Core and synthesize your individual configuration for the desired FPGA.

The figures of the following table do not imply that the individual features are operational in the selected FPGA (i.e., that the resources are sufficient or that timing closure is achievable). The synthesis runs where performed without timing constraints, without location constraints, and without bitstream generation.

The EtherCAT IP core resource consumption overview figures are based on EtherCAT IP Core for Altera FPGAs Version 3.0.2, Altera Quartus II 12.1 SP1, and Altera Cyclone IV devices.

Table 17: Typical need of Logic Cells (LE) for main configurable functions

Configurable Function	Approx. LE	Details
Minimum Configuration	3,850	0 x SM, 0 x FMMU, no features, no DC, PDI: 32 Bit digital I/O, 1 kByte DPRAM, 1 port MII
Maximum Configuration	32,500	8 x SM, 8 x FMMU, all features except for EEPROM Emulation, DC 64 bit, PDI: SPI, GPIO, 60 kByte DPRAM, 3 ports MII
Additional port	1,200	all port features enabled (without DC Receive time)
PHY features	950	All MII features: Management Interface, MI link detection and configuration, TX Shift, and enhanced link detection (3 ports)
SyncManager	1,100	per SyncManager
FMMU	700	per FMMU
DPRAM	500	60 KB (M4K/M9K)
Distributed Clocks	200	Receive time per port
	1,300	System time (32 bit)
	1,800	SyncSignals (32 bit)
	750	LatchSignals (32 bit)
	1,800	System time (64 bit)
	3,400	SyncSignals (64 bit)
	1,300	LatchSignals (64 bit)
	350	SyncManager Event Times
Feature details	800	all features except for EEPROM Emulation and DC Receive time
PDI		
32 Bit Digital I/O	1,150	
SPI	2,400	
8 Bit μController	1,750	
16 Bit μController	2,300	
Avalon	1,700	25 MHz, 32 Bit
AXI	2,800	25 MHz, 32 Bit
GPIO	550	8 Byte

The EtherCAT IP core resource consumption figures for typical EtherCAT devices are based on EtherCAT IP Core for Altera FPGAs Version 3.0.2, Altera Quartus II 12.1 SP1, and Altera Cyclone IV devices.

Table 18: EtherCAT IP Core configuration for typical EtherCAT Devices

EtherCAT Device	SM	FMMU	DPRAM [kByte]	PDI	DC	Logic Elements
Ю	2	2	1	32 Bit Digital I/O	-	8,800
Frequency Inverter	4	4	1	SPI	-	13,900
Encoder	4	4	1	SPI	32	18,600
Fieldbus Gateway	4	4	4	16 Bit μC	-	13,800
Servo Drive	4	4	4	16 Bit μC	32	18,200

NOTE: Register preset medium and large including MII Management Interface. All devices have 2 MII ports, DC is 32 bit wide, and typical features are selected.

8 IP Core Signals

The available signals depend on the IP Core configuration.

8.1 General Signals

Table 19: General Signals

Condition	Name	Direction	Description
	nRESET	INPUT	Resets all registers of the IP Core, active low
Reset slave by ECAT/PDI	RESET_OUT	OUTPUT	Reset by ECAT (reset register 0x0040), active high. RESET_OUT has to trigger nRESET, which clears RESET_OUT.
	CLK25	INPUT	25 MHz clock signal from PLL (rising edge synchronous with rising edge of CLK100)
	CLK100	INPUT	100 MHz clock signal from PLL

8.1.1 Clock source example schematics

The EtherCAT IP Core and the Ethernet PHYs have to share the same clock source. The initial accuracy of the EtherCAT IP clock source has to be 25ppm or better.

Typically, the clock inputs of the EtherCAT IP Core (CLK25, CLK100, and optionally CLK50 or CLK25_2NS) are sourced by a PLL inside the FPGA. The PLL has to use a configuration which guarantees a fixed phase relation between clock input and clock outputs, in order to enable TX shift compensation for the MII TX signals.

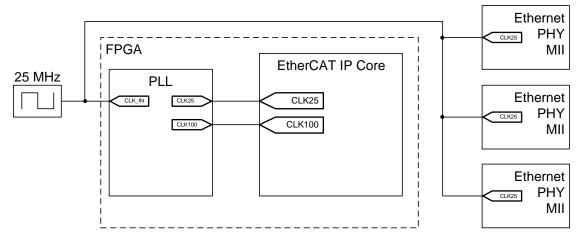


Figure 20: EtherCAT IP Core clock source (MII)

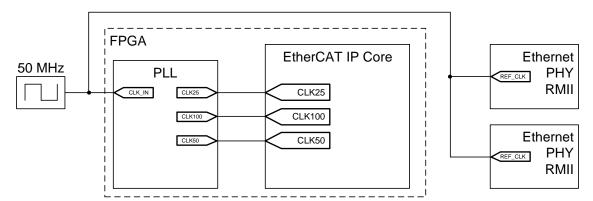


Figure 21: EtherCAT IP Core clock source (RMII)

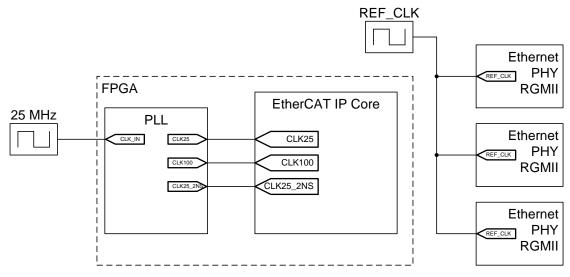


Figure 22: EtherCAT IP Core clock source (RGMII)

8.2 SII EEPROM Interface Signals

Table 20: SII EEPROM Signals

Condition	Name	Direction	Description
	PROM_SIZE	INPUT	Sets EEPROM size 0: up to 16 kbit EEPROM 1: 32 kbit-4Mbit EEPROM
Tristate drivers inside core (EEPROM/MI)	PROM_CLK	OUTPUT	EEPROM I ² C Clock (output values: 0 or Z)
External tristate drivers for EEPROM/MI	PROM_CLK	OUTPUT	EEPROM I ² C Clock (output values: 0 or 1)
Tristate drivers inside core (EEPROM/MI)	PROM_DATA	BIDIR	EEPROM I ² C Data
External tristate drivers for EEPROM/MI	PROM_DATA_IN	INPUT	EEPROM I ² C Data: EEPROM → IP Core
	PROM_DATA_OUT	OUTPUT	EEPROM I ² C Data : IP Core → EEPROM (always 0)
	PROM_DATA_ENA	OUTPUT	0: disable output driver for PROM_DATA_OUT 1: enable output driver for PROM_DATA_OUT
	PROM_LOADED	OUTPUT	0: EEPROM is not loaded 1: EEPROM is loaded

8.3 LED Signals

Table 21 lists the signals used for the LEDs. The LED signals are active high. All LEDs should be green.

Table 21: LED Signals

Condition	Name	Direction	Description
	LED_LINK_ACT[0]	OUTPUT	Link/activity LED for ethernet port 0
2 or 3 communication ports	LED_LINK_ACT[1]	OUTPUT	Link/activity LED for ethernet port 1
3 communication ports	LED_LINK_ACT[2]	OUTPUT	Link/activity LED for Ethernet port 2
RUN_LED enabled	LED_RUN	OUTPUT	RUN LED for device status Always 0 if RUN LED is deactivated.
RUN_LED enabled and Extended RUN/ERR LED enabled	LED_ERR	OUTPUT	ERR LED for device status.
	LED_STATE_RUN	OUTPUT	Connect to RUN pin of dual-color STATE LED, connect LED_ERR to ERR pin of STATE LED

NOTE: The application ERR LED and STATE LED can alternatively be controlled by a μ Controller if required.

8.4 Distributed Clocks SYNC/LATCH Signals

Table 22 lists the signals used with Distributed Clocks.

Table 22: DC SYNC/LATCH signals

Condition	Name	Direction	Description
Distributed Clocks and SYNC0 enabled	SYNC_OUT0	OUTPUT	DC sync output 0
Distributed Clocks and SYNC0+1 enabled	SYNC_OUT1	OUTPUT	DC sync output 1
Distributed Clocks and Latch0 enabled	LATCH_IN0	INPUT	DC latch input 0
Distributed Clocks and Latch0+1 enabled	LATCH_IN1	INPUT	DC latch input 1

NOTE: SYNC_OUT0/1 are active high/push-pull outputs.

8.5 Physical Layer Interface

The IP Core is connected with Ethernet PHYs using MII/RMII/RGMII interfaces.

Table 23 lists the general PHY interface signals.

Table 23: Physical Layer General

Condition	Name	Direction	Description
PHY Management Interface enabled and Export PHY address as signals and not(Independent PHY addresses)	PHY_OFFSET_VEC[4:0]	INPUT	PHY address offset
PHY Management Interface enabled and Export PHY address as signals and Independent PHY addresses	PHY_ADR_PORT0[4:0]	INPUT	PHY address port 0
PHY Management Interface enabled and Export PHY address as signals and Independent PHY addresses and Port1	PHY_ADR_PORT1[4:0]	INPUT	PHY address port 1
PHY Management Interface enabled and Export PHY address as signals and Independent PHY addresses and Port2	PHY_ADR_PORT2[4:0]	INPUT	PHY address port 2
Port0 enabled	nPHY_RESET_OUT0	OUTPUT	PHY reset port 0 (act. Low)
Port1 enabled	nPHY_RESET_OUT1	OUTPUT	PHY reset port 1 (act. Low)
Port2 enabled	nPHY_RESET_OUT2	OUTPUT	PHY reset port 2 (act. Low)
PHY Management Interface enabled	MCLK	OUTPUT	PHY management clock
PHY Management Interface enabled, Tristate drivers inside core (EEPROM/MII)	MDIO	BIDIR	PHY management data
PHY Management Interface enabled,	MDIO_DATA_IN	INPUT	PHY management data: PHY → IP Core
External tristate drivers for EEPROM/MI	MDIO_DATA_OUT	OUTPUT	PHY management data: IP Core → PHY
	MDIO_DATA_ENA	OUTPUT	O: disable output driver for MDIO_DATA_OUT O: enable output driver for MDIO_DATA_OUT

NOTE: MDIO must have a pull-up resistor (4.7k Ω recommended for ESCs).

8.5.1 MII Interface

Table 24 lists the signals used with MII. The TX_CLK signals of the PHYs are not connected to the IP Core unless TX Shift automatic configuration is enabled.

Table 24: PHY Interface MII

Condition	Name	Direction	Description
Port0 = MII	nMII_LINK0	INPUT	0: 100 Mbit/s (Full Duplex) link at port 0 1: no link at port 0
	MII_RX_CLK0	INPUT	Receive clock port 0
	MII_RX_DV0	INPUT	Receive data valid port 0
	MII_RX_DATA0[3:0]	INPUT	Receive data port 0
	MII_RX_ERR0	INPUT	Receive error port 0
	MII_TX_ENA0	OUTPUT	Transmit enable port 0
	MII_TX_DATA0[3:0]	OUTPUT	Transmit data port 0
Port0 = MII and TX Shift activated	MII_TX_CLK0	INPUT	Transmit clock port 0 for automatic TX Shift configuration. Set to 0 for manual TX Shift configuration.
	MII_TX_SHIFT0[1:0]	INPUT	Manual TX shift configuration port 0. Additional TX signal delay: 00: 0 ns 01: 10 ns 10: 20 ns 11: 30 ns
Port1 = MII	nMII_LINK1	INPUT	0: 100 Mbit/s (Full Duplex) link at port 1 1: no link at port 1
	MII_RX_CLK1	INPUT	Receive clock port 1
	MII_RX_DV1	INPUT	Receive data valid port 1
	MII_RX_DATA1[3:0]	INPUT	Receive data port 1
	MII_RX_ERR1	INPUT	Receive error port 1
	MII_TX_ENA1	OUTPUT	Transmit enable port 1
	MII_TX_DATA1[3:0]	OUTPUT	Transmit data port 1
Port1 = MII and TX Shift activated	MII_TX_CLK1	INPUT	Transmit clock port 1 for automatic TX Shift configuration. Set to 0 for manual TX Shift configuration.
	MII_TX_SHIFT1[1:0]	INPUT	Manual TX shift configuration port 1. Additional TX signal delay: 00: 0 ns 01: 10 ns 10: 20 ns 11: 30 ns

Condition	Name	Direction	Description
Port2 = MII	nMII_LINK2	INPUT	0: 100 Mbit/s (Full Duplex) link at port 21: no link at port 2
	MII_RX_CLK2	INPUT	Receive clock port 2
	MII_RX_DV2	INPUT	Receive data valid port 2
	MII_RX_DATA2[3:0]	INPUT	Receive data port 2
	MII_RX_ERR2	INPUT	Receive error port 2
	MII_TX_ENA2	OUTPUT	Transmit enable port 2
	MII_TX_DATA2[3:0]	OUTPUT	Transmit data port 2
Port2 = MII and TX Shift activated	MII_TX_CLK2	INPUT	Transmit clock port 2 for automatic TX Shift configuration. Set to 0 for manual TX Shift configuration.
	MII_TX_SHIFT2[1:0]	INPUT	Manual TX shift configuration port 2. Additional TX signal delay: 00: 0 ns 01: 10 ns 10: 20 ns 11: 30 ns

8.5.2 RMII Interface

Table 25 lists the signals used with RMII.

Table 25: PHY Interface RMII

Condition	Name	Direction	Description
Selected communication interface Port0/Port1 = RMII	CLK50	INPUT	50 MHz reference clock signal from PLL (rising edge synchronous with rising edge of CLK100), also connected to PHY
	nRMII_LINK0	INPUT	0: 100 Mbit/s (Full Duplex) link at port 01: no link at port 0
	RMII_RX_DV0	INPUT	Carrier sense/receive data valid port 0
	RMII_RX_DATA0[1:0]	INPUT	Receive data port 0
	RMII_RX_ERR0	INPUT	Receive error port 0
	RMII_TX_ENA0	OUTPUT	Transmit enable port 0
	RMII_TX_DATA0[1:0]	OUTPUT	Transmit data port 0
2 communication ports and selected	nRMII_LINK1	INPUT	0: 100 Mbit/s (Full Duplex) link at port 11: no link at port 1
communication interface Port1 = RMII	RMII_RX_DV1	INPUT	Carrier sense/receive data valid port 1
	RMII_RX_DATA1[1:0]	INPUT	Receive data port 1
	RMII_RX_ERR1	INPUT	Receive error port 1
	RMII_TX_ENA1	OUTPUT	Transmit enable port 1
	RMII_TX_DATA1[1:0]	OUTPUT	Transmit data port 1

8.5.3 RGMII Interface

Table 26 lists the signals used with RGMII.

Table 26: PHY Interface RGMII

Condition	Name	Direction	Description
Port0 = RGMII	CLK25_2NS	INPUT	25 MHz clock signal from PLL (rising edge 2 ns after rising edge of CLK25), used for RGMII GTX_CLK
	nRGMII_LINK0	INPUT	0: 100 Mbit/s (Full Duplex) link at port 0 1: no link at port 0
	RGMII_RX_CLK0	INPUT	Receive clock port 0
	RGMII_RX_CTL_DATA_DDR_CLK0	OUTPUT	Receive control/data DDR input clock port 0
	RGMII_RX_CTL_DATA_DDR_NRESET0	OUTPUT	Receive control/data DDR input reset (act. Low) port 0
	RGMII_RX_CTL_DDR_L0	INPUT	Receive control DDR input low port 0
	RGMII_RX_CTL_DDR_H0	INPUT	Receive control DDR input high port 0
	RGMII_RX_DATA_DDR_L0	INPUT	Receive data DDR input low port 0
	RGMII_RX_DATA_DDR_H0	INPUT	Receive data DDR input high port 0
	RGMII_TX_CLK_DDR_CLK0	OUTPUT	Transmit clock DDR output clock port 0
	RGMII_TX_CLK_DDR_NRESET0	OUTPUT	Transmit clock DDR output reset (port 0, act. Low)
	RGMII_TX_CLK_DDR_L0	OUTPUT	Transmit clock DDR output low port 0
	RGMII_TX_CLK_DDR_H0	OUTPUT	Transmit clock DDR output high port 0
	RGMII_TX_CTL_DATA_DDR_CLK0	OUTPUT	Transmit control/data DDR output clock port 0
	RGMII_TX_CTL_DATA_DDR_NRESET0	OUTPUT	Transmit control/data DDR output reset (port 0, act. Low)
	RGMII_TX_CTL_DDR_L0	OUTPUT	Transmit control DDR output low port 0
	RGMII_TX_CTL_DDR_H0	OUTPUT	Transmit control DDR output high port 0
	RGMII_TX_DATA_DDR_L0	OUTPUT	Transmit data DDR output low port 0

Condition	Name	Direction	Description
Port1 = RGMII	nRGMII_LINK1	INPUT	0: 100 Mbit/s (Full Duplex) link at port 11: no link at port 1
	RGMII_RX_CLK1	INPUT	Receive clock port 1
	RGMII_RX_CTL_DATA_DDR_CLK1	OUTPUT	Receive control/data DDR input clock port 1
	RGMII_RX_CTL_DATA_DDR_NRESET1	OUTPUT	Receive control/data DDR input reset (port 1, act. Low)
	RGMII_RX_CTL_DDR_L1	INPUT	Receive control DDR input low port 1
	RGMII_RX_CTL_DDR_H1	INPUT	Receive control DDR input high port 1
	RGMII_RX_DATA_DDR_L1	INPUT	Receive data DDR input low port 1
	RGMII_RX_DATA_DDR_H1	INPUT	Receive data DDR input high port 1
	RGMII_TX_CLK_DDR_CLK1	OUTPUT	Transmit clock DDR output clock port 1
	RGMII_TX_CLK_DDR_NRESET1	OUTPUT	Transmit clock DDR output reset (port 1, act. Low)
	RGMII_TX_CLK_DDR_L1	OUTPUT	Transmit clock DDR output low port 1
	RGMII_TX_CLK_DDR_H1	OUTPUT	Transmit clock DDR output high port 1
	RGMII_TX_CTL_DATA_DDR_CLK1	OUTPUT	Transmit control/data DDR output clock port 1
	RGMII_TX_CTL_DATA_DDR_NRESET1	OUTPUT	Transmit control/data DDR output reset (port 1, act. Low)
	RGMII_TX_CTL_DDR_L1	OUTPUT	Transmit control DDR output low port 1
	RGMII_TX_CTL_DDR_H1	OUTPUT	Transmit control DDR output high port 1
	RGMII_TX_DATA_DDR_L1	OUTPUT	Transmit data DDR output low port 1

Condition	Name	Direction	Description
Port2 = RGMII	nRGMII_LINK2	INPUT	0: 100 Mbit/s (Full Duplex) link at port 21: no link at port 2
	RGMII_RX_CLK2	INPUT	Receive clock port 2
	RGMII_RX_CTL_DATA_DDR_CLK2	OUTPUT	Receive control/data DDR input clock port 2
	RGMII_RX_CTL_DATA_DDR_NRESET2	OUTPUT	Receive control/data DDR input reset (port 2, act. Low)
	RGMII_RX_CTL_DDR_L2	INPUT	Receive control DDR input low port 2
	RGMII_RX_CTL_DDR_H2	INPUT	Receive control DDR input high port 2
	RGMII_RX_DATA_DDR_L2	INPUT	Receive data DDR input low port 2
	RGMII_RX_DATA_DDR_H2	INPUT	Receive data DDR input high port 2
	RGMII_TX_CLK_DDR_CLK2	OUTPUT	Transmit clock DDR output clock port 2
	RGMII_TX_CLK_DDR_NRESET2	OUTPUT	Transmit clock DDR output reset (port 2, act. Low)
	RGMII_TX_CLK_DDR_L2	OUTPUT	Transmit clock DDR output low port 2
	RGMII_TX_CLK_DDR_H2	OUTPUT	Transmit clock DDR output high port 2
	RGMII_TX_CTL_DATA_DDR_CLK2	OUTPUT	Transmit control/data DDR output clock port 2
	RGMII_TX_CTL_DATA_DDR_NRESET2	OUTPUT	Transmit control/data DDR output reset (port 2, act. Low)
	RGMII_TX_CTL_DDR_L2	OUTPUT	Transmit control DDR output low port 2
	RGMII_TX_CTL_DDR_H2	OUTPUT	Transmit control DDR output high port 2
	RGMII_TX_DATA_DDR_L2	OUTPUT	Transmit data DDR output low port 2

8.6 PDI Signals

8.6.1 General PDI Signals

Table 28 lists the signals available independent of the PDI configuration.

Table 27: General PDI Signals

Condition	Name	Direction	Description
	PDI_SOF	OUTPUT	Ethernet Start-of-Frame if 1
	PDI_EOF	OUTPUT	Ethernet End-of-Frame if 1
	PDI_WD_TRIGGER	OUTPUT	Process Data Watchdog trigger if 1
	PDI_WD_STATE	OUTPUT	Process Data Watchdog state 0: Expired 1: Not expired
GPIO Bytes > 0	PDI_GPI[8*Bytes-1:0]	INPUT	General purpose inputs (width configurable, 1/2/4/8 Bytes)
GPIO Bytes > 0	PDI_GPO[8*Bytes-1:0]	OUTPUT	General purpose outputs (width N:0 configurable, 1/2/4/8 Bytes)

8.6.2 Digital I/O Interface

Table 28 lists the signals used with the Digital I/O PDI.

Table 28: Digital I/O PDI

Condition	Name	Direction	Description
Byte 0 is Output	PDI_DIGI_DATA_OUT0 [7:0]	OUTPUT	Digital output byte 0
Byte 0 is Input	PDI_DIGI_DATA_IN0 [7:0]	INPUT	Digital input byte 0
Byte 1 is Output	PDI_DIGI_DATA_OUT1[7:0]	OUTPUT	Digital output byte 1
Byte 1 is Input	PDI_DIGI_DATA_IN1[7:0]	INPUT	Digital input byte 1
Byte 2 is Output	PDI_DIGI_DATA_OUT2[7:0]	OUTPUT	Digital output byte 2
Byte 2 is Input	PDI_DIGI_DATA_IN2[7:0]	INPUT	Digital input byte 2
Byte 3 is Output	PDI_DIGI_DATA_OUT3 [7:0]	OUTPUT	Digital output byte 3
Byte 3 is Input	PDI_DIGI_DATA_IN3[7:0]	INPUT	Digital input byte 3
If both, digital input and output selected	PDI_DIGI_DATA_ENA	OUTPUT	Digital output enable
any digital input selected and Input mode=Latch with ext. signal	PDI_DIGI_LATCH_IN	INPUT	Latch digital input at rising edge
any digital output	PDI_DIGI_OE_EXT	INPUT	External output enable
selected	PDI_DIGI_OUTVALID	OUTPUT	Output event: output valid

8.6.3 SPI Slave Interface

Table 29 used with an SPI PDI.

Table 29: SPI PDI

Condition	Name	Direction	Description
	PDI_SPI_CLK	INPUT	SPI clock
SPI PDI	PDI_SPI_SEL	INPUT	SPI slave select
SPIPUI	PDI_SPI_DI	INPUT	SPI slave data in (MOSI)
	PDI_SPI_IRQ	OUTPUT	SPI interrupt
Tristate drivers inside core (SPI configuration)	PDI_SPI_DO	OUTPUT	SPI slave data out (MISO)
	PDI_SPI_DO_OUT	OUTPUT	SPI slave data out: IP Core → µC
External tristate drivers	PDI_SPI_DO_ENA	OUTPUT	O: disable output driver for PDI_SPI_DO_OUT O: enable output driver for PDI_SPI_DO_OUT O: disable output driver for PDI_SPI_DO_OUT O: disable output driver for PDI_SPI_DO_OUT

8.6.4 Asynchronous 8/16 Bit µController Interface

Table 30 lists the signals used with both, 8 Bit and 16 Bit asynchronous µController PDI.

Table 30: 8/16 Bit µC PDI

Condition	Name	Direction	Description
8/16 Bit μC	PDI_uC_ADR[15:0]	INPUT	μC address bus
	PDI_uC_nBHE	INPUT	μC byte high enable
	PDI_uC_nRD	INPUT	μC read access
	PDI_uC_nWR	INPUT	μC write access
	PDI_uC_nCS	INPUT	μC chip select
	PDI_uC_IRQ	OUTPUT	Interrupt
	PDI_uC_BUSY	OUTPUT	PDI busy
PDI_uC_DATA_ENA		OUTPUT	O: disable output driver for PDI_uC_DATA_OUT O: enable output driver for PDI_uC_DATA_OUT O: disable output driver for PDI_uC_DATA_OUT

8.6.4.1 8 Bit µController Interface

Table 31 lists the signals used with an 8 Bit μ C PDI.

Table 31: 8 Bit µC PDI

Condition	Name	Direction	Description
Tristate drivers inside core (µController configuration)	PDI_uC_DATA[7:0]	BIDIR	μC data bus
External tristate drivers	PDI_uC_DATA_IN[7:0]	INPUT	μC data bus: μC → IP Core
	PDI_uC_DATA_OUT[7:0]	OUTPUT	μC data bus: IP Core → μC

8.6.4.2 16 Bit µController Interface

Table 32 lists the signals used with a 16 Bit μC PDI.

Table 32: 16 Bit µC PDI

Condition	Name	Direction	Description
Tristate drivers inside core (µController configuration)	PDI_uC_DATA[15:0]	BIDIR	μC data bus
External tristate drivers	PDI_uC_DATA_IN[15:0]	INPUT	μC data bus: μC → IP Core
	PDI_uC_DATA_OUT[15:0]	OUTPUT	μC data bus: IP Core → μC

8.6.5 Avalon On-Chip Bus

Table 33 lists the signals used with the Avalon PDI.

Table 33: Avalon PDI

Condition	Name	Direction	Description
Avalon PDI	PDI PDI_AVALON_CLK		N*25 MHz Avalon bus clock from PLL (rising edge of CLK25 synchronous with rising edge of PDI_AVALON_CLK)
	PDI_AVALON_ADR [18-ld(PDI_EXT_BUS_WIDTH):0]	INPUT	Avalon address
	PDI_AVALON_BE [PDI_EXT_BUS_WIDTH/8 -1:0]	INPUT	Avalon byte enable
	PDI_AVALON_RD_DATA [PDI_EXT_BUS_WIDTH -1:0]	OUTPUT	Avalon slave read data
	PDI_AVALON_WR_DATA [PDI_EXT_BUS_WIDTH:0]	INPUT	Avalon write data
	PDI_AVALON_READ	INPUT	Avalon read access
	PDI_AVALON_WRITE	INPUT	Avalon write access
	PDI_AVALON_CS	INPUT	Avalon chip select
	PDI_AVALON_IRQ	OUTPUT	Avalon slave interrupt
	PDI_AVALON_BUSY	OUTPUT	Avalon slave busy
	PDI_AVALON_SYNC0	OUTPUT	DC SYNC0 output. Always 0 if DC Sync0 is disabled.
	PDI_AVALON_SYNC1	OUTPUT	DC SYNC1 output. Always 0 if DC Sync 1 is disabled.

NOTE: If the EtherCAT IP Core is used inside Qsys, PDI_AVALON_SYNC0 and PDI_AVALON_SYNC1 are declared as interrupt signals for the processor (valon_ethercat_sync0/1). Use SYNC_OUT0/1 signals for external use of the SyncSignals.

8.6.6 AXI3 On-Chip Bus

Table 34 lists the signals used with the AXI3 PDI.

Table 34: AXI3 PDI

Condition	Name	Direction	Description
AXI3 PDI	PDI_AXI_AWID	INPUT	Write address ID
	[PDI_BUS_ID_WIDTH-1:0]		
	PDI_AXI_AWADDR[15:0]	INPUT	Write address
	PDI_AXI3_AWLEN[3:0]	INPUT	Write length
	PDI_AXI_AWSIZE[2:0]	INPUT	Write size
	PDI_AXI_AWBURST[1:0]	INPUT	Write burst type
	PDI_AXI3_AWLOCK	INPUT	Write lock
	PDI_AXI_AWCACHE[3:0]	INPUT	Write cache type
	PDI_AXI_AWPROT[2:0]	INPUT	Write protection type
	PDI_AXI_AWVALID	INPUT	Write address valid
	PDI_AXI_AWREADY	OUTPUT	Write address ready
	PDI_AXI_WID[PDI_BUS_ID_WIDTH-1:0]	INPUT	Write data ID
	PDI_AXI_WDATA [PDI_EXT_BUS_WIDTH-1:0]	INPUT	Write data
	PDI_AXI_WSTRB [PDI_EXT_BUS_WIDTH/8-1:0]	INPUT	Write data byte enable
	PDI_AXI_WLAST	INPUT	Write data last
	PDI_AXI_WVALID	INPUT	Write data valid
	PDI_AXI_WREADY	OUTPUT	Write data ready
	PDI_AXI_BID[PDI_BUS_ID_WIDTH-1:0]	OUTPUT	Write response ID
	PDI_AXI_BRESP[1:0]	OUTPUT	Write response
	PDI_AXI_BVALID	OUTPUT	Write response valid
	PDI_AXI_BREADY	INPUT	Write response ready
	PDI_AXI_ARID[PDI_BUS_ID_WIDTH-1:0]	INPUT	Read address ID
	PDI_AXI_ARADDR[15:0]	INPUT	Read address
	PDI_AXI3_ARLEN[3:0]	INPUT	Read length
	PDI_AXI_ARSIZE[2:0]	INPUT	Read size
	PDI_AXI_ARBURST[1:0]	INPUT	Read burst type
	PDI_AXI3_ARLOCK	INPUT	Read lock
	PDI_AXI_ARCACHE[3:0]	INPUT	Read cache type
	PDI_AXI_ARPROT[2:0]	INPUT	Read protection type
	PDI_AXI_ARVALID	INPUT	Read address valid
	PDI_AXI_ARREADY	OUTPUT	Read address ready
	PDI_AXI_RID [PDI_BUS_ID_WIDTH-1:0]	OUTPUT	Read data ID
	PDI_AXI_RDATA [PDI_EXT_BUS_WIDTH-1:0]	OUTPUT	Read data
	PDI_AXI_RRESP[1:0]	OUTPUT	Read response
	PDI_AXI_RLAST	OUTPUT	Read data last
	PDI_AXI_RVALID	OUTPUT	Read data valid
	PDI_AXI_RREADY	INPUT	Read data ready
	PDI_AXI_IRQ_MAIN	OUTPUT	Interrupt

9 Ethernet Interface

The IP Core is connected with Ethernet PHYs using MII, RMII, or RGMII interfaces. MII is recommended since the PHY delay (and delay jitter) is smaller in comparison to RMII and RGMII.

9.1 PHY Management interface

9.1.1 PHY Management Interface Signals

The PHY management interface of the IP Core has the following signals:

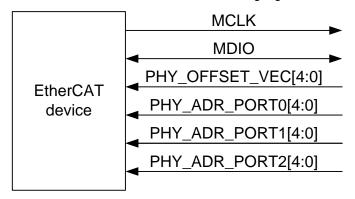


Figure 23: PHY management Interface signals

Table 35: PHY management Interface signals

Signal	Direction	Description
MCLK	OUT	Management Interface clock (alias MCLK)
MDIO	BIDIR	Management Interface data (alias MDIO)
PHY_OFFSET_VEC[4:0]	INPUT	PHY address offset (consecutive PHY addresses, address of port 0)
PHY_ADR_PORT0[4:0]	INPUT	PHY address port 0 (individual PHY addresses)
PHY_ADR_PORT1[4:0]	INPUT	PHY address port 1 (individual PHY addresses)
PHY ADR PORT2[4:0]	INPUT	PHY address port 2 (individual PHY addresses)

MDIO must have a pull-up resistor (4.7 k Ω recommended for ESCs), either integrated into the ESC or externally. MCLK is driven rail-to-rail, idle value is High.

9.1.2 PHY Address Configuration

The EtherCAT IP Core addresses Ethernet PHYs typically using logical port number plus PHY address offset. Ideally, the Ethernet PHY addresses should correspond with the logical port number, so PHY addresses 0-2 are used.

A PHY address offset of 0-31 can be applied which moves the PHY addresses to any consecutive address range. The IP Core expects logical port 0 to have PHY address 0 plus PHY address offset (and so on).

Alternatively, the PHY addresses can be configured individually for each port.

Since the PHY addresses are static in most cases, they are set in the MegaWizard Plugin. If the PHY addresses are changing dynamically, their configuration can be done by signals (Export PHY address signals feature enabled).

9.1.3 Separate external MII management interfaces

If two separate external MII management interfaces are to be connected to the single MII management interface of the EtherCAT IP Core, some glue logic has to be added. Disable internal Tri-State drivers for the MII management bus and combine the signals according to the following figure. Take care of proper PHY address configuration: the PHYs need different PHY addresses.

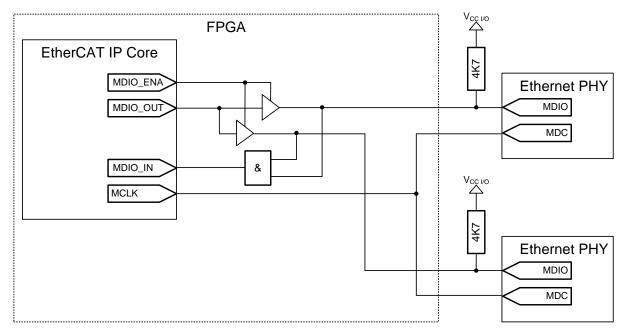


Figure 24: Example schematic with two individual MII management interfaces

9.1.4 MII management timing specifications

For MII Management Interface timing diagrams refer to Section I.

Parameter Min Max Comment Typ **PRELIMINARY TIMING** 1.34 ms Time between nPHY RESET OUT reset end and t_{MI_startup} the first access via management interface 400 ns MI_CLK period tclk ~ 25.6 µs MI Write access time twrite MI Read access time ~ 25.4 µs tRead

Table 36: MII management timing characteristics

9.2 MII Interface

The MII interface of the IP Core is optimized for low processing/forwarding delays by omitting a transmit FIFO. To allow this, the IP Core has additional requirements to Ethernet PHYs, which are easily accomplished by several PHY vendors.

Refer to "Section I – Technology" for Ethernet PHY requirements.

Additional information regarding the IP Core:

- The clock source of the PHYs is the same as for the FPGA (25 MHz quartz oscillator)
- The signal polarity of nMII_LINK is not configurable inside the IP Core, nMII_LINK is active low. If necessary, the signal polarity must be swapped by user logic outside the IP Core.
- The IP Core can be configured to use the MII management interface for link detection and link configuration.
- The IP Core supports arbitrary PHY addresses.

For details about the ESC MII Interface refer to Section I.

9.2.1 MII Interface Signals

The MII interface of the IP Core has the following signals:

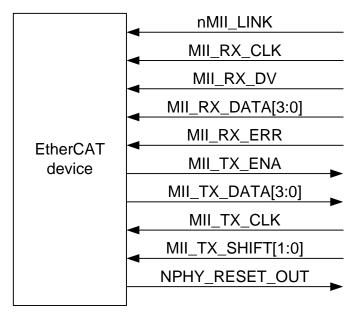


Figure 25: MII Interface signals

Table 37: MII Interface signals

Signal	Direction	Description
nMII_LINK	IN	Input signal provided by the PHY if a 100 Mbit/s (Full Duplex) link is established (alias LINK_MII)
MII_RX_CLK	IN	Receive Clock
MII_RX_DV	IN	Receive data valid
MII_RX_DATA[3:0]	IN	Receive data (alias RXD)
MII_RX_ERR	IN	Receive error (alias RX_ER)
MII_TX_ENA	OUT	Transmit enable (alias TX_EN)
MII_TX_DATA[3:0]	OUT	Transmit data (alias TXD)
MII_TX_CLK	IN	Transmit Clock for automatic TX Shift compensation
MII_TX_SHIFT[1:0]	IN	Manual TX Shift compensation with additional registers
NPHY_RESET_OUT	OUT	PHY reset (akt. Low), resets PHY while ESC is in Reset state, and, for FX PHYs, if Enhanced Link Detection detects a lost link

NOTE: A pull-down resistor is typically required for NPHY_RESET_OUT to hold the PHY in reset state while the FPGA is configured, since this pin is floating or even pulled up during that time.

9.2.2 TX Shift Compensation

Since IP Core and the Ethernet PHYs share the same clock source, TX_CLK from the PHY has a fixed phase relation to MII_TX_ENA/MII_TX_DATA from the IP Core. Thus, TX_CLK is not connected and the delay of a TX FIFO inside the IP Core is saved.

In order to fulfill the setup/hold requirements of the PHY, the phase shift between TX_CLK and MII_TX_ENA/MII_TX_DATA has to be controlled. There are several alternatives:

- TX Shift Compensation by specifying/verifying minimum and maximum clock-to-output times for MII_TX_ENA/MII_TX_DATA with respect to CLK_IN (PHY and PLL clock source).
- TX Shift compensation with additional delays for MII_TX_ENA/MII_TX_DATA of 10, 20, or 30 ns. Such delays can be added using the TX Shift feature and applying MII_TX_SHIFT[1:0].
 MII_TX_SHIFT[1:0] determine the delay in multiples of 10 ns for each port. For guaranteed timings, maximum clock-to-output times for MII_TX_ENA/MII_TX_DATA should be applied, too. Set MII_TX_CLK to 0 if manual TX Shift compensation is used.
- Automatic TX Shift compensation if the TX Shift feature is selected: connect MII_TX_CLK and the
 automatic TX Shift compensation will determine correct shift settings. For guaranteed timings,
 maximum clock-to-output times for MII_TX_ENA/MII_TX_DATA should be applied, too. Set
 manual TX Shift compensation to 0 in this case.

MII_TX_ENA and MII_TX_DATA are generated synchronous to CLK25, although the source registers are both CLK25 and CLK100 registers.

The PLL has to use a configuration which guarantees a fixed phase relation between clock input and CLK25/CLK100 output, in order to enable TX shift compensation for the MII TX signals.

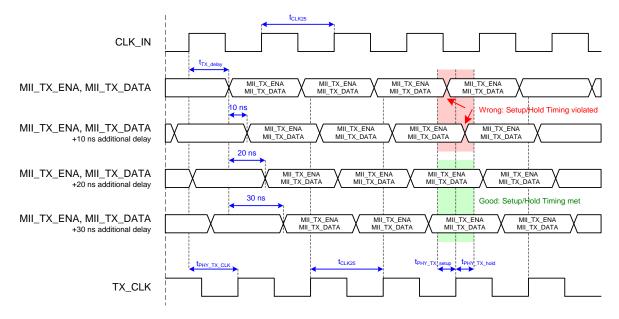


Figure 26: MII TX Timing Diagram

Parameter	Comment
t _{CLK25}	25 MHz quartz oscillator (CLK_IN)
t TX_delay	MII_TX_ENA/MII_TX_DATA[3:0] delay after rising edge of CLK_IN, depends on synthesis results
tphy_tx_clk	Delay between PHY clock source and TX_CLK output of the PHY, PHY dependent
t PHY_TX_setup	PHY setup requirement: TX_ENA/TX_DATA with respect to TX_CLK (PHY dependent, IEEE802.3 limit is 15 ns)
t _{PHY_TX_hold}	PHY hold requirement: TX_ENA/TX_DATA with respect to TX_CLK (PHY dependent, IEEE802.3 limit is 0 ns)

Table 38: MII TX Timing characteristics

If the phase shift between CLK25 and TX_CLK should not be constant for a some special PHYs, additional FIFOs for MII_TX_ENA/MII_TX_DATA are necessary. The FIFO input uses CLK25, the FIFO output TX_CLK[0] or TX_CLK[1] respectively.

NOTE: The phase shift can be adjusted by displaying TX_CLK of a PHY and MII_TX_ENA/MII_TX_DATA[3:0] on an oscilloscope. MII_TX_ENA/MII_TX_DATA[3:0] is allowed to change between 0 ns and 25 ns after a rising edge of TX_CLK (according to IEEE802.3 – check your PHY's documentation). Setup phase shift so that MII_TX_ENA/MII_TX_DATA[3:0] change near the middle of this range. MII_TX_ENA/MII_TX_DATA[3:0] signals are generated at the same time.

9.2.3 MII Timing specifications

Table 39: MII timing characteristics

Parameter	Min	Тур	Max	Comment
t _{RX_CLK}		40 ns ± 100 ppm		RX_CLK period (100 ppm with maximum FIFO Size only)
t _{RX_setup}	x ¹			RX_DV/RX_DATA/RX_D[3:0] valid before rising edge of RX_CLK
t _{RX_hold}	x ¹			RX_DV/RX_DATA/RX_D[3:0] valid after rising edge of RX_CLK

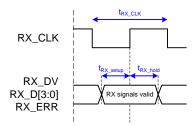


Figure 27: MII timing RX signals

¹ EtherCAT IP Core: time depends on synthesis results

9.2.4 MII example schematic

Refer to chapter 8.5 for more information on special markings (!). Take care of proper compensation of the TX_CLK phase shift.

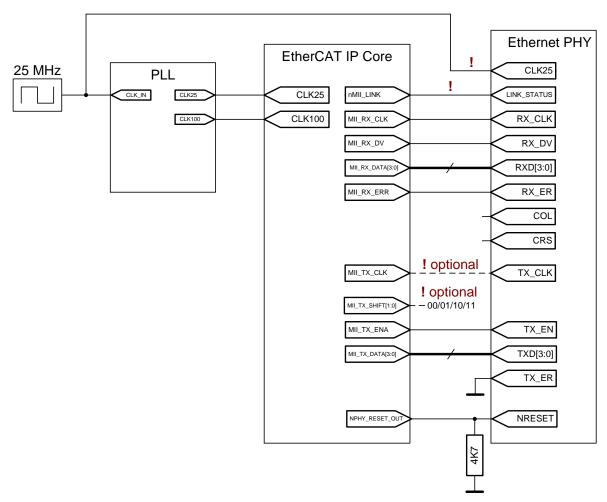


Figure 28: MII example schematic

9.3 RMII Interface

The IP Core supports RMII with 2 communication ports. Nevertheless, MII is recommended since the PHY delay (and delay jitter) is smaller in comparison to RMII.

The Beckhoff ESCs have additional requirements to Ethernet PHYs using RMII, which are easily accomplished by several PHY vendors.

Refer to "Section I – Technology" for Ethernet PHY requirements.

Additional information regarding the IP Core:

- The clock source of the PHYs is the same as for the FPGA (25 MHz quartz oscillator)
- The signal polarity of nRMII_LINK is not configurable inside the IP Core, nRMII_LINK is active low.
 If necessary, the signal polarity must be swapped outside the IP Core.
- The IP Core can be configured to use the MII management interface for link detection and link configuration.
- The IP Core supports arbitrary PHY addresses.

For details about the ESC RMII Interface refer to Section I.

9.3.1 RMII Interface Signals

The RMII interface of the IP Core has the following signals:

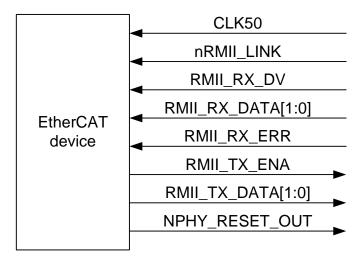


Figure 29: RMII Interface signals

Signal	Direction	Description
CLK50	IN	RMII RX/TX reference clock (50 MHz)
nRMII_LINK	IN	Input signal provided by the PHY if a 100 Mbit/s (Full Duplex) link is established (alias LINK_MII)
RMII_RX_DV	IN	Carrier sense/receive data valid
RMII_RX_DATA[1:0]	IN	Receive data (alias RXD)
RMII_RX_ERR	IN	Receive error (alias RX_ER)
RMII_TX_ENA	OUT	Transmit enable (alias TX_EN)
RMII_TX_DATA[1:0]	OUT	Transmit data (alias TXD)
NPHY_RESET_OUT	OUT	PHY reset (akt. Low), resets PHY while ESC is in Reset state, and, for FX PHYs, if Enhanced Link Detection detects a lost link

Table 40: RMII Interface signals

NOTE: A pull-down resistor is typically required for NPHY_RESET_OUT to hold the PHY in reset state while the FPGA is configured, since this pin is floating or even pulled up during that time.

9.3.2 RMII example schematic

Refer to chapter 8.5 for more information on special markings (!). Take care of proper PHY address configuration.

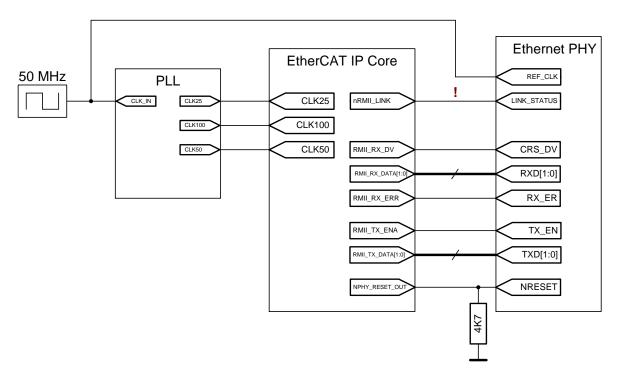


Figure 30: RMII example schematic

9.4 RGMII Interface

The IP Core supports RGMII with1-3 communication ports at 100 Mbit/s. Nevertheless, MII is recommended since the PHY delay (and delay jitter) is smaller in comparison to RGMII.

The RGMII interface of the EtherCAT IP Core offers signals for attaching DDR input and output cells, which have to be added by the IP Core user. This approach offers maximum flexibility for the implementation, which is required because RGMII has tight timing requirements. Please refer to the Altera Application Note 477 "Designing RGMII Interface with FPGA and HardCopy ASICs", available from Altera (http://www.altera.com). This application note contains implementation and constraining guidelines.

The Beckhoff ESCs have additional requirements to Ethernet PHYs using RGMII, which are easily accomplished by several PHY vendors.

Refer to "Section I – Technology" for Ethernet PHY requirements.

Additional information regarding the IP Core:

- The signal polarity of nRGMII_LINK is not configurable inside the IP Core, nRGMII_LINK is active low. If necessary, the signal polarity must be swapped outside the IP Core.
- The IP Core can be configured to use the MII management interface for link detection and link configuration.
- The IP Core supports arbitrary PHY addresses.
- A Gigabit Ethernet PHY has to be restricted to establish only 100 Mbit/s links (e.g. by using MI link detection and configuration).

For details about the ESC RGMII Interface refer to Section I.

9.4.1 RGMII Interface Signals

The RGMII interface of the IP Core has the following signals:

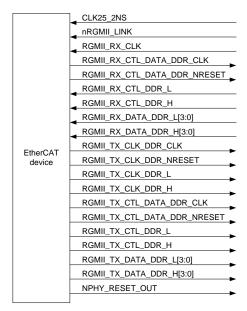


Figure 31: RGMII Interface signals

Table 41: RGMII Interface signals

Signal	Dire ction	Description
CLK25_2NS	IN	25 MHz clock signal from PLL (rising edge 2 ns after rising edge of CLK25), used for RGMII GTX_CLK
nRGMII_LINK	IN	Input signal provided by the PHY if a 100 Mbit/s (Full Duplex) link is established (alias LINK_MII)
RGMII_RX_CLK	IN	Receive clock
RGMII_RX_CTL_DATA_DDR_CLK	OUT	Receive control/data DDR input clock
RGMII_RX_CTL_DATA_DDR_NRESET	OUT	Receive control/data DDR input reset (act. Low)
RGMII_RX_CTL_DDR_L	IN	Receive control DDR input low
RGMII_RX_CTL_DDR_H	IN	Receive control DDR input high
RGMII_RX_DATA_DDR_L[3:0]	IN	Receive data DDR input low
RGMII_RX_DATA_DDR_H[3:0]	IN	Receive data DDR input high
RGMII_TX_CLK_DDR_CLK	OUT	Transmit clock DDR output clock
RGMII_TX_CLK_DDR_NRESET	OUT	Transmit clock DDR output reset (act. Low)
RGMII_TX_CLK_DDR_L	OUT	Transmit clock DDR output low
RGMII_TX_CLK_DDR_H	OUT	Transmit clock DDR output high
RGMII_TX_CTL_DATA_DDR_CLK	OUT	Transmit control/data DDR output clock
RGMII_TX_CTL_DATA_DDR_NRESET	OUT	Transmit control/data DDR output reset (act. Low)
RGMII_TX_CTL_DDR_L	OUT	Transmit control DDR output low
RGMII_TX_CTL_DDR_H	OUT	Transmit control DDR output high
RGMII_TX_DATA_DDR_L[3:0]	OUT	Transmit data DDR output low
RGMII_TX_DATA_DDR_H[3:0]	OUT	Transmit data DDR output high
NPHY_RESET_OUT	OUT	PHY reset (akt. Low), resets PHY while ESC is in Reset state, and, for FX PHYs, if Enhanced Link Detection detects a lost link

NOTE: A pull-down resistor is typically required for NPHY_RESET_OUT to hold the PHY in reset state while the FPGA is configured, since this pin is floating or even pulled up during that time.

9.4.2 RGMII example schematic

Refer to chapter 8.5 for more information on special markings (!). Take care of proper PHY address configuration.

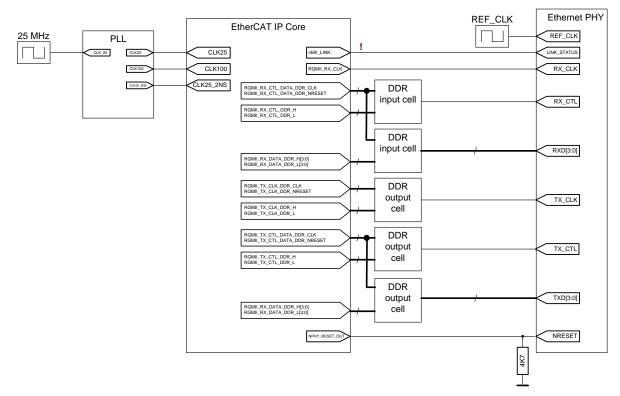


Figure 32: RGMII example schematic

9.4.3 RGMII RX timing options

RGMII uses a source synchronous interface for receive signals. Originally, RX_CLK and RX_CTL/RX_DATA are edge-aligned at the PHY side. RX_CLK needs to be delayed to maintain setup/hold timing at the FPGA side. There are several options for delaying RX_CLK:

9.4.3.1 RX CLK Delay in PHY

Some PHYs offer RGMII-ID, which means, the RX_CLK is delayed internally in the PHY. The EtherCAT IP Core itself cannot enable this feature using the MII management interface if the PHY requires this. It is up to the IP Core user to enable this feature.

9.4.3.2 RX_CLK Delay on PCB

One option is to delay RX CLK on the PCB.

9.4.3.3 RX CLK Delay in FPGA with PLL

The delay of RX_CLK can be realized with a PLL at each RGMII port, configured for clock phase shift.

9.4.3.4 RX_CLK Delay in FPGA without PLL

The delay of RX_CLK can be realized with routing delay inside the FPGA.

9.4.4 RGMII TX timing options

RGMII uses a source synchronous interface for receive signals. Originally, TX_CLK and TX_CTL/RX_DATA are edge-aligned at the FPGA side. TX_CLK needs to be delayed to maintain setup/hold timing at the PHY side. There are several options for delaying TX_CLK:

9.4.4.1 TX_CLK Delay in PHY

Some PHYs offer RGMII-ID, which means, the TX_CLK is delayed internally in the PHY. The EtherCAT IP Core itself cannot enable this feature using the MII management interface if the PHY requires this. It is up to the IP Core user to enable this feature.

9.4.4.2 TX_CLK Delay on PCB

One option is to delay TX_CLK on the PCB.

9.4.4.3 TX CLK Delay in FPGA with PLL

The delay of TX_CLK can be realized with a PLL providing a delayed CLK25 attached to the CLK25_2NS input of the IP Core. This clock is used for the TX_CLK DDR output cell, while CLK25 is used for the TX_CTL/TX_DATA DDR output cells.

9.4.4.4 TX_CLK Delay in FPGA without PLL

The delay of TX_CLK can be realized with routing delay inside the FPGA.

10 PDI Description

Table 42: Available PDIs for EtherCAT IP Core

PDI number 0x0140	On-chip bus		PDI name	
[7:0]	0x0150 [7:5]	0x0152 [10:8]		IP Core
0x00	-	-	Interface deactivated	Х
0x01	-	-	4 Digital Input	
0x02	-	-	4 Digital Output	
0x03	-	-	2 Digital Input and 2 Digital Output	
0x04	-	-	Digital I/O	Х
0x05	-	-	SPI Slave	Х
0x06	-	-	Oversampling I/O	
0x07	-	-	EtherCAT Bridge (port 3)	
0x08	-	-	16 Bit asynchronous Microcontroller interface	Х
0x09	-	-	8 Bit asynchronous Microcontroller interface	Х
0x0A	-	-	16 Bit synchronous Microcontroller interface	
0x0B	-	-	8 Bit synchronous Microcontroller interface	
0x10	-	-	32 Digital Input/0 Digital Output	
0x11	-	-	24 Digital Input/8 Digital Output	
0x12	-	-	16 Digital Input/16 Digital Output	
0x13	-	-	8 Digital Input/24 Digital Output	
0x14	-	-	0 Digital Input/32 Digital Output	
0x80	000	-	On-chip bus (Avalon)	Х
	001	000	On-chip bus (AXI3)	Х
		001	On-chip bus (AXI4)	
		010	On-chip bus (AXI4LITE)	
	010	-	On-chip bus (PLB v4.6)	
	100	-	On-chip bus (OPB)	
Others			Reserved	

10.1 Digital I/O Interface

10.1.1 Interface

The Digital I/O PDI is selected with PDI type 0x04. The signals of the Digital I/O interface are²:

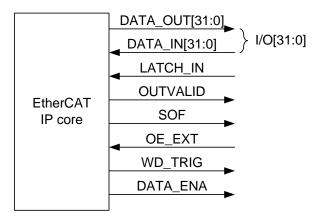


Figure 33: IP core digital I/O signals

Table 43: IP core digital I/O signals

Signal	Direction	Description	Signal polarity
DATA_OUT[31:0]	OUT	Output data	
DATA_IN[31:0]	IN	Input data	
LATCH_IN	IN	External data latch signal	act. High
OUTVALID	OUT	Output data is valid/Output event	act. High
SOF	OUT	Start of Frame	act. High
OE_EXT	IN	Output Enable	act. High
WD_TRIG	OUT	Watchdog Trigger	act. High
DATA_ENA	OUT	Enable external Output data driver	act. High

NOTE: Unsupported Digital I/O control signal OE_CONF is assumed to be low.

The Digital I/O PDI supports 1-4 byte of digital I/O signals, with each byte individually configurable as either input or output. At the IP core interface, the I/O signals are separated in input signals (DATA_IN) and output signals (DATA_OUT). The corresponding I/O bytes and addresses are listed below.

Table 44: Input/Output byte reference

I/O Byte	I/O signal	Output signal	Output address	Input signal	Input address
0	I/O[7:0]	DATA_OUT[7:0]	0x0F00	DATA_IN[7:0]	0x1000
1	I/O[15:8]	DATA_OUT[15:8]	0x0F01	DATA_IN[15:8]	0x1001
2	I/O[23:16]	DATA_OUT[23:16]	0x0F02	DATA_IN[23:16]	0x1002
3	I/O[31:24]	DATA_OUT[31:24]	0x0F03	DATA_IN[31:24]	0x1003

² The prefix `PDI_DIGI_` is added to the Digital I/O interface signals if the EtherCAT IP Core is used.

10.1.2 Configuration

The Digital I/O interface is selected with PDI type 0x04 in the PDI control register 0x0140. It supports different configurations, which are located in registers 0x0150 – 0x0153.

10.1.3 Digital Inputs

Digital input values appear in the process memory at address 0x1000:0x1003. EtherCAT devices use Little Endian byte ordering, so I/O[7:0] can be read at 0x1000 etc. Digital inputs are written to the process memory by the Digital I/O PDI using standard PDI write operations.

Digital inputs can be configured to be sampled by the ESC in four ways:

- Digital inputs are sampled at the start of each Ethernet frame, so that EtherCAT read commands
 to address 0x1000:0x1003 will present digital input values sampled at the start of the same frame.
 The SOF signal can be used externally to update the input data, because the SOF is signaled
 before input data is sampled.
- The sample time can be controlled externally by using the LATCH_IN signal. The input data is sampled by the ESC each time a rising edge of LATCH_IN is recognized.
- Digital inputs are sampled at Distributed Clocks SYNC0 events.
- Digital inputs are sampled at Distributed Clocks SYNC1 events.

For Distributed Clock SYNC input, SYNC generation must be activated (register 0x0981). SYNC output is not necessary (register 0x0151). SYNC pulse length (registers 0x0982:0x0983) should not be set to 0, because acknowledging of SYNC events is not possible with Digital I/O PDI. Sample time is the beginning of the SYNC event.

10.1.4 Digital Outputs

Digital Output values have to be written to register 0x0F00:0x0F03 (register 0x0F00 controls I/O[7:0] etc.). Digital Output values are not read by the Digital I/O PDI using standard read commands, instead, there is a direct connection for faster response times.

The process data watchdog (register 0x0440) has to be either active or disabled; otherwise digital outputs will not be updated. Digital outputs can be configured to be updated in four ways:

- Digital Outputs are updated at the end of each EtherCAT frame (EOF mode).
- Digital outputs are updated with Distributed Clocks SYNC0 events (DC SYNC0 mode).
- Digital outputs are updated with Distributed Clocks SYNC1 events (DC SYNC1 mode).
- Digital Outputs are updated at the end of an EtherCAT frame which triggered the Process Data Watchdog (with typical SyncManager configuration: a frame containing a write access to at least one of the registers 0x0F00:0x0F03). Digital Outputs are only updated if the EtherCAT frame was correct (WD_TRIG mode).

For Distributed Clock SYNC output, SYNC generation must be activated (register 0x0981). SYNC output is not necessary (register 0x0151). SYNC pulse length (registers 0x0982:0x0983) should not be set to 0, because acknowledging of SYNC events is not possible with Digital I/O PDI. Output time is the beginning of the SYNC event.

An output event is always signaled by a pulse on OUTVALID even if the digital outputs remain unchanged.

For output data to be visible on the I/O signals, the following conditions have to be met:

- SyncManager watchdog must be either active (triggered) or disabled.
- OE_EXT (Output enable) must be high.
- Output values have to be written to the registers 0x0F00:0x0F03 within a valid EtherCAT frame.
- The configured output update event must have occurred.

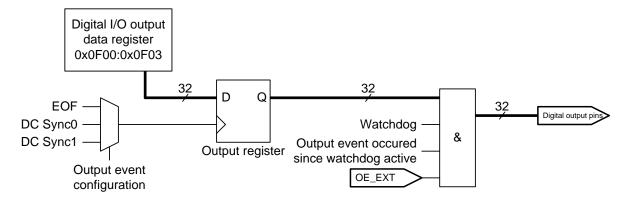


Figure 34: Digital Output Principle Schematic

NOTE: The Digital Outputs are not driven (high impedance) until the EEPROM is loaded. Depending on the FPGA configuration, Digital Outputs (like all other FPGA user pins) might have pull-up resistors until the FPGA has loaded its configuration. This behaviour has to be taken into account when using digital output signals.

10.1.5 Output Enable

The IP Core has an Output Enable signal OE_EXT. With the OE_EXT signal, the I/O signals can be cleared. The I/O signals will be driven low after the output enable signal OE_EXT is set to low or the SyncManager Watchdog is expired (and not disabled).

10.1.6 SyncManager Watchdog

The SyncManager watchdog (registers 0x0440:0x0441) must be either active (triggered) or disabled for output values to appear on the I/O signals. The SyncManager Watchdog is triggered by an EtherCAT write access to the output data registers.

If the output data bytes are written independently, a SyncManager with a length of 1 byte is used for each byte of 0x0F00:0x0F03 containing output bits (SyncManager N configuration: buffered mode, EtherCAT write/PDI read, and Watchdog Trigger enabled: 0x44 in register 0x0804+N*8). Alternatively, if all output data bits are written together in one EtherCAT command, one SyncManager with a length of 1 byte is sufficient (SyncManager N configuration: buffered mode, EtherCAT write/PDI read, and Watchdog Trigger enabled: 0x44 in register 0x0804+N*8). The start address of the SyncManager should be one of the 0x0F00:0x0F03 bytes containing output bits, e.g., the last byte containing output bits.

The SyncManager Watchdog can also be disabled by writing 0 into registers 0x0420:0x0421.

The Watchdog Mode configuration bit is used to configure if the expiration of the SyncManager Watchdog will have an immediate effect on the I/O signals (output reset immediately after watchdog timeout) or if the effect is delayed until the next output event (output reset with next output event). The latter case is especially relevant for Distributed Clock SYNC output events, because any output change will occur at the configured SYNC event.

Immediate output reset after watchdog timeout is not available if OUTVALID mode set to watchdog trigger (0x0150[1]=1).

For external watchdog implementations, the WD_TRIG (watchdog trigger) signal can be used. A WD_TRIG pulse is generated if the SyncManager Watchdog is triggered. In this case, the internal SyncManager Watchdog should be disabled, and the external watchdog may use OE_EXT to reset the I/O signals if the watchdog is expired. For devices without the WD_TRIG signal, OUTVALID can be configured to reflect WD_TRIG.

10.1.7 SOF

SOF indicates the start of an Ethernet/EtherCAT frame. It is asserted shortly after RX_DV=1 or EBUS SOF. Input data is sampled in the time interval between tsoF_to_DATA_setup and tsoF_to_DATA_setup after the SOF signal is asserted.

10.1.8 OUTVALID

A pulse on the OUTVALID signal indicates an output event. If the output event is configured to be the end of a frame, OUTVALID is issued shortly after RX_DV=0 or EBUS EOF, right after the CRC has been checked and the internal registers have taken their new values. OUTVALID is issued independent of actual output data values, i.e., it is issued even if the output data does not change.

10.1.9 Timing specifications

Table 45: Digital I/O timing characteristics IP Core

Parameter	Min	Max	Comment			
PRELIMINARY TIMING						
t _{DATA_setup}	X^3		Input data valid before LATCH_IN			
t _{DATA_hold}	x^3		Input data valid after LATCH_IN			
t _{LATCH_IN}	X^3		LATCH_IN high time			
tsof	$40 \text{ ns} - x^3$	$40 \text{ ns} + x^3$	SOF high time			
tsof_to_data_setup	0 ns	$1,2 \mu s - x^3$	Input data valid after SOF, so that Inputs can be read in the same frame			
tsof_to_data_hold	$1,6 \mu s + x^3$		Input data invalid after SOF			
tinput_event_delay	440 ns		Time between consecutive input events			
toutvalid	$80 \text{ ns} - x^3$	$80 \text{ ns} + x^3$	OUTVALID high time			
tDATA_to_OUTVALID	$80 \text{ ns} - x^3$		Output data valid before OUTVALID			
twd_trig	$40 \text{ ns} - x^3$	$40 \text{ ns} + x^3$	WD_TRIG high time			
tdata_to_wd_trig		$20 \text{ ns} + x^3$	Output data valid after WD_TRIG			
t _{DATA_to_} SYNC		10 ns + x^3	Output data valid after SYNC0/1			
toe_ext_to_data_invalid	0 ns	x ³	Outputs zero or Outputs high impedance after OE_EXT set to low			
toutput_event_delay	320 ns		Time between consecutive output events			
tout_ena_valid	$80 \text{ ns} - x^3$		OUT_ENA valid before OUTVALID			
tout_ena_invalid	$80 \text{ ns} - x^3$		OUT_ENA invalid after OUTVALID			

-

³ EtherCAT IP Core: time depends on synthesis results

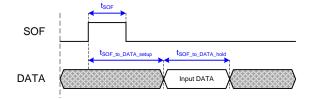


Figure 35: Digital Input: Input data sampled at SOF, I/O can be read in the same frame

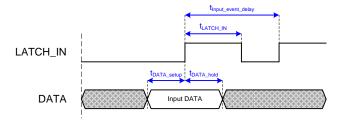


Figure 36: Digital Input: Input data sampled with LATCH_IN

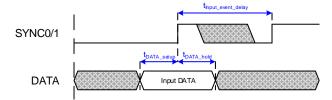


Figure 37: Digital Input: Input data sampled with SYNC0/1

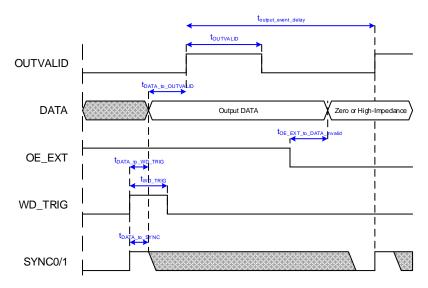


Figure 38: Digital Output timing

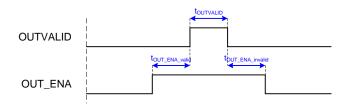


Figure 39: OUT_ENA timing

10.2 SPI Slave Interface

10.2.1 Interface

An EtherCAT device with PDI type 0x05 is an SPI slave. The SPI has 5 signals: SPI_CLK, SPI_DI (MOSI), SPI_DO (MISO), SPI_SEL and SPI_IRQ⁴:

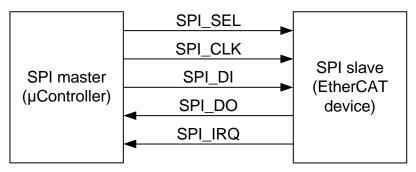


Figure 40: SPI master and slave interconnection

Table 46: SPI signals

Signal	Direct	ion	Description	Signal polarity
SPI_SEL	IN	$(master \to slave)$	SPI chip select	Typical: act. low
SPI_CLK	IN	$(master \to slave)$	SPI clock	
SPI_DI	IN	$(master \to slave)$	SPI data MOSI	act. high
SPI_DO	OUT	$(slave \rightarrow master)$	SPI data MISO	act. high
SPI_IRQ	OUT	(slave → master)	SPI interrupt	Typical: act. low

10.2.2 Configuration

The SPI slave interface is selected with PDI type 0x05 in the PDI control register 0x0140. It supports different timing modes and configurable signal polarity for SPI_SEL and SPI_IRQ. The SPI configuration is located in register 0x0150.

-

⁴ The prefix `PDI_` is added to the SPI signals if the EtherCAT IP Core is used.

10.2.3 SPI access

Each SPI access is separated into an address phase and a data phase. In the address phase, the SPI master transmits the first address to be accessed and the command. In the data phase, read data is presented by the SPI slave (read command) or write data is transmitted by the master (write command). The address phase consists of 2 or 3 bytes depending on the address mode. The number of data bytes for each access may range from 0 to N bytes. The slave internally increments the address for the following bytes after reading or writing the start address. The bits of both address/command and data are transmitted in byte groups.

The master starts an SPI access by asserting SPI_SEL and terminates it by taking back SPI_SEL (polarity determined by configuration). While SPI_SEL is asserted, the master has to cycle SPI_CLK eight times for each byte transfer. In each clock cycle, both master and slave transmit one bit to the other side (full duplex). The relevant edges of SPI_CLK for master and slave can be configured by selecting SPI mode and Data Out sample mode.

The most significant bit of a byte is transmitted first, the least significant bit last, the byte order is low byte first. EtherCAT devices use Little Endian byte ordering.

10.2.4 Address modes

The SPI slave interface supports two address modes, 2 byte addressing and 3 byte addressing. With two byte addressing, the lower 13 address bits A[12:0] are selected by the SPI master, while the upper 3 bits A[15:13] are assumed to be 000b inside the SPI slave, thus only the first 8 Kbyte in the EtherCAT slave address space can be accessed. Three byte addressing is used for accessing the whole 64 Kbyte address space of an EtherCAT slave.

For SPI masters which do only support consecutive transfers of more than one byte, additional Address Extension commands can be inserted.

Byte	2 Byte add	ress mode	3 Byte address mode		
0	A[12:5]	address bits [12:5]	A[12:5]	address bits [12:5]	
1	A[4:0] CMD0[2:0]	address bits [4:0] read/write command	A[4:0] CMD0[2:0]	address bits [4:0] 3 byte addressing: 110b	
2	D0[7:0]	data byte 0	A[15:13] CMD1[2:0] res[1:0]	address bits [15:13] read/write command two reserved bits, set to 00b	
3	D1[7:0]	data byte 1	D0[7:0]	data byte 0	
4 ff.	D2[7:0]	data byte 2	D1[7:0]	data byte 1	

Table 47: Address modes

10.2.5 Commands

The command CMD0 in the second address/command byte may be READ, READ with following Wait State bytes, WRITE, NOP, or Address Extension. The command CMD1 in the third address/command byte may have the same values:

CMD[2] CMD[1] CMD[0] Command 0 0 0 NOP (no operation) 0 0 reserved 0 1 0 Read Read with following Wait State bytes Write 0 1 reserved Address Extension (3 address/command bytes) 0 reserved

Table 48: SPI commands CMD0 and CMD1

10.2.6 Interrupt request register (AL Event register)

During the address phase, the SPI slave transmits the PDI interrupt request registers 0x0220-0x0221 (2 byte address mode), and additionally register 0x0222 for 3 byte addressing on SPI_DO (MISO):

	2 Byte address mode			3 Byte address mode		
Byte	SPI_DI (MOSI)	SPI_DO (MISO)		SPI_DI (MOSI)	SPI_DO (MISO)	
0	A[12:5]	10[7:0]	interrupt request register 0x0220	A[12:5]	10[7:0]	interrupt request register 0x0220
1	A[4:0] CMD0[2:0]	I1[7:0]	interrupt request register 0x0221	A[4:0] CMD0[2:0]	I1[7:0]	interrupt request register 0x0221
2	(Data phase)			A[15:13] CMD1[2:0]	12[7:0]	interrupt request register 0x0222

Table 49: Interrupt request register transmission

10.2.7 Write access

In the data phase of a write access, the SPI master sends the write data bytes to the SPI slave (SPI_DI/MOSI). The write access is terminated by taking back SPI_SEL after the last byte. The SPI_DO signal (MISO) is undetermined during the data phase of write accesses.

10.2.8 Read access

In the data phase of a read access, the SPI slave sends the read data bytes to the SPI master (SPI_DO/MISO).

10.2.8.1 Read Wait State

Between the last address phase byte and the first data byte of a read access, the SPI master has to wait for the SPI slave to fetch the read data internally. Subsequent read data bytes are prefetched automatically, so no further wait states are necessary.

The SPI master can choose between these possibilities:

- The SPI master may either wait for the specified worst case internal read time t_{read} after the last address/command byte and before the first clock cycle of the data phase.
- The SPI master inserts one Wait State byte after the last address/command byte. The Wait State byte must have a value of 0xFF transferred on SPI_DI.

10.2.8.2 Read Termination

The SPI_DI signal (MOSI) is used for termination of the read access by the SPI master. For the last data byte, the SPI master has to set SPI_DI to high (Read Termination byte = 0xFF), so the slave will not prefetch the next read data internally. If SPI_DI is low during a data byte transfer, at least one more byte will be read by the master afterwards.

10.2.9 SPI access errors and SPI status flag

The following reasons for SPI access errors are detected by the SPI slave:

- The number of clock cycles recognized while SPI_SEL is asserted is not a multiple of 8 (incomplete bytes were transferred).
- For a read access, a clock cycle occurred while the slave was busy fetching the first data byte.
- For a read access, the data phase was not terminated by setting SPI_DI to high for the last byte.
- For a read access, additional bytes were read after termination of the access.

A wrong SPI access will have these consequences:

- Registers will not accept write data (nevertheless, RAM will be written).
- Special functions are not executed (e.g., SyncManager buffer switching).
- The PDI error counter 0x030D will be incremented.
- A status flag will indicate the error until the next access (not for SPI mode 0/2 with normal data out sample)

A status flag, which indicates if the last access had an error, is available in any mode except for SPI mode 0/2 with normal data out sample. The status flag is presented on SPI_DO (MISO) after the slave is selected (SPI_SEL) and until the first clock cycle occurs. So the status can be read either between two accesses by assertion of SPI_SEL without clocking, or at the beginning of an access just before the first clock cycle. The status flag will be high for a good access, and low for a wrong access.

The reason of the access error can be read in the PDI error code register 0x030E.

10.2.10 2 Byte and 4 Byte SPI Masters

Some SPI masters do not allow an arbitrary number of bytes per access, the number of bytes per access must be a multiple of 2 or 4 (maybe even more). The SPI slave interface supports such masters. The length of the data phase is in control of the master and can be set to the appropriate length, the length of the address phase has to be extended. The address phase of a read access can be set to a multiple of 2/4 by using the 3 byte address mode and a wait state byte. The address phase of a write access can be enhanced to 4 bytes using 3 byte address mode and an additional address extension byte (byte 2) according to Table 50.

4 Byte SPI master **Byte** 2 Byte SPI master address bits [12:5] address bits [12:5] 0 A[12:5] A[12:5] A[4:0] address bits [4:0] address bits [4:0] 1 A[4:0] CMD0[2:0] write command: 100b CMD0[2:0] 3 byte addressing: 110b 2 address bits [15:13] D0[7:0] data byte 0 A[15:13] CMD1[2:0] 3 byte addressing: 110b two reserved bits, set to 00b res[1:0] 3 address bits [15:13] D1[7:0] data byte 1 A[15:13] CMD2[2:0] write command: 100b two reserved bits, set to 00b res[1:0] 4 D2[7:0] data byte 2 D0[7:0] data byte 0 5 D3[7:0] data byte 3 D1[7:0] data byte 1 6 D2[7:0] D4[7:0] data byte 4 data byte 2 7 D3[7:0] D5[7:0] data byte 5 data byte 3

Table 50: Write access for 2 and 4 Byte SPI Masters

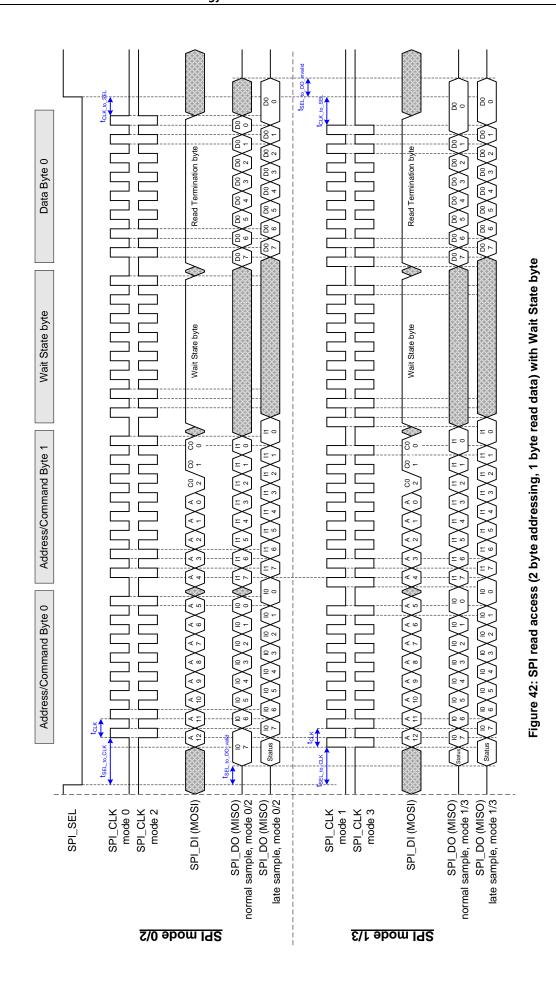
NOTE: The address phase of a write access can be further extended by an arbitrary number of address extension bytes containing 110b as the command. The address phase of a read access can also be enhanced with additional address extension bytes (the read wait state has to be maintained anyway). The address portion of the last address extension byte is used for the access.

10.2.11 Timing specifications

Table 51: SPI timing characteristics IP Core

Parameter	Min	Max	Comment		
PRELIMINARY TIMING					
tclk	33 ns+x ⁵		SPI_CLK frequency (fclk ≤ 30 MHz)		
tsel_to_CLK	X ⁵		First SPI_CLK cycle after SPI_SEL asserted		
tclk_to_sel	a) x ⁵ b) t _{CLK} /2+ x ⁵		Deassertion of SPI_SEL after last SPI_CLK cycle a) SPI mode 0/2, SPI mode 1/3 with normal data out sample b) SPI mode 1/3 with late data out sample		
tread	240 ns		Only for read access between address/command and first data byte. Can be ignored if BUSY or Wait State Bytes are used.		
tco_to_BUSY_OE	tclk		BUSY OUT Enable assertion after sample time of last command bit C0.		
t _{BUSY_valid}		X^5	BUSY valid after BUSY OUT Enable		
tbusy_oe_to_do_valid		X ⁵	Only for SPI mode 0/2 with normal data out sampling: Data byte 0 bit 7 valid after deassertion of BUSY OUT Enable		
tSEL_to_DO_valid		X ⁵	Status/Interrupt Byte 0 bit 7 valid after SPI_SEL asserted		
tsel_to_DO_invalid	0 ns	X ⁵	Status/Interrupt Byte 0 bit 7 invalid after SPI_SEL deasserted		
tstatus_valid	x ⁵		Time until status of last access is valid. Can be ignored if status is not used.		
taccess_delay	X ⁵		Delay between SPI accesses		
t _{DI_setup}	X ⁵		SPI_DI valid before SPI_CLK edge		
t _{DI_hold}	X ⁵		SPI_DI valid after SPI_CLK edge		
t _{CLK_to_DO_valid}		X ⁵	SPI_DO valid after SPI_CLK edge		
tclk_to_DO_invalid	0 ns		SPI_DO invalid after SPI_CLK edge		
t _{IRQ_delay}	160	ns	Internal delay between AL event and SPI_IRQ output to enable correct reading of the interrupt registers.		

_


 $^{^{\}rm 5}$ EtherCAT IP Core: time depends on synthesis results

Symbol	Comment
A15A0	Address bits [15:0]
D0_7D0_0 D1_7D1_0	Data bits byte 0 [7:0] Data bits byte 1 [7:0]
10_710_0 11_711_0 12_712_0	Interrupt request register 0x0220 [7:0] Interrupt request register 0x0221 [7:0] Interrupt request register 0x0222 [7:0]
C0_2C0_0 C1_2C1_0	Command 0 [2:0] Command 1 [2:0] (3 byte addressing)
Status	0: last SPI access had errors 1: last SPI access was correct
BUSY OUT Enable	0: No Busy output, tread is relevant1: Busy output on SPI_DO (edge sensitive)
BUSY	SPI slave has finished reading first byte SPI slave is busy reading first byte

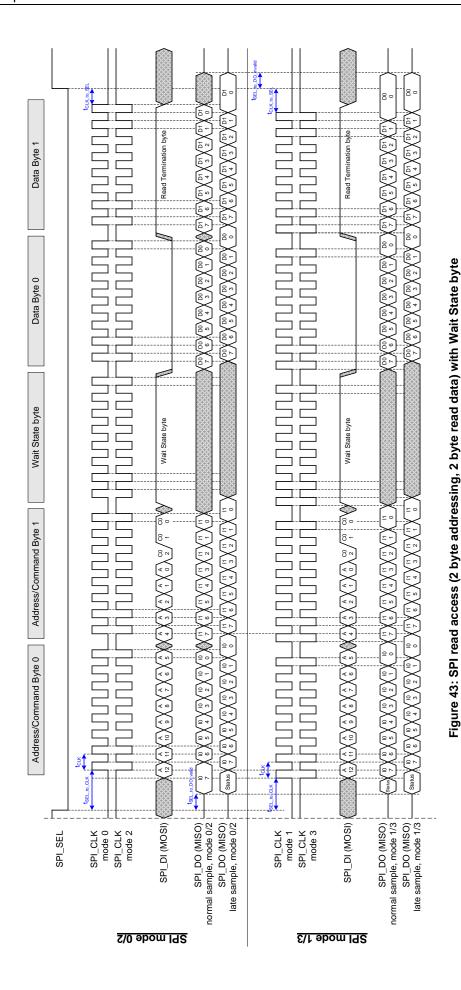

Table 52: Read/Write timing diagram symbols

Figure 41: Basic SPI_DI/SPI_DO timing (*refer to timing diagram for relevant edges of SPI_CLK)

Ether CAT. Slave Controller – IP Core for Altera FPGAs

Ether CAT. → Slave Controller – IP Core for Altera FPGAs

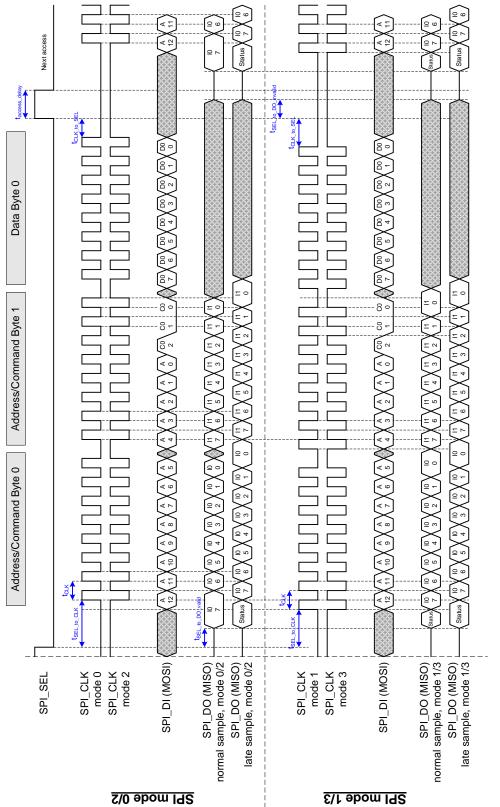
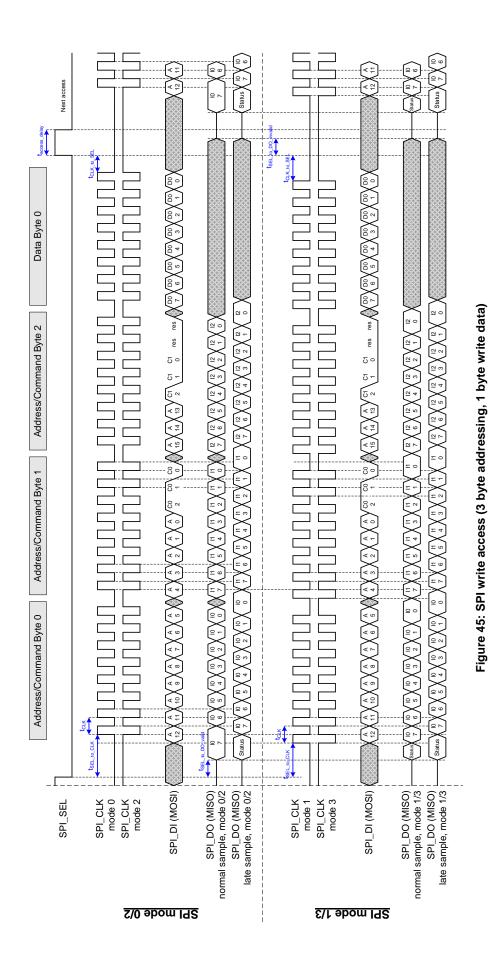



Figure 44: SPI write access (2 byte addressing, 1 byte write data)

Ether CAT. Slave Controller – IP Core for Altera FPGAs

10.3 Asynchronous 8/16 bit µController Interface

10.3.1 Interface

The asynchronous μ Controller interface uses demultiplexed address and data busses. The bidirectional data bus can be either 8 bit or 16 bit wide. The signals of the asynchronous μ Controller interface of EtherCAT devices are⁶:

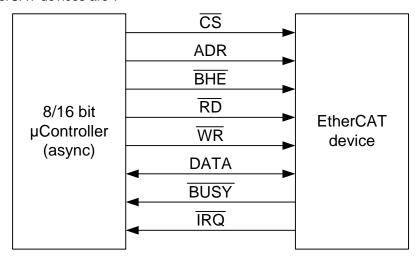


Figure 46: µController interconnection⁷

Signal async	Direction		Description	Signal polarity
CS	IN	$(\mu C \to ESC)$	Chip select	Typical: act. low
ADR[15:0]	IN	$(\mu C \to ESC)$	Address bus	Typical: act. high
BHE	IN	$(\mu C \to ESC)$	Byte High Enable (16 bit µController interface only)	Typical: act. low
RD	IN	$(\mu C \to ESC)$	Read command	Typical: act. low
WR	IN	$(\mu C \to ESC)$	Write command	Typical: act. low
DATA[15:0]	BD	$(\mu C \leftrightarrow ESC)$	Data bus for 16 bit µController interface	act. high
DATA[7:0]	BD	$(\mu C \leftrightarrow ESC)$	Data bus for 8 bit µController interface	act. high
BUSY	OUT	$(ESC \to \mu C)$	EtherCAT device is busy	Typical: act. low
IRQ	OUT	$(ESC \to \mu C)$	Interrupt	Typical: act. low

Table 53: µController signals

Some μ Controllers have a READY signal, this is the same as the BUSY signal, just with inverted polarity.

10.3.2 Configuration

The 16 bit asynchronous μ Controller interface is selected with PDI type 0x08 in the PDI control register 0x0140, the 8 bit asynchronous μ Controller interface has PDI type 0x09. It supports different configurations, which are located in registers 0x0150 – 0x0153.

 $^{^6}$ The prefix `PDI_uC_` or `PDI_uC_8` is added to the μ Controller signals if the EtherCAT IP Core is used.

⁷ All signals are denoted with typical polarity configuration.

10.3.3 µController access

The 8 bit μ Controller interface reads or writes 8 bit per access, the 16 bit μ Controller interface supports both 8 bit and 16 bit read/write accesses. For the 16 bit μ Controller interface, the least significant address bit together with Byte High Enable (BHE) are used to distinguish between 8 bit low byte access, 8 bit high byte access and 16 bit access.

EtherCAT devices use Little Endian byte ordering.

Table 54: 8 bit µController interface access types

ADR[0]	Access	DATA[7:0]
0	8 bit access to ADR[15:0] (low byte, even address)	low byte
1	8 bit access to ADR[15:0] (high byte, odd address)	high byte

Table 55: 16 bit µController interface access types

ADR[0]	BHE (act. low)	Access	DATA [15:8]	DATA [7:0]
0	0	16 bit access to ADR[15:0] and ADR[15:0]+1 (low and high byte)	high byte	low byte
0	1	8 bit access to ADR[15:0] (low byte, even address)	(RD only: copy of low byte)	low byte
1	0	8 bit access to ADR[15:0] (high byte, odd address)	high byte	(RD only: copy of high byte)
1	1	invalid access	-	-

10.3.4 Write access

A write access starts with assertion of Chip Select (CS), if it is not permanently asserted. Address, Byte High Enable and Write Data are asserted with the falling edge of WR (active low). Once the μ Controller interface is not BUSY, a rising edge on WR completes the μ Controller access. A write access can be terminated either by deassertion of WR (while CS remains asserted), or by deassertion or CS (while WR remains asserted), or even by deassertion of WR and CS simultaneously. Shortly after the rising edge of WR, the access can be finished by deasserting ADR, BHE and DATA. The μ Controller interface indicates its internal operation with the BUSY signal. Since the BUSY signal is only driven while CS is asserted, the BUSY driver will be released after CS deassertion.

Depending on the configuration, the internal write access is either performed after the falling edge of WR, or after the rising edge of WR. If the falling edge is selected, the internal write operation begins with the falling edge of WR, and BUSY indicates when the write operation is finished. The internal write operation is performed during the external write access.

If the rising edge of WR is selected, the internal operation begins with the rising edge of WR, i.e., after the external write access. Thus, the external write access is very fast, but an access immediately following will be delayed by the preceding write access. The maximum access time is higher in this case.

10.3.5 Read access

A read access starts with assertion of Chip Select (CS), if it is not permanently asserted. Address and BHE have to be valid before the falling edge of RD, which signals the start of the access. The μ Controller interface will show its BUSY state afterwards – if it is not already busy executing a preceding write access – and release BUSY when the read data are valid. The read data will remain valid until either ADR, BHE, RD or CS change. The data bus will be driven while CS and RD are asserted. BUSY will be driven while CS is asserted.

With read busy delay configuration, BUSY deassertion for read accesses can be additionally delayed for 15 ns, so external DATA setup requirements in respect to BUSY can be met.

10.3.6 µController access errors

These reasons for µController access errors are detected by the µController interface:

- Read or Write access to the 16 bit interface with A[0]=1 and BHE(act. low)=1, i.e. an access to an odd address without Byte High Enable.
- Deassertion of WR (or deassertion of CS while WR remains asserted) while the μController interface is BUSY.
- Deassertion of RD (or deassertion of CS while RD remains asserted) while the μController interface is BUSY (read has not finished).

A wrong µController access will have these consequences:

- The PDI error counter 0x030D will be incremented.
- For A[0]=1 and BHE(act. low)=1 accesses, no access will be performed internally.
- Deassertion of WR (or CS) while the μController interface is BUSY might corrupt the current and the preceding transfer (if it is not completed internally). Registers might accept write data and special functions (e.g., SyncManager buffer switching) might be performed.
- If RD (or CS) is deasserted while the µController interface is BUSY (read has not finished), the access will be terminated internally. Although, internal byte transfers might be completed, so special functions (e.g., SyncManager buffer switching) might be performed.

The reason of the access error can be read in the PDI error code register 0x030E.

10.3.7 Connection with 16 bit µControllers without byte addressing

If the ESC is connected to 16 bit μ Controllers/DSPs which only support 16 bit (word) addressing, ADR[0] and BHE of the EtherCAT device have to be tied to GND, so the ESC will always perform 16 bit accesses. All other signals are connected as usual. Please note that ESC addresses have to be divided by 2 in this case.

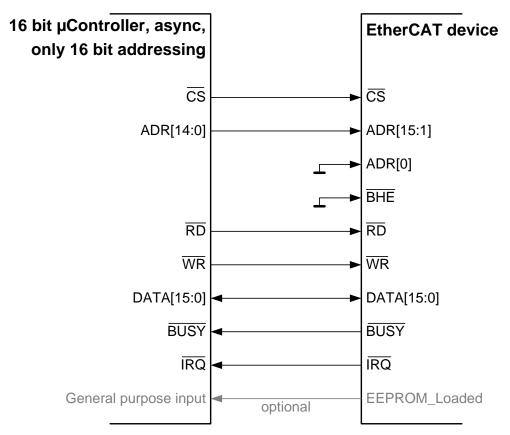


Figure 47: Connection with 16 bit µControllers without byte addressing

10.3.8 Connection with 8 bit µControllers

If the ESC is connected to 8 bit μ Controllers, the BHE signal as well as the DATA[15:8] signals are not used.

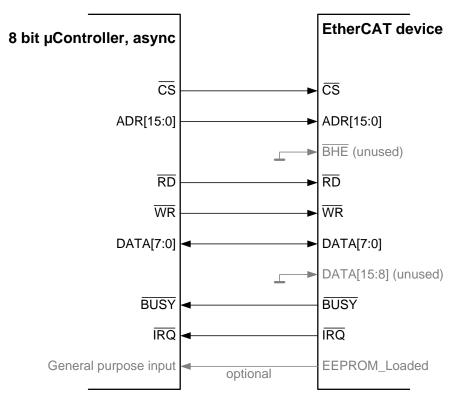


Figure 48: Connection with 8 bit µControllers (BHE and DATA[15:8] should not be left open)

10.3.9 Timing Specification

Table 56: µController timing characteristics IP Core

Parameter	Min	Max	Comment		
PRELIMINARY TIMING					
tcs_to_BUSY		x ⁸	BUSY driven and valid after CS assertion		
tADR_BHE_setup	x ⁸		ADR and BHE valid before RD assertion		
tRD_to_DATA_driven	0 ns ⁹		DATA bus driven after RD assertion		
t _{RD_to_BUSY}	0 ns ⁹	x ⁸	BUSY asserted after RD assertion		
tread			External read time (RD assertion to BUSY deassertion) with normal read busy output (0x0152[0]). Additional 20 ns if delayed read busy output is configured.		
		a) t _{read_int} 9	a) without preceding write access or twR_to_RD ≥ twrite_int or configuration: write after falling edge of WR		
		b) t _{read_int} + t _{write_int} -t _{WR_to_RD} 9	b) with preceding write access and twr_to_rd < twrite_int		
		c) 245 ns ⁹	c) 8 bit access, absolute worst case with preceding write access (twR_to_RD=min, twrite_int =max)		
		d) 285 ns ⁹	d) 16 bit access, absolute worst case with preceding write access (twR_to_RD=min, twrite_int =max)		
tread_int	a) 110 ns ⁹ b) 150 ns ⁹	a) 150 ns ⁹ b) 190 ns ⁹	Internal read time a) 8 bit access b) 16 bit access		
tBUSY_to_DATA_valid		a) x ⁸ -5 ns b) x ⁸ -20 ns	DATA bus valid after device BUSY is deasserted a) normal read busy output b) delayed read busy output		
tADR_BHE_to_DATA_invalid	0 ns ⁹		DATA invalid after ADR or BHE change		
tcs_rd_to_data_release	0 ns ⁹	x ⁸	DATA bus released after CS deassertion or RD deassertion		
tcs_to_BUSY_release	0 ns ⁹	x ⁸	BUSY released after CS deassertion		
tcs_delay	0 ns ⁹		Delay between CS deassertion an assertion		
t _{RD_delay}	X ⁸		Delay between RD deassertion and assertion		
tadr_bhe_data_setup	X8		ADR, BHE and Write DATA valid before WR deassertion		
tadr_bhe_data_hold	X8		ADR, BHE and Write DATA valid after WR deassertion		
twR_active	X ₈		WR assertion time		

 ⁸ EtherCAT IP Core: time depends on synthesis results
 9 EtherCAT IP Core: time depends on synthesis results, specified value has to be met anyway

Parameter	Min	Max	Comment
t _{BUSY_to_WR_CS}	0 ns ⁹		WR or CS deassertion after BUSY deassertion
twr_to_busy		X ⁸	BUSY assertion after WR deassertion
t _{write}	0 ns		External write time (WR assertion to BUSY deassertion)
		a) twrite_int	a) Configuration: write after falling edge of WR (act. low)
		b) t _{write_int} -t _{WR_delay} 9	b) with preceding write access and twR_delay < twrite_int (Write after rising edge of WR)
		c) 0 ns ⁹	c) without preceding write access or twR_delay ≥ twrite_int (Write after rising edge of WR)
		d) 95 ns ⁹	d) 8 bit access, absolute worst case with preceding write access (twR_delay= min, twR_int=max, Write after rising edge of WR)
		e) 95 ns ⁹	e) 16 bit access, absolute worst case with preceding write access (twR_delay=min, twR_int=max, Write after rising edge of WR)
twrite_int	a) 55 ns ⁹ b) 55 ns ⁹	a) 95 ns ⁹ b) 95 ns ⁹	Internal write time a) 8 bit access b) 16 bit access
t _{WR_delay}	X ⁸		Delay between WR deassertion and assertion
twr_to_rd	0 ns		Delay between WR deassertion and RD assertion
tcs_wr_overlap	X8		Time both CS and WR have to be deasserted simultaneously (only if CS is deasserted at all)
tcs_RD_overlap	X ₈		Time both CS and RD have to be deasserted simultaneously (only if CS is deasserted at all)

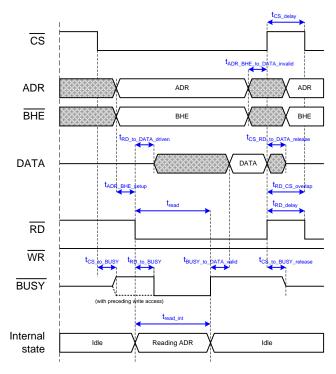


Figure 49: Read access (without preceding write access)

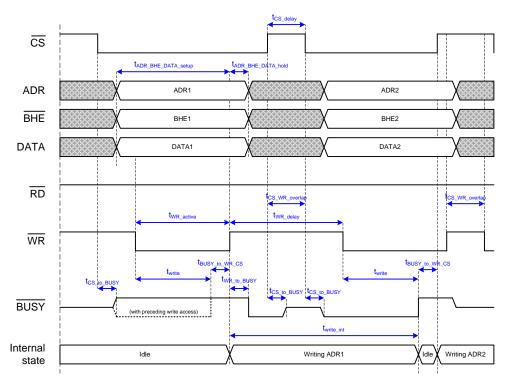


Figure 50: Write access (write after rising edge nWR, without preceding write access)

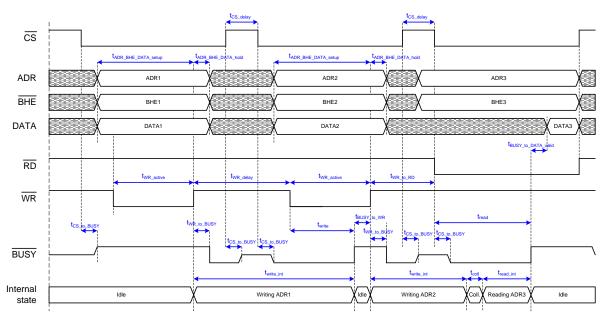


Figure 51: Sequence of two write accesses and a read access

Note: The first write access to ADR1 is performed after the first rising edge of WR. After that, the ESC is internally busy writing to ADR1. After CS is deasserted, BUSY is not driven any more, nevertheless, the ESC is still writing to ADR1.

Hence, the second write access to ADR2 is delayed because the write access to ADR1 has to be completed first. So, the second rising edge of WR must not occur before BUSY is gone. After the second rising edge of WR, the ESC is busy writing to ADR2. This is reflected with the BUSY signal as long as CS is asserted.

The third access in this example is a read access. The ESC is still busy writing to ADR2 while the falling edge of RD occurs. In this case, the write access to ADR2 is finished first, and afterwards, the read access to ADR3 is performed. The ESC signals BUSY during both write and read access.

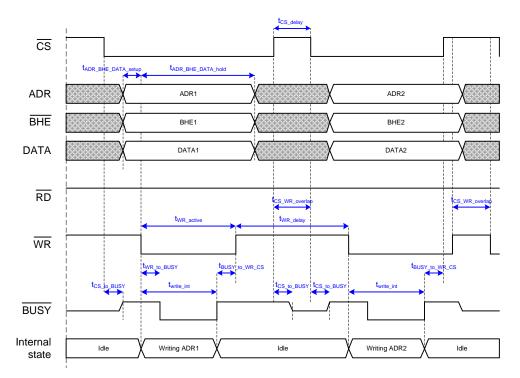


Figure 52: Write access (write after falling edge nWR)

10.4 Avalon Slave Interface

10.4.1 Interface

The Avalon Slave PDI is selected during the IP Core configuration. It uses memory addressing/dynamic bus sizing. The signals of the Avalon interface are:

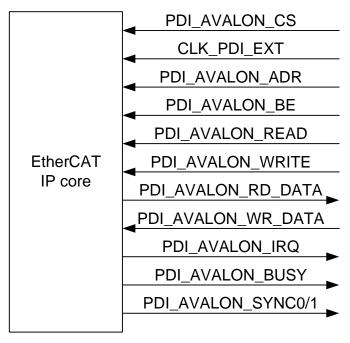


Figure 53: Avalon signals

Table 57: Avalon signals

Signal	Direction	Description	Signal polarity
PDI_AVALON_CS	IN	Chip select	act. high
CLK_PDI_EXT	IN	Avalon Bus clock	
PDI_AVALON_ADR [18-ld(PDI_EXT_BUS_WIDTH):0]	IN	Address	
PDI_AVALON_BE [PDI_EXT_BUS_WIDTH/8-1:0]	IN	Byte enable	act. high
PDI_AVALON_READ	IN	Read request	act. high
PDI_AVALON_WRITE	IN	Write request	act. high
PDI_AVALON_RD_DATA [PDI_EXT_BUS_WIDTH-1:0]	OUT	Read data	
PDI_AVALON_WR_DATA [PDI_EXT_BUS_WIDTH-1:0]	IN	Write data	
PDI_AVALON_IRQ	OUT	Interrupt	act. high
PDI_AVALON_SYNC0/1	OUT	DC Sync0/1 used as interrupts	act. high
PDI_AVALON_BUSY	OUT	Busy / Wait request	act. high

Please refer to the Avalon Memory-Mapped Interface Specification from Altera for details about the Avalon bus (http://www.altera.com).

10.4.2 Configuration

The Avalon interface has PDI type 0x80 in the PDI control register 0x0140. The Avalon clock speed and the Avalon data bus width are configurable in the Avalon PDI configuration dialog.

Device emulation

Enable Device emulation (0x0141[0]=1). This feature should be disabled in most use cases, since the processor will hande the EtherCAT state machine.

On-chip Bus CLK

The Avalon bus clock period can be selected from a wide range. Nevertheless, configuring the bus clock to be a multiple of 25 MHz will result in best performance:

Avalon bus clock frequency = N * 25 MHz (N=1...31)

The maximum clock speed depends on the FPGA and the synthesis. The rising edge of Avalon clock has to be synchronous with the rising edge of CLK25 of the EtherCAT IP Core (otherwise the bus clock is asynchronous).

On-chip Bus CLK is asynchronous to CLK25 core clock

Select this option if the bus clock is asynchronous and synchronization is required (results in extra delay).

External data bus width

Select the Avalon data bus width (PDI_EXT_BUS_WIDTH=8/16/32/64 bit). A higher data bus width results in higher performance, since the individual bytes are prefetched internally.

10.4.3 Interrupts

The Avalon Slave interface supports up to 3 interrupts for easy connection in the Altera SOPC Builder:

- the global PDI interrupt (IRQ)
- DC SYNC0 and DC SYNC1. These interrupts are available if DC are selected. The DC SyncSignals are also available as standard DC Sync0/1 signals.

10.4.4 Data Bus With and SyncManager Configuration

Since an Avalon master always performs read accesses with the whole data bus width (e.g. 32 bit for a NIOS II processor) regardless of the actually issued read command (8/16/32 bit) without use of byte enable signals, care has to be taken especially for SyncManager configuration. SyncManagers should be configured with a length and alignment of multiples of this data width. For write accesses, byte enable signals are used to identify bytes which have to be written.

10.4.5 Timing specifications

Table 58: Avalon timing characteristics

Parameter	Min	Max	Comment			
PRELIMINARY TIMING						
D	8, 16, 32, or 64		Avalon data bus width (in Bits) =PDI_EXT_BUS_WIDTH			
N	1	31	Avalon bus clock factor (if bus clock is a multiple of 25 MHz)			
tcik	X ¹⁰	40 ns	Avalon bus clock period (CLK_PDI_EXT)			
t Read	a) 4 * t _{CLK} +D * 5 ns +x ¹⁰ b) 6.5 * t _{CLK} +D * 5 ns +100 ns +x ¹⁰	a) 3 * t _{CLK} +D * 5 ns +40 ns +X ¹⁰ b) 6.5 * t _{CLK} +D * 5 ns +180 ns +X ¹⁰	Aligned read access time a) synchronous (N=1-31) b) asynchronous			
t _{Write}	a) 3 * t _{CLK} b) 5.5 * t _{CLK} +100 ns +x ¹⁰	a) D * 5 ns b) D * 5 ns +140 ns +x ¹⁰	Aligned write access time a) synchronous (N=1-31) b) asynchronous			

Ether CATT Slave Controller – IP Core for Altera FPGAs

 $^{^{\}rm 10}$ EtherCAT IP Core: time depends on synthesis results

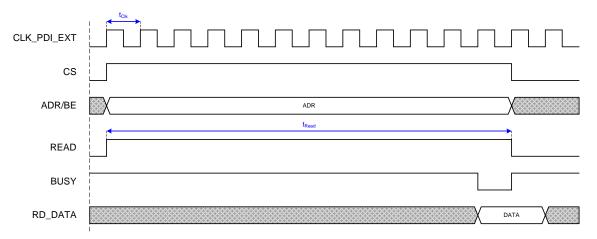


Figure 54: Avalon Read Access (W=1)

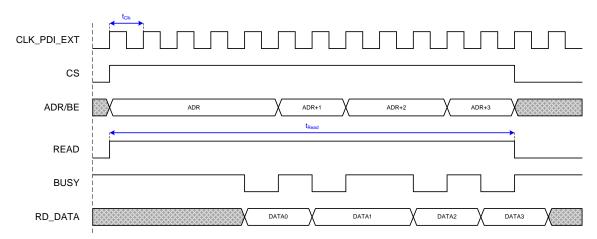


Figure 55: Avalon Read Access (D=8 Bit, W=4)

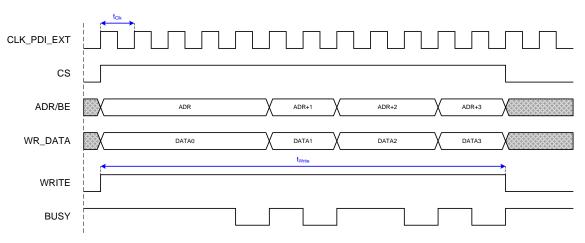


Figure 56: Avalon Write Access (4 accesses)

10.5 AXI3 On-Chip Bus

10.5.1 Interface

The AXI3 Slave PDI is selected during the IP Core configuration. The signals of the AXI3 interface are¹¹:

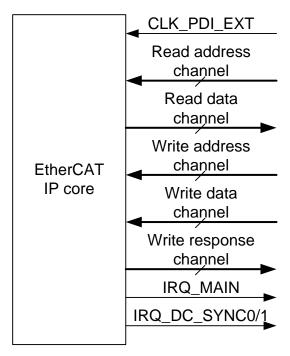


Figure 57: AXI3 signals

Table 59: AXI3 signals

Signal	Directio n	Description	Channel	Signal polarity
CLK_PDI_EXT	IN	AXI Bus clock		
PDI_AXI_AWID [PDI_BUS_ID_WIDTH-1:0]	IN	Write address ID	WR addr.	
PDI_AXI_AWADDR[15:0]	IN	Write address	WR addr.	
PDI_AXI3_AWLEN[3:0]	IN	Write length	WR addr.	
PDI_AXI_AWSIZE[2:0]	IN	Write size	WR addr.	
PDI_AXI_AWBURST[1:0]	IN	Write burst type	WR addr.	
PDI_AXI3_AWLOCK	IN	Write lock	WR addr.	
PDI_AXI_AWCACHE[3:0]	IN	Write cache type	WR addr.	
PDI_AXI_AWPROT[2:0]	IN	Write protection type	WR addr.	
PDI_AXI_AWVALID	IN	Write address valid	WR addr.	act. high
PDI_AXI_AWREADY	OUT	Write address ready	WR addr.	act. high
PDI_AXI_WID [PDI_BUS_ID_WIDTH-1:0]	IN	Write data ID	WR data	
PDI_AXI_WDATA [PDI_EXT_BUS_WIDTH-1:0]	IN	Write data	WR data	
PDI_AXI_WSTRB [PDI_EXT_BUS_WIDTH/8-1:0]	IN	Write data byte enable	WR data	act. high

¹¹ The prefix `PDI_AXI_` or is added to the AXI3 interface signals for the IP Core interface.

Signal	Directio n	Description	Channel	Signal polarity
PDI_AXI_WLAST	IN	Write data last	WR data	act. high
PDI_AXI_WVALID	IN	Write data valid	WR data	act. high
PDI_AXI_WREADY	OUT	Write data ready	WR data	act. high
PDI_AXI_BID [PDI_BUS_ID_WIDTH-1:0]	OUT	Write response ID	WR resp.	
PDI_AXI_BRESP[1:0]	OUT	Write response	WR resp.	
PDI_AXI_BVALID	OUT	Write response valid	WR resp.	act. high
PDI_AXI_BREADY	IN	Write response ready	WR resp.	act. high
PDI_AXI_ARID [PDI_BUS_ID_WIDTH-1:0]	IN	Read address ID	RD addr.	
PDI_AXI_ARADDR[15:0]	IN	Read address	RD addr.	
PDI_AXI3_ARLEN[3:0]	IN	Read length	RD addr.	
PDI_AXI_ARSIZE[2:0]	IN	Read size	RD addr.	
PDI_AXI_ARBURST[1:0]	IN	Read burst type	RD addr.	
PDI_AXI3_ARLOCK	IN	Read lock	RD addr.	
PDI_AXI_ARCACHE[3:0]	IN	Read cache type	RD addr.	
PDI_AXI_ARPROT[2:0]	IN	Read protection type	RD addr.	
PDI_AXI_ARVALID	IN	Read address valid	RD addr.	act. high
PDI_AXI_ARREADY	OUT	Read address ready	RD data	act. high
PDI_AXI_RID [PDI_BUS_ID_WIDTH-1:0]	OUT	Read data ID	RD data	
PDI_AXI_RDATA [PDI_EXT_BUS_WIDTH-1:0]	OUT	Read data	RD data	
PDI_AXI_RRESP[1:0]	OUT	Read response	RD data	
PDI_AXI_RLAST	OUT	Read data last	RD data	act. high
PDI_AXI_RVALID	OUT	Read data valid	RD data	act. high
PDI_AXI_RREADY	IN	Read data ready	RD data	act. high
PDI_AXI_IRQ_MAIN	OUT	Interrupt		act. high

Please refer to the AMBA AXI and ACE Protocol Specification from ARM® for details about the AXI3 bus (http://www.arm.com).

10.5.2 Configuration

The AXI3 interface has PDI type 0x80 in the PDI control register 0x0140 and on-chip bus subtype "000" in the PDI on-chip bus extended configuration register 0x0152:0x0153. The AXI clock speed and the AXI data bus width are configurable in the AXI PDI configuration dialog.

Device emulation

Enable Device emulation (0x0141[0]=1). This feature should be disabled in most use cases, since the processor will hande the EtherCAT state machine.

On-chip Bus CLK

The AXI bus clock period can be selected from a wide range. Nevertheless, configuring the bus clock to be a multiple of 25 MHz will result in best performance:

AXI bus clock frequency = N * 25 MHz (N=1...31)

The maximum clock speed depends on the FPGA and the synthesis. The rising edge of AXI clock has to be synchronous with the rising edge of CLK25 of the EtherCAT IP Core (otherwise the bus clock is asynchronous).

On-chip Bus CLK is asynchronous to CLK25 core clock

Select this option if the bus clock is asynchronous and synchronization is required (results in extra delay).

External data bus width

Select the AXI data bus width (PDI_EXT_BUS_WIDTH=8/16/32/64 bit). A higher data bus width results in higher performance, since the individual bytes are prefetched internally.

ID width

Select the AXI data bus ID signal width

10.5.3 Interrupts

The AXI Slave interface supports up to 3 interrupts for easy connection to embedded systems:

- the global PDI interrupt (IRQ_MAIN)
- The DC SyncSignals can be used as interrupts by means of the Qsys IRQ bridge.

10.5.4 Timing specifications

The AXI PDI accepts read and write accesses simultaneously. Nevertheless, the AXI PDI is internally restricted to perform one access in a single clock cycle (either read or write). Simultaneous read and write accesses are internally serialized to meet this requirement. The worst case timing increases in this situation as indicated in the AXI timing characteristics. In other words, the internal bandwidth is shared between read and write channel if both make accesses simultaneously. If only one channel is used, it gets the full bandwidth.

Table 60: AXI timing characteristics

Parameter	Min	Max	Comment			
	PRELIMINARY TIMING					
D	8, 16,	32, or 64	AXI data bus width (in Bits)			
N	1	31	AXI bus clock factor (if bus clock is a multiple of 25 MHz)			
tcik	X ¹²	40 ns	AXI bus clock period CLK_PDI_EXT			
tRead tWrite	a) t _{CLK} +D * 5 ns +x ¹⁰ b) 3.5 * t _{CLK} +D * 5 ns +100 ns +x ¹⁰	a) 40 ns +D * 5 ns +x ¹⁰ b) 3.5 * tclk +D * 5 ns +180 ns +x ¹⁰ c) 40 ns +D * 10 ns +x ¹⁰ d) 3.5 * tclk +D * 10 ns +180 ns +180 ns +x ¹⁰	Aligned read/write access time (W=1) a) synchronous (N=1-31), read only or write only b) asynchronous, read only or write only c) synchronous (N=1-31), simultaneous read and write d) asynchronous, simultaneous read and write			
BW _{int}		25 Mbyte/s	Internal PDI bandwidth limit for the sum of read and write accesses			

Ī

¹² EtherCAT IP Core: time depends on synthesis results

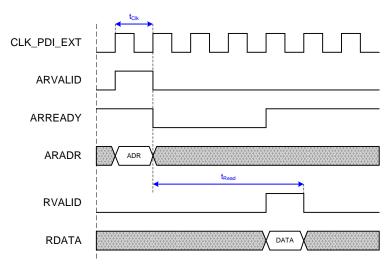


Figure 58: AXI Read Access

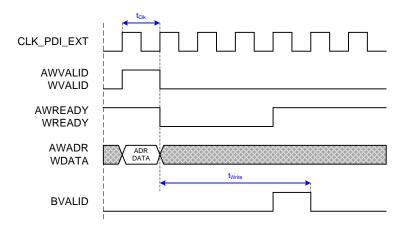


Figure 59: AXI Write Access

11 Distributed Clocks SYNC/LATCH Signals

For details about the Distributed Clocks refer to Section I.

11.1 Signals

The Distributed Clocks unit of the IP Core has the following external signals (depending on the ESC configuration):

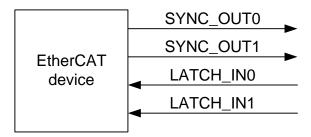


Figure 60: Distributed Clocks signals

Table 61: Distributed Clocks signals

Signal	Direction	Description
SYNC_OUT0/1	OUT	SyncSignals (alias SYNC[1:0])
LATCH_IN0/1	IN	LatchSignals (alias LATCH[1:0])

NOTE: SYNC_OUT0/1 are active high/push-pull outputs.

11.2 Timing specifications

Table 62: DC SYNC/LATCH timing characteristics IP Core

Parameter	Min	Max	Comment
t _{DC_LATCH}	12 ns + x^{13}		Time between Latch0/1 events
t _{DC_SYNC_Jitter}		11 ns + x ¹	SYNC0/1 output jitter
$t_{\text{DC_SYNC_IRQ_pulse_width}}$	40 ns		SYNC0/1 pulse width if the SYNC0/1 signal is used as AL event request (PDI interrupt) signal (masked by register 0x0220 ff.), and if acknowledge mode is not used.

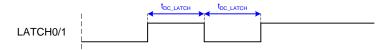


Figure 61: LatchSignal timing

Figure 62: SyncSignal timing

¹³ EtherCAT IP Core: time depends on synthesis results

12 SII EEPROM Interface (I²C)

For details about the ESC SII EEPROM Interface refer to Section I. The SII EEPROM Interface is intended to be a point-to-point interface between IP Core and I²C EEPROM. If other I²C masters are required to access the I²C bus, the IP Core must be held in reset state (e.g. for in-circuit-programming of the EEPROM).

12.1 Signals

The EEPROM interface of the IP Core has the following signals:

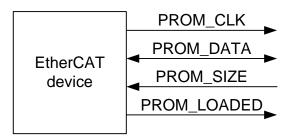


Figure 63: I2C EEPROM signals

Table 63: I²C EEPROM signals

Signal	Direction	Description
PROM_CLK	OUT	I ² C clock (alias EEPROM_CLK)
PROM_DATA	BIDIR	I ² C data (alias EEPROM_DATA)
PROM_SIZE	IN	EEPROM size configuration (alias EEPROM_SIZE)
PROM_LOADED	OUT	EEPROM is loaded (act. high)

Both EEPROM_CLK and EEPROM_DATA must have a pull-up resistor (4.7 k Ω recommended for ESCs), either integrated into the ESC or externally.

PROM_LOADED should have a pull-down resistor either integrated into the ESC or externally to have a valid signal while the FPGA is configured.

12.2 EEPROM Emulation

EEPROM_SIZE has to be 0 for EEPROM emulation (EEPROM emulation with EEPROM_SIZE=1 is for testing only: all commands are acknowledged automatically).

12.3 Timing specifications

Table 64: EEPROM timing characteristics IP Core

Parameter	Typical		Comment		
	Up to 16 kBit	32 kBit-4 MBit	Comment		
tcik	~ 6.72 µs		EEPROM clock period (fclk≈ 150 kHz)		
twrite	~ 250 us	~ 310 µs	Write access time (without errors)		
t _{Read}	a) ~ 440 µs b) ~ 1.16 ms	a) ~ 500 µs b) ~ 1.22 ms	Read access time (without errors): a) 2 words b) configuration (8 Words)		
t _{Delay}	~ 60 µs		Time until configuration loading begins after Reset is gone		

13 Electrical Specifications

Table 65: AC Characteristics

Symbol	Parameter	Min	Тур	Max	Units
f _{CLK25}	Clock source (CLK25) with initial accuracy	2	5 MHz ± 25 ppr	n	

Table 66: Forwarding Delays

Symbol	Parameter	Min	Average	Max	Units
	PRELIMINAF	RY TIMING			
toiff	Average difference processing delay minus forwarding delay (without RX FIFO jitter)		40		ns
tмм	MII port to MII port delay: a) Through ECAT Processing Unit (processing) b) Alongside ECAT Processing Unit (forwarding) Conditions: FIFO size 7, no TX Shift compensation or manual TX Shift configuration with MII_TX_SHIFT = 00	a) 300+x ¹⁴ b) 260+x ¹⁴	a) 320+x ¹⁴ b) 280+x ¹⁴	a) 340+x ¹⁴ b) 300+x ¹⁴	ns

NOTE: Average timings are used for DC calculations.

¹⁴ EtherCAT IP Core: time depends on synthesis results

14 Synthesis Constraints

The EtherCAT IP Core contains true dual-port memory. A simultaneous read and write access to the same memory address is avoided by SyncManagers. To prevent Quartus from adding pass-through logic to the memory which leads to additional resource requirements and timing restrictions, the Analysis & Synthesis option "Add Pass-Through Logic to Inferred RAMs" should be set to "Off".

Turn on Analysis & Synthesis option: Auto RAM Replacement, otherwise the RAM inside the IP Core will be implemented with individual registers.

The following table contains basic IP Core constraints. Refer to "AN 477: Designing RGMII Interfaces with FPGAs and HardCopy ASICs" from Altera for details about RGMII constraining.

Table 67: EtherCAT IP Core constraints

Signal	Requirement	Value	Clock reference	Description
CLK25	period	40 ns		Reference clock (25 MHz)
CLK25_2NS	a) period b) phase shift	a) 40 ns b) 2 ns	CLK25	Derived clock (25 MHz). Phase shift is rising edge CLK25 to rising edge CLK25_2NS.
CLK50	a) periodb) phase shift	a) 20 ns b) 0 ns	CLK25	Derived clock (50 MHz). Phase shift is rising edge to rising edge.
CLK100	a) periodb) phase shift	a) 10 ns b) 0 ns	CLK25	Derived clock (100 MHz). Phase shift is rising edge to rising edge.
nRESET	Ignore timing			nRESET is asynchronous to any clock
MCLK	min. period	400 ns		IEEE802.3 requirement (2.5 MHz)
MDIO	a) setup b) hold at PHY input	a) 10 ns b) 10 ns	MCLK (rising edge)	MDIO is changed with falling edge of MCLK, max. output skew of MCLK and MDIO is 190 ns. Constraining is usually not required. IEEE802.3 requirement.
MII_RX_CLK0-2	period	40 ns		MII receive reference clock (25 MHz). IEEE802.3 requirement.
MII_RX_DATA0-2[3:0] MII_RX_DV0-2 MII_RX_ERR0-2	a) setup b) hold	a) 10 ns b) 10 ns	MII_RX_CLK0-2 (rising edge)	IEEE802.3 requirement
MII_TX_CLK0-2	period	40 ns		MII transmit reference clock (25 MHz). Only used for automatic TX Shift compensation. IEEE802.3 requirement.
MII_TX_DATA0-2[3:0] MII_TX_ENA0-2	Clock-to-Pin a) min b) max	a) 0 ns b) 25 ns	TX_CLK0-2 from PHY (rising edge)	IEEE802.3 requirement
	Clock-to-Pin a) min b) max	a) 0 ns b) 10 ns	CLK25 (rising edge)	Incomplete alternative to IEEE802.3 requirement, keeps margin if TX Shift has been determined and compensated. Refer to section III for details.
PROM_CLK	period	App. dep.		I ² C clock. Actual ESC output clock is 6.72 μs (≈ 150 kHz). Min. 2.5μs (400 Khz) for example I ² C EEPROM chip.
PROM_DATA	a) setup b) hold	a) 250 ns b) 0 ns	PROM_CLK a) rising edge b) falling edge	PROM_DATA is changed in the middle of the low phase of PROM_CLOCK, i.e., max. output skew of PROM_CLK/PROM_DATA is 1.43 µs. Constraining is usually not required. Example I ² C EEPROM chip requirement.
RMII_RX_DATA0/1[1:0] RMII_RX_DV0/1 RMII_RX_ERR0/1 RMII_TX_DATA0/1[1:0] RMII_TX_ENA0/1	a) setup b) hold	a) 4 ns b) 2 ns	CLK50 (rising edge)	RMII specification requirement
RGMII_RX_CLK0-2	period	40 ns		RGMII receive reference clock (25 MHz). RGMII spec. requirement.
RGMII_RX_CTL0-3 RGMII_RX_DATA0- 3[3:0]	a) setup b) hold	a) b)	RGMII_RX_CLK 0-2 (both edges)	Depending on RX_CLK delay option, RGMII spec. requirement
RGMII_TX_CLK0-2	a) periodb) phase shift	a) 40 ns b) 2 ns	CLK25_2NS	RGMII transmit reference clock (25 MHz), derived from CLK25_2NS. RGMII spec. requirement.

Signal	Requirement	Value	Clock reference	Description
RGMII_TX_CTL0-3 RGMII_TX_DATA0- 3[3:0]	Clock-to-Pin a) min b) max	a) b)	RGMII_TX_CLK 0-2 (both edges)	Depending on TX_CLK delay option, RGMII spec. requirement
Other signals, especially PDI signals	application depen	ndent		

Example Design Constraints File (SDC)

```
## Constraints for EL9800 DIGI EP3C25
set time format -unit ns -decimal places 3
# Clocks defintion:
create clock -period 40 -name MII RX CLK [get ports MII RX CLK* ]
create clock -period 40 -name REF CLK [get ports REF CLK ]
create clock -period 80 -name DIGI CLK [get pins
       {ETHERCAT_INST|EtherCAT_IPCore inst|\PDI_DIGI_INST:PDI_INST|NRESET_PDI_SELECT_REG|q}]
derive pll clocks
derive clock uncertainty
# constraining MII ports
set_input_delay -clock { MII_RX_CLK } 20 [get_ports MII_RX_DATA*]
set_input_delay -clock { MII_RX_CLK } 20 [get_ports MII_RX_DV*]
set_input_delay -clock { MII_RX_CLK } 20 [get_ports MII_RX_ERR*]
set_input_delay -clock { PLL_INST|altpll_component|auto_generated|pll1|clk[0] } 5 [get_ports
      nMII LINK* ]
set_input_delay -clock { PLL_INST|altpll_component|auto_generated|pll1|clk[1] } 5 [get_ports
      MII TX CLK*]
set_min_delay -from [get_clocks {PLL_INST|altpll_component|auto_generated|pll1|clk[1]}] -to
       [get ports {MII TX ENA* MII TX DATA*}] 0
 set_max_delay -from [get_clocks {PLL_INST|altpll_component|auto_generated|pll1|clk[1]}] -to
       [get ports {MII TX ENA* MII TX DATA*}] 8
set_min_delay -from [get_clocks {PLL_INST|altpll_component|auto_generated|pll1|clk[0]}] -to
       [get_ports {LINK_ACT*}] 0
set max delay -from [get clocks {PLL INST|altpll component|auto generated|pll1|clk[0]}] -to
       [get ports {LINK ACT*}] 15
set_false_path -from [get_clocks {PLL_INST|altpll_component|auto_generated|pll1|clk[0]}] -to
       [get clocks {MII RX CLK}]
set false path -from [get clocks {PLL INST|altpll component|auto generated|pll1|clk[1]}] -to
       [get clocks {MII RX CLK}]
set false path -from [get clocks {MII RX CLK}] -to [get clocks
       {PLL_INST|altpll_component|auto_generated|pll1|clk[0]}]
set false path -from [get clocks {MII RX CLK}] -to [get clocks
       {PLL INST|altpll component|auto generated|pll1|clk[1]}]
 # constraining logical inputs
set input delay -clock { PLL INST|altpll component|auto generated|pll1|clk[0] } 5 [get ports
      [PORT A* PORT B* PORT F*]
set_input_delay -clock { PLL_INST|altpll_component|auto_generated|pll1|clk[0] } 5 [get_ports
       [PROM DATA PROM SIZE]
set input delay -clock { PLL INST|altpll component|auto generated|pll1|clk[0] } 5 [get ports
      MDIO*
\verb|set_min_delay -from [get_clocks {PLL_INST|altpll_component|auto_generated|pll1|clk[1]}| -tolder | |set_min_delay -from [get_clocks {PLL_INST|altpll_component|auto_generated|pll1|clccks|auto_generated|pll1|clccks|auto_generated|auto_generated|pll1|clccks|auto_g
       [get ports {PORT C* PORT D* PORT E*}] 0
 set max delay -from [get clocks {PLL INST|altpll component|auto generated|pll1|clk[1]}] -to
       [get ports {PORT C* PORT D* PORT E*}] 8
set min_delay -from [get_clocks {PLL_INST|altpll_component|auto_generated|pll1|clk[0]}] -to
       [get_ports {PROM_CLK PROM_DATA}] 0
set_max_delay -from [get_clocks {PLL_INST|altpll_component|auto_generated|pll1|clk[0]}] -to
       [get ports {PROM CLK PROM DATA}] 15
set_min_delay -from [get_clocks {PLL_INST|altpll_component|auto_generated|pll1|clk[0]}] -to
       [get ports {MDIO MCLK}] 0
 set max delay -from [get clocks {PLL INST|altpll component|auto generated|pll1|clk[0]}] -to
      [get ports {MDIO MCLK}] 15
 set_min_delay -from [get_clocks {PLL_INST|altpll_component|auto_generated|pll1|clk[0]}] -to
       [get_ports LED_RUN] 0
 set_max_delay -from [get_clocks {PLL_INST|altpll_component|auto_generated|pll1|clk[0]}] -to
       [get ports LED RUN] 15
#false paths
set_false_path -from {nRESET} -to
       {PLL:PLL INST|altpll:altpll component|altpll bbc1:auto generated|pll lock sync}
set_false path -from
       {PLL:PLL INST|altpll:altpll component|altpll bbc1:auto generated|pll lock sync} -to
       [get_ports {PROM_DATA PROM_CLK}]
\texttt{set\_false\_path-from} \hspace{0.2cm} \texttt{[get\_clocks \{PLL\_INST|altpll\_component|auto\_generated|pll1|clk[0]\}]-tolline to the property of the propert
       [get clocks {DIGI CLK}]
set false path -from [get clocks {PLL INST|altpll component|auto generated|pll1|clk[1]}] -to
       [get clocks {DIGI CLK}]
```

15 Appendix

15.1 Support and Service

Beckhoff and our partners around the world offer comprehensive support and service, making available fast and competent assistance with all questions related to Beckhoff products and system solutions.

15.1.1 Beckhoff's branch offices and representatives

Please contact your Beckhoff branch office or representative for local support and service on Beckhoff products!

The addresses of Beckhoff's branch offices and representatives round the world can be found on her internet pages: http://www.beckhoff.com

You will also find further documentation for Beckhoff components there.

15.2 Beckhoff Headquarters

Beckhoff Automation GmbH & Co. KG Huelshorstweg 20 33415 Verl Germany

Phone: +49 (0) 5246 963-0

Fax: +49 (0) 5246 963-198

E-mail: info@beckhoff.com

Web: www.beckhoff.com

Beckhoff Support

Support offers you comprehensive technical assistance, helping you not only with the application of individual Beckhoff products, but also with other, wide-ranging services:

- world-wide support
- design, programming and commissioning of complex automation systems
- and extensive training program for Beckhoff system components

Hotline: +49 (0) 5246 963-157
Fax: +49 (0) 5246 963-9157
E-mail: support@beckhoff.com

Beckhoff Service

The Beckhoff Service Center supports you in all matters of after-sales service:

- on-site service
- repair service
- spare parts service
- hotline service

Hotline: +49 (0) 5246 963-460 Fax: +49 (0) 5246 963-479 E-mail: service@beckhoff.com